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Summary. The fundamentals of the modelling approach
System Dynamics are described and illustrated by two
simple inventory and production planning models. After
discussing the structure of an implemented System Dy-
namics model the applicability of this modelling approach
is critically analysed.

Zusammenfassung. Die Elemente der Modellierungskon-
zeption System Dynamics werden beschrieben und an-
hand von zwei einfachen Lager- und Produktionspla-
nungsmodellen demonstriert. Nach der Darstellung des
Aufbaus eines implementierten System Dynamics Modells
wird die Anwendbarkeit dieses Modellierungskonzeptes
kritisch analysiert.

Introductory Remarks

System Dynamics is a well-known and often used ap-
proach of modelling and analysing dynamic systems. It
allows the relatively easy development of models possess-
ing some hundred or even several thousand variables.
Such large models are acceptable since the formulation
analysis and modification of System Dynamics models
are based completely on the use of computer simulation.
System Dynamics was originally developed by J.W. For-
rester for the investigation of industrial systems [11]. It
has since found application in many other areas. System
Dynamics models are presently being used in all areas
of economic and social sciences.

This paper will restrict its investigation to the possi-
bilities and limits of using System Dynamics for produc-
tion and inventory planning, the field where it was first
applied.

1 For periodical accounts of System Dynamics developments
see [19] and [5]. A comprehensive description of the System
Dynamics conception of modelling is given in [10)

In the first section we present a short overview of the
stages of a System Dynamics study. Then we will describe
the formulation, analysis, and modification of System
Dynamics models. In the next section the procedure for
analysis and modification of a System Dynamics model
will be reconstructed in the light of linear systems
theory. This is followed by an examination of the Sprague
Electric Company production and inventory model de-
veloped by Forrester. Finally, we shall attempt a critical
appreciation of the value of System Dynamics for inven-
tory and production system planning.

1. Stages in the Development and Application of
System Dynamics Models

A System Dynamics study is comprised of the following

stages: 1. formulation of a model; 2. validation of the

model; 3. model analysis and model modification; and 4.

implementation of the model. These stages will be briefly

described to get a preliminary overview of the whole
procedure.

(1) The formulation of a fully specified dynamic model
is taken in three phases. First, a causal loop diagram
of the system is developed. On the basis of this caus-
al loop diagram, a flow chart is constructed, which
expresses the level-rate interpretation of the System
Dynamics approach. This diagram serves as a base
for the formulation of a numerical specified dynam-
ical difference equation model.

(2) The method for validating a System Dynamics model
differs considerably from the procedures used, e.g.
in econometrics. So Forrester rejects ex ante as well
as ex post forecasting for model validation. In his
view, a dynamic model is “validated™ if it is an ad-
equate representation of the “mental model” which
the model user has formed about the system.
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(3) The third stage, model analysis and modification,
differs, depending on whether a model has or has
not exogenous variables. In the first case, the goal of
this stage is “to find the forces of growth,” in the
second case, to analyse “‘the causes of fluctuation
and instability™ [ 10, p. 3—5]. Models with exogenous
variables are analysed using a special method called
test input response analysis. The model is set “arti-
ficially” in an equilibrium state and its behavior is
simulated using a standardized time trajectory (test
input) for the exogenous variables. The cause of
fluctuation and instability and the possibility of
eliminating system instability by changing decision
rules are studied on the basis of the alternate test
response of the model variables.

(4) The fourth stage concerns the implementation of a
System Dynamics study. It can be characterized by
the question: in which way is the result of the anal-
ysis and modification phase to be used to get a
desired improvement in the described system? For-
rester gives no clear answer. There is a range of
possible degrees of implementation. At one end of
the spectrum the model user gets a “better feeling”
for the systems behavior, which will enable him (in
some way) to improve the system. At the other end,
decision rules, which have shown in the model anal-
ysis to bring about improvement, are directly imple-
mented into the system.

In the following sections these stages are discussed in

greater detail.

2. Formulation of System Dynamics Models
2.1. Formulation of Causal Loop Diagrams

The first phase in developing a System Dynamics model
consists of the formulation of a causal loop diagram. The
(vague) hypothesis “a change in variable A causes a
change in variable B” can be graphically represented by

A-=—B (])

If the variables  of such hypotheses are connected with
each other, their graphical representation leads to a net-
work of arrows as in the following example

A /B
\[/
If such a network contains a chain of arrows which form
a closed cycle this cycle is called a causal loop or a feed-
back loop. A—B—C—A and B-C—Bin the example above

are such causal loops. Networks of arrows which contain
at least one causal loop are causal loop diagrams. A causal
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loop diagram is a representation of a feedback system.,
One goal of a System Dynamics study is the representa-
tion of such feedback systems using numerically specified
equations. A step in the direction of a more informative
system representation is the development of a causal
loop diagram with trend relations.

The hypothesis “an increase in A leads to an increase
in B” contains more information than (1) and can be re-
presented by

A8
In contrast to this “positive trend hypothesis,”” the

“negative trend hypothesis™ is: “an increase in A leads
to a decrease in B.” It is symbolized by

A=B
A causal loop diagram is a visual model of a positive and

negative trend hypothesis. Such causal diagrams allow us
to distinguish between positive and negative feedbacks.

A/-:‘B AﬂB tr g
NS (5
{a) |b) (c)

Fig. 1. Examples of positive and negative feedback loops

A positive feedback loop is a closed chain in which an
increase in one variable causes a (delayed) increase in the
same variable. In a negative feedback loop an increase in
one variable induces a (delayed) decrease in the same
variable. The causal diagram (a) in Fig. 1 contains one
positive and one negative feedback loop. These loops are
separately shown by the diagramms (b) and (c).

Q Order Rate { OR )

Actual Inventory ( L)
./ +

Inventory

Output (0)

Fig. 2. Causal loop diagram of an inventory planning system

Figure 2 shows a causal loop diagram of a simple in-
ventory planning system. The development of a causal
loop diagram (normally) helps to determine the number
of variables which should be included in the model. For-
rester’s objective is the development of closed models,
i.e. models which do not have exogenous variables. He
also admits models with exogenous variables, if these
models are investigated by a special procedure (test
input response analysis) which is discussed in Sect. 3.
Although models with more than one exogenous variable
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are possible, nearly all System Dynamics models do not
possess more than one exogenous variable. System Dy-
namics models with one exogenous variable can be called
singularly open models. Figure 1 (a) shows a closed
model, while the model in Fig. 2 is singularly open. Ac-
cording to Forrester’s view, a model designer should
develop a causal loop diagram of a system which (nor-
mally) does not contain more than one exogenous
variable.

2.2. Formulation of Numerically Specified System
Dynamics Models

Typically the next step would be the development of a
System Dynamics diagram. This is a flow chart, which,
like the causal loop diagram, is a visual model. In contrast
to the causal loop diagram, its hypotheses are more
precise and it shows the socalled level-rate interpretation
of a system, which is an essential feature of the System
Dynamics approach. As the development of System
Dynamics diagrams presupposes a knowledge of different
types of variables and hypotheses, let us first introduce
them analytically. Afterwards, in Sect. 2.3, we will de-
scribe the formulation of System Dynamics diagrams.

2.2.1. Types of Model Relations

Using the System Dynamics approach the world is inter-
preted as a system of levels with inputs and outputs being
connected in the form of feedback loops. If this network
of feedback loops can be described in equations, the time-
variant trajectories of all levels, inputs, and outputs can
be deduced. This calculation is best done with a comput-
er and is called simulation.

A level is described by a level equation which has the
general form

L(t) = L(t-1) + DT[I(t—1,t)-O(t—1,t)] (units).  (2)

Setting the time increment DT=1 it can be seen that the
level value L at time t is a result of the level value of the
previous period L(t—1), plus inflow I during the time
period t—1 to t minus outflow O of the same time period.

The notation of System Dynamics models differs
from this representation of a level equation. In this nota-
tion the level equation has the form

LK=LJ+DT+(1JK-0JK) (units). (3)

The time subscripts of conventional difference equa-
tion notation (t+1, t and t—1) are replaced by L, K and
J. Thus LJK denotes the value of the inflow rate variable
during J to K and O.JK the value of the corresponding
outflow rate.
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Accordingly, rate variables are always expressed by
rate equations having the form

R.KL=F[L1.K,...,.LN.K] (units/time), (4)
where R is an inflow or outflow variable. From (3) and
(4) we see that the time increment DT has the dimension
(1/time). The time subscript KL corresponds to (t,t+1);
F[...] expresses any given functional relationship, and
L1,...,LN are the level variables of the model.

A complete System Dynamics model can be con-
structed using only level and rate equations (3) and (4).
However, in order to make model relationships more
visible, auxiliary variables are often included in the model.
These are expressed by auxiliary equations having the
general form

AK=F[A1KA2K,..., AMKL1K L2K,....LNK]. (5)

Auxiliary variables can have the dimension of a level or a
rate. The use of auxiliary equations enlarges the general
form of rate equations to

RKL=F[LLX,...LINK,A1K,....AMK] (units/time).

(6)

In order to calculate the time path of the variables in a
System Dynamics model, the initial values must be de-
fined for each level. Initial values of a level are specified
by initial value equations

L = (numerical value)  (units). (7)

Likewise, constants must be specified by constant equa-
tions

C = (numerical value). (8)

We shall now illustrate the different form of equations
by modelling a very simple System Dynamics model of
an inventory system.

The state of inventory is expressed by the level equa-
tion
LK=LJ+DT+(L.JK-0JK) (units), (9)
where 1 is the inflow and O the outflow rate of the in-
ventory.

We will assume an initial stock of 500 units

L=500 (units) (10)
and a constant outflow rate
OKL=100 (units/week). (11

The inflow rate is determined by the ordering rule (rate
equation)

ILKL=100+AF*(DL--LK) (units/week),

(12)
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Table 1. Elements of System Dynamics models and their DYNAMO expression

Model Element

Identification Letter

Equation Type

Level

Rate

Auxiliary equation
Initial level value
Constant

NZ»>Ar-

LK=LJ+DT=(lJK-0.JK)
R.KL=F|LLK,....INKAIK,... AMK]
AK=F[L1.K,...,LNKALK. ..AMK]
N = (numerical value)

C = (numerical value)

where DL denote the desired inventory level which will
be specified by the constant equation

DL=300 (units). (13)
AF is the factor which determines the amount of influ-
ence that the deviation between DL and L will have upon
the amount of ordered material (I). It is specified as
AF=0.1 (1/week). (14)
The difference between the desired inventory (DL) and
the actual inventory (L) is defined by the auxiliary equa-
tion

D.K=DL-L.K (units). (15)
Hence, from (12) and (15) we get the final form of |
LKL=100+AF=DK (units/weeck). (16)

Equations (15) and (16) are examples of the general Eq.
(5) and (6). Summarizing, all equations of the inventory
model are given in System Dynamics notation (left) and
conventional difference equation notation (right)

LK=LJ4DT#*[IJK-0.JK] L(t)=L(t—1)+DT=[I(1)-O(t)]

1.=500 L(0)=500

0.KL=100 O(t+1)=100
ILKL=100+AF*D.K I(t+1)=100+AF=D(t) (17)
DK=DL-LK D(t)=DL-L(t)

DL=300 DL=300

AF=0.1 AF=0.1.

The System Dynamics notation largely coincides with
the notation of the computer simulation language
DYNAMO. This language was specifically developed for
programming System Dynamics models. In DYNAMO
each equation is specified by its type, using a letter
which preceeds the statement. Level equations are iden-
tified with an “L;" auxiliary equations with an “A”
rate equations with an “R.” initial equations with an
“N,” and constant equations with a “C.” Adding these
instructions and four direction statements to (17), we
get a complete DYNAMO program

L.E=L.J+DT*(I.JK-0.JK)
I=5@@2

0.KkL=1p0@
1.EL=10@+AF*L K
D.X=DL-L.K

DL=3e¢

AF=0.1

SPEC DT=1,PRTPER=1,PLTPER=1,LENGTH=2¢
PRINT L,0,1I

PLOT L/0/1

RUN

(18)

LR R -5 % N

The last four statements include the specification and
output instructions which determine the length of the
simulation run and the form of the output (see [22]).
The equation types are summarized in Table 1.

2.2.2. Special Kinds of Hypotheses in System Dynamics
Models

System Dynamics models make considerable use of three
types of hypotheses: the exponential delay hypothesis,
the smoothing hypothesis, and the table function hypo-
thesis. These are provided in DYNAMO as built-in macro
instructions whose use is described below.

2.2.2.1. Exponential Delay Hypotheses. The exponential
delay hypothesis used by Forrester describes the delayed
relation between a level input (I) and a level output (O).
Let us assume that a level L possesses an initial value
L=0. The inflow of thislevel is assumed to be a unit pulse,
ie.

1 for t=0

1 =
(t) 0 for t=1,2....

The time trajectory of O(t) is called a unit pulse response.
Exponential delay levels are completely characterized by
their pulse response function

O,(t)y=g(t) t=0,1,2,...

and

- ) 9
Eﬂg(t) ] (19)
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Fig. 3. Pulse response of an exponential third order delay with differcnt average delay time (AD), [(0)=100

Forrester uses predominantly third order exponential
delays. These delays have a unimodal pulse response
and are simply specified by their average delay (AD).
AD specifies the average time spent by an input element
in the level (i.e. before leaving the level as an output). A
third order exponential delay is expressed in DYNAMO
by the DELAY 3 function®:

R O.KL=DELAY3(LJK,AD) (20)
Figure 3 shows the test response function of a third order
exponential delay with different values of AD. If the
model builder concludes that the relation between the
inflow and outflow of a level can be described by a third
order exponential delay, then the complete modelling of
that delay is achieved by specifying its average delay
(AD). (The identification of an observed inflow-outflow

2 The DELAY3 function seems to contradict the rate equation
(6) since the System Dynamics concept does not permit the
direct influence of one rate variable by another. This contra-
diction is only apparent, however, because the DELAY3
macro instruction is shorthand for a chain of cascading levels
[22, p. 92}, in which LIK of (20) is the inflow of a level and
O.KL is explained by an auxiliary variable. The same holds
for the smooth function (21) below

relation as a third order exponential delay is a critical
point which will be discussed in Sect. 7.) Exponential
third order delays contribute significantly to the dynamic
character of System Dynamics models.

2.2.2.2. Smooth Hypotheses. In dynamic models vari-
ables are often used to express forecasts. In System
Dynamics models Forrester uses such “forecasting vari-
ables” which are nearly exclusively in form of exponential
smoothing forecasts. To explain such forecasting vari-
ables DYNAMO provides a built-in SMOOTH function.

Assuming the actual outflow of an inventory is called
O, then it is reasonable to compute with the values of O
an estimation (EO) for the next period lying in the fu-
ture. According to Forrester, this estimate is to be made
by an exponential smoothing forecast procedure which
can be modelled in DYNAMO by the instruction

A EOK=SMOOTH(0.JK,S) (1)

This SMOOTH function can be substituted by the normal
DYNAMO equation

K=EO J+DT#(0J—E0J)/S

EO. (22)
EO=0

L
N
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Fig. 4. Approximation of a non-linear relation-
o Ship by an open polygon

We recognize that the smoothing time (S) is the reciprocal
of the so-called smoothing constant, which is normally
used in the discussion of forecasting methods.

2.2.2.3. Table Function Hypotheses. The non-linearity of
System Dynamics models is often caused by table func-
tions. These are open polygons with which arbitrary
functional relationships can be approximated, as in the
graph above (Fig. 4).

The open polygon, or table function, of Fig. 4 is ex-
pressed in a DYNAMO instruction as

A OX=TABLE(TAB,A K,0.40,5)
T TAB=0/5/12/24/30/33/38/39/41 (23)
(For details see [22, p. 31].) DELAY3 and SMOOTH
functions will be demonstrated in Sect. 4. The use of
table functions is described in Sect. 6.1.

2.2.3. Is-Ought Decision Rules

Knowing the structural form of the rate and auxiliary
equation, we can discuss a type of decision rule which is
a special characteristic of the System Dynamics approach.
This type of decision rule (which is not explicitely named
by Forrester) could be called the is-ought decision rule.

Virtually all of the decision rules used by Forrester to
control inventory, production, and work force are is-
ought decision rules. The concept underlying this kind
of decision rule is to control the system by keeping the
difference between desired levels (ought) and actual levels
(is) as small as possible, in Forrester’s words,

35 5w A

““A policy or rate equation recognizes a local goal toward which
that decision point strives, compares the goal with the apparent sys-
tem condition to detect a discrepancy and uses the discrepancy to
guide action.” Commenting onthe rate equation OR=1/AT(DI-I):
“In this equation the goal is the desired inventory DI, The order
rate (OR) acts to move inventory towards the goal. The observed
condition of the system is the inventory L... The action in the
above rate equation is stated to be 1/AT of the discrepancy™
(DI-I). [10, p. 415-416)

In the is-ought decision rules used by Forrester to
specify a (decision) rate variable (RAT), the difference
between the target DL and the actual value of a level L is
explicitly stated, i.e. an is-ought decision rule always in-
cludes the term DL—L. A deviation of the level variable
L from DL induces a change of RAT which tends to a
reduction of this deviation. In many cases a linear
is-ought decision rule is used having the form

RATKL =EXSRK + A% (DL1.K-L1K+DL2K—

—L2.K+.. +DLN.K-LN.K) (24)
EXSR is an exponentially smoothed rate variable (usually
the firm sales rate). VariablesDL1,...,DLN express target
values of levels. 1/APT is a “compensation term,” which
balances out deviations between the target values and
their corresponding actual valuesL1,...,LN. The decision
variable (RAT) is the inflow rate of a level cascade of
L1,...,LN. The desired values are generally defined by
DLIK=DF*EXSRK (I=1,2,...,N) (25)
in which DF can be called depletion factor when the
levels are inventories or backlogs.

Combining (24) and (25), the is-ought decision rule
has the general form
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RATKL = EXSRK + ATIT (DF1*EXSRK L1 K+
.. +DFN+EXSR K —LNK) (26)

Since Forrester proposes a mandatory use of is-ought
decision rules, they are central to his concept of system
control. The problem concerning these rules is discussed
later.

2.3. Development of System Dynamics Diagrams

The causal loop diagram (introduced in Sect. 2.1) serves
as the base for developing of a System Dynamics diagram
(often simply called flow chart). Figure 5 shows the
diagram symbols for the variables and parameters.

Model Element Symbol

Level variable

rate variable

auxiliary variable

Salll

initial level value no symbol

¢

constant

Fig. 5. Diagram symbols of System Dynamics
variables and paramcters

Figure 6 shows the System Dynamics diagram of the
simple inventory model (18). The actual inventory (L)
has an input flow which is represented by the valve
symbol I. It shows in a visual way that the amount of
the inflow stream (I) depends upon the variable (D) and
the parameters (AF and 100), from which a dotted line
leads to the valve symbol I. The auxiliary (D) depends
on the values of L and DL, and the outflow (O) of the
inventory (L) has a constant amount of 100 units. We
can recognize that a System Dynamics diagram is less
precise than a DYNAMO model. For example, we re-
cognize in the diagram which parameters and variables
influence I, but the diagram does not express the form
of the numerical specified Eq. (12).

The following generalizations about diagramming can
be drawn from Fig, 6:

1) A dotted line shows that alevel, an auxiliary, or a con-
stant influences an auxiliary, a level, or a rate. The
direction of the arrow is from the influencing to the
influenced element.

149
100
® AF
G > DL
P >
e x
L g--m7
100
-
0 "

Fig. 6. System Dynamics diagram of a simple inventory model

2) Level inflows and outflows are shown by solid lines
passing through valve symbols. Flows leading to levels,
which are not included in the model, end in sinks,
symbolized by cloud-like shapes. Flows from levels
not included in the model are shown as originating in
sources which are symbolized in the same way:

Model Element Diagram Symbol  Use of Symbol

-

End of a flow
(from a level)

Source Beginning of a flow
(to a level)

Dotted arrow o Arrow-head,
showing direction
of influence

Specially marked flow lines can be used to show the
kind of flow (i.e. inputs and outputs between the levels).
Forrester, for example, uses the following flow symbols
in his model of firms

work force
S G orders
-$—¢—¢- money

material

The two built-in hypotheses described previously have
the following diagram symbols, which are special versions
of the common level symbols.
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Smooth function
E0.K=SMOOTH(0.JK,S)

SM | EO LS

Delay3 function
OXL=DELAY3(1.JK,AD)

p3| o |ap

3. Model Analysis and Model Modification

Forrester’s objective is the study of closed systems. The
essential idea of a closed system “is the boundary across
which nothing flows (except perhaps a disturbance for
exiting the system so we can observe its reaction)” [10,
p. 4-2]. Closed systems are described by models which
have no exogenous variables, i.e. by closed models. It
seems as if Forrester would restrict his approach to sys-
tems which can be described by closed models. Looking
at what Forrester means by a flow in the form of a
disturbance, we will find, studying his models, that he
admits (besides closed models) models with one exoge-
nous rate variable. These singularly open models are not
used for forecasting by specifying an estimation of the
exogenous rate variable time trajectory. They are only
investigated by a method which can be called rest input
response analysis. This method is borrowed from classical
servomechanism theory. It consists of the following
procedure:

(1) A singularly open System Dynamics model is “arti-
ficially” brought to a state of equilibrium by choice
of initial level values.

(2) The time trajectory of the exogenous variable in the
model is chosen to be a standardized test input.

(3) The test response of some relevant variable of the
model is simulated.

(4) By more or less systematic variation of controllable
model parameters one attempts to achieve a desired
test response of the relevant variables.

(5) If the variation of special parameters does not lead
to the desired behavior, different decision rules may
be used to achieve this behavior, or one may even
redesign whole sections of the model.

For test functions it is possible to use pulse, step, or
sine functions, or certain random sequences of stochastic
variables. In the following, step functions will be used
only. Their definition is

SH > 0 for t=N,N+1,...

SO 10 fort=N-1N-2,...

and the corresponding DYNAMO instruction is

STEP(SH,N)

E. Zwicker: System Dynamics in Inventory and Production Planning

After the discussion of the test input response analysis,
we see that, in principle, it is possible to develop models
which contain more than one exogenous (test input)
variable. But a test input response analysis with more
than one test input leads to considerable difficulties in
the performance and analysis of the results (see [11, p.
141]). So Forrester recommends that *‘asa practical mat-
ter we are usually limited to one exogenous nonnoise
test input!™ [11, p. 141].

Since all System Dynamics models (known to the
author) have none or only one exogenous variable, the
use of System Dynamics models seems to be factually
restricted to closed and singularly open models.

It is very difficult to describe an inventory and pro-
duction planning system as a closed model because the
ordering rate of the customer is normally interpreted as
an exogenous variable. So all known System Dynamics
models of inventory and production control are singularly
open.

Using the test input response analysis for the im-
provement of singularly open inventory and production
models, we can ask for the objective of such an improve-
ment. In his study of the Sprague Electric Company’s
inventory and production system (discussed in Sect. 6
below) Forrester remarks, “the objective is to attain
greater labor stability, less tendency for the system to
amplify certain critical frequencies of external distur-
bances and less tendency for the system to be perturbed
by internal or external random variations™ [11, p. 176].
Applying these remarks to production and inventory
systems in general, the goal of System Dynamics studies
isto introduce production and inventory systems decision
rules which flatten out the internally generated cycles of
variables such as work force, production rates, etc. [13,

p. 51].

4. A System Dynamics Study of Two Inventory and
Production Planning Systems

Let us demonstrate now the two steps of model formula-

tion and model modification by using two inventory and
production planning models.

4.1. Inventory and Production Planning Model
4.1.1. Formulation of the Model
Figure 7 shows the System Dynamics diagram of an in-

ventory and production planning model (model I), being
defined by the following set of equations.
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B
\ =S%. M op
b3 \\\ N
;! 1‘
Fig. 7. System Dynamics diagram of in- ; ‘;
ventory and production planning model I AF PL
The inventory is defined as where
L TAK=IAJ+DT*(PJK-S.JK) A WASK=SSK/PL
IA — Actual inventory (units) SS — Smoothed sales (units/month)
P — Production rate (units/month) it

S — Sales rate (units/month)
A WIAK=(IDK-IAK)/(AF+PL)
Since there is no under- or overemployment, the produc-

tion rate is ID — Inventory desired (units)

AF — Inventory adjustment factor (months).
A PKL=WK=PL

W — Work force (men)
PL — Productivity of work force (units/man-month) A SSK=SMOOTH(SJK.SC)

The exponential smoothing of S results in

The work force is defined as SC— Smoothing time constant (months).
L WK=W.J+DT+WHD.JK Desired inventory (ID) is
WHD — Work force hiring and dismissal rate

(men/month). A ID.K=DFx*SS.K

The work force change rate is determined by an is-ought DF — Inventory depletion factor (months).

decision rule: : 3
If we assume that S has a constant inflow of 100 units

R WHDKL=(WDK WK)/TL and, given the parameters PL=5.2, SC=2, TL=4, AF2,
and DF=1, then

R S.KL=100
C PL=5.2/SC=2/TL=4/DF=1/AF=2.

WD — Work force desired for production (men)
TL - Time for work force change (months).

T . d . . .
wo variables determine the desired work force Th initial valuies of W and L e spécifisd as

A WD K=WASK+WIAK N W=40
WAS — Work force needed for average sale (men) N [A=150.
WIA — Work force needed for inventory adjustment
(men) The model is now complete.
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4.1.2. Model Analysis and Modification

Equilibrium of the model can be achieved by the appro-
priate choice of initial level values. Let us demonstrate
this for our model.

Variables being in equilibrium are identified with a
dash above them. When our model is in equilibrium, the
following conditions are satisfied:

S=P 27)
P =WsPL (28)
WHD =0

WD=W

WD= WAS + WIA

WAS = SS/PL

SS=8§ (29)
WIA=0

D=1A (30)
ID = DF=SS (31)

First, the initial equilibrium level values of 1A and W,
which are dependent on the exogenous variable S, must
be determined. Equations (29) to (31) imply

TA = DF=S.

From (27) and (28) it follows that the equilibrium value
of W

W=S/PL.
The above two equations are expressed in DYNAMO as:
N IA=DF=*S (32)

N W=§/PL. (33)
Before starting a test input response analysis, we now
have to replace the initial values of IA and W with Eqs.
(32) and (33). In addition, the rate equation for S in our
model is exchanged by the step input specification

R SKL =500+ STEP(50,5)

These changes lead to the following “‘step input response-
version™ of the model

E. Zwicker: System Dynamics in Inventory and Production Planning

14.K=1A.J+LT*(P,JE-S.JK)
1A=0F*5

P.KL=W.K*PL
W.K=W. J+DT* (WAL, JK)
W=S/PL
WHD.KL=(WD.K-¥.K)}/TL
WE.K=WAS.K+WIALK
WAS.K=SS.K/PFL
WIA.K=(ID.K=TA.K)/(
$S5.F=SMOOTH(S.JK,SC
1D.K=DF*55.K
S.KL=528+STEP(%2,5)
PI=5.2/5C=2/T1=4/AF=2/DF=1
SPEC DT=1,LENGTH=%5@ ,PLTPER=1
PLOT IA=1,P=P

RUN

AF*DL)
)

i Sl =

Case 6 in Fig. 8 shows the step response of the inven-
tory IA (plot symbol “I”) and the production rate P
(plot symbol “P”). We can see that the system has inter-
nally generated oscillations. As mentioned before, the
objective is to find decision rules which flatten out these
oscillations. Let us assume that AF, SC, and TL are the
controllable parameters of the system. Consequently, we
have to change these parameters such that the step
response of P and IA shows a stronger damping.

Figure 8 shows the results of five other simulations of
the step response of IA and P using various parameter
values. Of these, Case 1 shows the least internal oscil-
lation and is therefore preferable. If model I were de-
scribing a real system, the decision rules for determining
production and work force of case 1 could now be intro-
duced into the real system.

4.2. Inventory and Production Planning Model I

4.2.1. Development of the Model

Changing parameters is only one way of improving the
behavior of a System Dynamics model. In addition,
decision rules may be replaced, or entire sections of the
model redesigned. When it is found that the test input
response of an inventory model oscillates strongly, regard-
less of the controlled parameter values used in the deci-
sion rules, one must consider structural changes in the
described systems which would desirably alter the sys-
tem’s behavior. If a change in the organization structure
promises to be successful, this change is introduced in
the model, and the test response of the modified model
simulated. If the test response shows better damping of
oscillation, then the organizational changes in the model
may be implemented in the real system. This procedure
is of central importance for System Dynamics and is
illustrated as follows in the example of a non-linear in-
ventory and production planning model (model II). The
System Dynamics diagram of model II is shown in Fig. 9.
The inventory level is given by

L 1A K=IAJ+DT#(10.JK—SA JK)

[A — Inventory actual (units)
10 — Incoming orders (units/week)
SA — Actual sales (units/week).
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The actual sales are limited by the actual inventory (1A)
and the desired inventory outflow (OD)

R SAKL=MIN(IAK,ODK)

OD — Desired inventory outflow (units).

The macro instruction MIN(IA.K,ODK) compares 1A
and OD in each period K and chooses the lower value of
both to specify SA.KL.

This relation causes the nonlinearity of the model.
Ordered material (OM) is determined by the is-ought
decision rule

R OMKL=EOK+F+(DIL.K—-IA K)

OM — Ordered material (units/week)

EO — Estimated inventory outflow (units/week)
DI — Desired inventory (units)

F  — Inventory adjustment factor (1/week).

According to (25) the desired inventory is
A DLK=DF+EOK

DF — Inventory depletion factor (week)
and
A EOK=SMOOTH(ODK.S)

S — Smoothing constant (weeks).

An exponential third order delay with an average delay
(AD) of 8 weeks, is assumed to exist between the order-

ing of material (OM) and the inflow of the delivered ma-
terial

R 10.KL=DELAY3(OM.JK,AD)

Fig. 9. System Dynamics diagram of in-
ventory and production planning model 11

Before a test input response analysis can be made, the
system must be brought into equilibrium. The initial
equilibrium level value (IA) is determined in the following
way: In equilibrium DI=IA. Since DI=DF*EO and
EO=0D, it follows that TA=DF*OD, giving the initial
value equation for IA

N IA=DF=0D

The values for the parameters are chosen

C F=0.25/DF=3/8=2/AD=8

The exogenous rate variable is OD. We assume that OD,
in equilibrium, has a constant input of 500 units. The
test input starting in period 5 should be a step function
with a height of 100 units.

A OD.K=500+STEP(100,5)

Hence we obtain the DYNAMO program of model 11:

L IA.K=IA.J+D?*(10.JK-SA.JK)
N 1A=DF*0L

R I0.{L=DELAY3(OM.JK,AD)

A D1.X=DF*EQ.F

A E0.K=SMOOTH(OL.X,S)

R OM.XL=F0.K+F*(D1.X-TR.¥!}

R SA.EL=MIN{IA.K,.CD.%)

A OL.X=F@e+STEP(10¢,5)

NOTE

C F=€.25/DF=3/5=2/Al=B

SAVE Ia

SPEC DT=1,LENGTH=227,5AVPER=4
RUN R1

C F=g.2/5=4

RUN RZ DC

C F=0.RE/S5=2

SPEC SAVPER=0,PLTFER=4
CPLCT IA.R1=3,IA.%2=2,148=]
RUN
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2nea. 3229,

1eee,

=3

IA.R1=1,IA.R2=2,1A
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Fig. 10. Step response of A in inventory and production planning model II with different parameters of F and S (DF=3)

The instructions marked with “DC™ are direction cards
which cause three simulation runs with computation and
print plots of the IA step response (see [22, p. 44]).

4.2.2. Model Analysis and Modification

Figure 10 shows the simulation of the inventory level
(IA) with different parameters of S and F and DF=3.

Clearly, the system has strong internally generated
oscillations which can be reduced only with very small
values of the parameter F. This raises the question of
whether or not the decision rule which determines OM is
suitable for achieving damped behavior. If not, it may be
necessary to change the decision rule.

A closer examination of this model reveals that the
decision rule is, in fact, unsatisfactory. Apparently, the
policy for reducing the deviation between target and
actual inventory does not take into account orders
which are being processed but which have not yet been
delivered.

A decision rule accounting for the backlog of orders
is

R OMKL=EOK+F#(DIK—IA K+NOASK—AOASK)

NOAS — Normal orders in backlog (units)
AOAS — Actual orders in backlog (units).

NOAS is defined as:
A NOAS K=EO.K*AD

and can be interpreted as the desired backlog of orders.
The actual backlog of orders is

L AOASK=AOASJ+DT*(OMJK—I0JK)
N AOAS=0D*AD

Figure 11 shows the step response of the modified
model. The difference is impressive: there are no inter-
nally generated oscillations regardless of which of the
three parameter combinations is used. In fact, the order-
ing policy with parameters F=0.25 and S=2, which pre-
viously (before the decision rule was changed) caused
the strongest oscillation, is now the best of the three
alternatives. This parameter combination produces the
smallest downward dip before the system recovers equi-
librium.



. 123

E. Zwicker: System Dynamics in Inventory and Production Planning

L]
oo el e e R R Rt B N R Lot
-0 NI OO TN D N N
B e e e ]
s: () .. . P
g ] ]
= ] ]
] i
I i
) ]
) (]
x I ]
= N R I R .
o3 1 "
=
LE ) I
i )
1 (]
i I
06
[ |
1 )
= | *# s * & ® v 8 s a] ®
=
& ) I
1 1
[} 1
] I
i I
) [}
. I i
= . "0 e s . .
= ] ]
o
" L [} ]
it I |
-
L I I
-
f“: ) ]
N [} I
3
- ! |
[ I s s 25 8 8 a8 o] =
- . .
- ] =
" m ]
- —
-
-
-

et B A i B L R e N e ot Rt B AR AL
NN NN N NN
ekl o R o R ol el o e R e R o Rl R el ol o Rl o)
. I .ol

) I

] 1

I [}

I i

L] [}

[} L}

] i

PR T R IR
] 1

[} |

I '

i [}

1) )

i I

1 1

LI T R I | = % 8 8 0 s ]
1 )

] 1

] 1

1 )

[} )

1 (]

Ll 1

e e e e e a .o .
] i

1) )

| |

) ]

) [}

] ]

i i
- . ool-oo--.--..|-
g g
- ~

PERIOD

Fig. 11. Step response of [A in inventory and production planning model Il after changing the decision rule for ordering

5. Analytical Investigation of Test Input Response
Analysis in Linear System Dynamic Models

5.1. Analytical Methods for Investigating Linear
System Dynamics Models

Most System Dynamics models are non-linear; this non-
linearity is, however, of a low degree and in many cases
non-linear System Dynamics models can be satisfactorily
approximated by linear models. (The Sprague model
which will be discussed in the next section was, for in-
stance, linearized by Fey [9].) The analytic investigation
of the structure of linear models yields constructive
insights for evaluating the test input response analysis
made in the System Dynamics approach.

In a linear, singularly open System Dynamics model it
is possible to determine the so-called final equation for
each variable (V). The general form of this equation (in
conventional difference equation notation) is

V(t) = —a, V(t—1) — ... —a,V(t—n) + by T(t) +

+by T(t—1) +...+ by, T(t—m) (34)
T expresses the exogenous variable of the model. In the
case of a test input response analysis with a step input of
height T, the solution of (34) is

V(t)=TR()+GT t=0,1,2,... (35)

G is the gain factor of V and TR is the transient response
term. G is defined by

G =V, (36)

Assuming the linear model (34) is in equilibrium, one has

V(1+a;+...+a,) = T(bgtb; +...+by) 37

allowing G to be expressed by the parameters of the
model:

__bgtb .. .tby

1+a,+a+...+a, (38)

TR is the solution of the reduced equation of (34). It
can be expressed:
TR(t) = C; A} + CoAb +.. 4C AL, (39)

where A\, Aa,...,An are the (unequal) roots of the charac-
teristic equation of (34), i.e.

A"+, A"+ 4ag A +aA0=0. (40)
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The coefficients C;, Cj,...,C, are determined by (34)
and (35) and depend on a,,...,3a,, bg,...,bm, and T.

The gain factor (G) and the transient response term
(TR(t)) determine the behavior of a linear system. Hence
the study of the behavior of a linear System Dynamics
model can be reduced to the study of different amounts
of G and different time trajectories TR. Let us first look
at the gain factor. It shows how much the variable V in-
creases if the exogenous variable T is increased by a step
input of one unit and the system comes to an equilib-
rium. The determination of the gain factors in System
Dynamics models is relatively easy. Taking as an example
the is-ought decision rule (24) used by Forrester, it can
be seen that, at equilibrium, the is-ought component must
be zero. 1t then follows, that at equilibrium, the desired
level (DL) must equal the actual level (L). From (25)
follows DL=DF+EXSR. Since EXSR is the exponential
smoothing of the rate variable R, this means that at
equilibrium EXSR=R. The rate variable R is identical to
the exogenous variable T, so R=T. It follows from these
relations that

L=DFT (41)

A comparison with (36) reveals that the depletion factor
(DF) is the gain factor of the level variable L.

The transient response term describes a time trajectory.
As the coefficients C;,...,C, do not change with t, the
behavior of the transient response term depends only on
the roots A;,....Aq.

If at least one root in absolute value is greater than
unity, the transient response term will, with increasing t,
approach infinity, i.e. the system is unstable. In the case
of an inventory and production planning system, this
situation is not acceptable. Hence for realistic systems
one must have satisfied

<1 i=1.2,....n. (42)

Under this general condition of stability two ways of
behavior are of interest. If the roots are real and satisfy
the condition

o<n<1 i=L2,...n

the system shows a monotonic damped behavior, i.e. the
time trajectory of the step response approaches the new
equilibrium without oscillations or fluctuations. If the
system has no monotonic damped behavior, at least one
component of the transient response term will show an
oscillation or fluctuation.

In case the characteristic equation possesses a pair of
complex conjugate roots, two terms of the transient re-
sponse term are to be replaced by the trigonometric ex-
pression [see 16, p. 55]

r'Afcos(pt—0)]. (44)
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This expression leads to an oscillation of the transient
response term. Parameters r and A determine the ampli-
tude of the oscillation, while the oscillation period is
determined by:

D =360/y (periods). (45)
If one of the real roots is negative, then the transient re-
sponse term has an alternating component which induces
a fluctuation in the time trajectory.

A study of the system’s behavior must include the in-
vestigation of the conditions under which the special
kind of behavior occurs. If an inventory and production
planning system shows an oscillating behavior, it is (as
mentioned) our objective to avoid such oscillations, i.e.
to realize a monotonic damped behavior. In the case of
a linear system, this improvement can be realized by
changing the controlled parameters of the model to satisfy
condition (43).

5.2. Analytical Investigation of the Test Input Response
of Inventory and Production Planning Model 1

The analytical methods discussed above will now be used
for the investigation of model I (Sect. 4.1). First, model
I is transcribed into normal difference equation notation

P(t+1) = W(t)*PL

SS(t) = SS(t—1) + [S(t—1)—S8S(t—1)]/SC
ID(t) = DF=SS(t)

WHD(t+1) = [WD(t)-W(t)]/TL

WD(t) = WAS(t) + WIA(t)

WAS(t) = SS(1)/PL

WIA(t) = [ID(t)—1A(t)]/[AF*PL|

W(t) = W(t—1) + WHD(t)

IA(t) =IA(t 1) + P (t) — S(t—1).

The final equations for W and P are:

W(t) = —a; W(t—1)—a, W(t—2)—a; -W(t—3) +
+by-S(t-2)+b3-S(t-3)

P(U' = a] P{l—' l )_32 P(I—E)—a3 'P(t : 3)""
+b%-S(t-2)+b%-S(t-3) (46)
— TL+SC
PL=RC
. ~OTL-2SC+1 5, 1 _
TL - SC TL - AF
joo —I¥SCHTL | SC-1
T IL-8C TL - SC - AF
_ (AF+DF+SC) - PL e b,
2 TL-SC - AF PL
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_(1-AF-DF-SC) - PL
TL - SC - AF

by

* _
b Th

b3

The transient response term is, according to (39)

TR(1) =C; A} + C;AL + C35. 47)
The roots of the characteristic equation
Mta N +a +a3=0 (48)
are
1
» Wl
- SC
1 1 4TL
Ng=leee—t o\ f1 T
23 oL 7L YA (#9)

Substituting a, tob% in(38), the gain factor of P is found
to be 1. This result is plausible since, in an equilibrium
state, the production rate (P) must equal the sales rate
(S), i.e. P=S. It was mentioned earlier that the depletion
factor in an is-ought decision rule equals the gain factor.
Therefore the gain factor of the variable “‘actual inven-
tory”” (IA)is equal to the inventory depletion factor (DF).
Expression (49) shows that the roots are not dependent
upon the inventory depletion factor (DF), i.e. the gain
factor of IA. Therefore the dynamic behavior of the sys-
tem is not dependent upon the inventory depletion
factor (DF). By simulating the model, this proposition
could be confirmed by many simulation runs with vary-
ing DF. But only through such an analytical investigation

E. Zwicker: System Dynamics in Inventory and Production Planning

can we get an absolute guarantee that DF has no influ-
ence in any case.

Looking at the remaining parameters, we recognize
that the smoothing time constant (SC) has no influence,
whether the system has an oscillating or monotonic
damped behavior. Since (with DT=1) the value of SC
should always be chosen greater than 2 [22, p. 44], A,
will always be positive and less than unity. An oscillation
of the transient response term can therefore only occur
if the roots A; and A, of (49) are conjugate complex or
negative. As A, and A, are dependant upon AF and TL,
the numerical value of these parameters determines
whether the system is oscillatory or monotonic damped.
This feature of the system’s behavior cannot definitively
be explored by a (finite) series of simulation runs, In the
case of such small models an experienced analyzer will
soon come (by inductive reasoning using the simulation
results) to the true conclusion that only AF and TL are
responsible for an oscillatory behavior. A further investi-
gation of AF and TL shows that these parameters lead
either to a monotonic damped or to an oscillatory
behavior, which is caused by a pair of complex roots.

Figure 12 shows which combinations of AF and TL
leads to the different modes of behavior. Let us assume
the original system’s parameters of TL and AF are lying
in the region of an oscillatory behavior. In that case, an
improvement of the system’s behavior is obtained by
choosing a combination of AF and TL which fall within
the area of a monotonic damped system.

Let us now investigate the 6 simulation runs of inven-
tory and production planning model I which are shown
in Table 2. The numerical values of the parameters of

Table 2. Different parameter values AF, SC, TL of inventory and production planning model 1 and the corresponding parameter values

of the transient response term (47) of a step response of W and P

Case | Controlled Roots of the transient Cocfficients of the Trignonometric expression
No. | parameters response term (47) transient response (44) of the components CyAs+
of model | term (47) + C3A3 in the transient
response term (47)
AF  SC  TL | A& Ay Aa Cy Ca Ca r A D 81°1
1 8 2 2 0.5 0.75 0.75 225 137.5 137.5 = =
2 10 6 3 0.8311 0.8345 0.8345 550 - 0.838 605 70.58 188
~0.0746i +0.0746i
3 4 B 8 0.75 0.9375 0.9375 313 - — 0.952 83 36 168
—0.1653i +0.1653i
4 2 8 2 0.875 0.75 0.75 23 5 0.566 81.5 12 206
-0.433i +0.4331
5 2 4 2 0.75 0.75 0.75 50 - 0.866 104 12 196
-0.433i +0.433i
6 2 2 4 0.5 0.875 0.875 37,5 - = 0.935 90 17.4 165
-0.3307i +0.3307i
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Fig. 12. Areas of monotonic damped (MD) and oscillatory damp-
ed (OD) behavior of inventory and production planning model Il
in relation to the parameters AF and TL

the transient response term are compared to the simula-
tion runs of the inventory model. In cases 2 to 6, the roots
A; and A3 are conjugate complex. The parameters of the
oscillating term (44) are listed in the columns on the left
side of the table. We can see that the policy of simulation
run 1, which was elected as the best system improve-
ment, is the only case of a monotonic damped system
behavior.

An analytic investigation of large, dynamic, linear
models is very cumbersome and not advisable. The
analysis in this section, however, shows which modes of
behavior are possible even in larger models, and it de-
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monstrates also the limitations of the test input response
analysis to deduce general conclusions about the system’s
behavior.

The fact that the transient response term does not
depend on the amount of the step input T is a typical
feature of linear systems. Therefore in a non-linear sys-
tem it is possible that one step input will produce an
oscillatory behavior while a step input with a different
amount will produce a monotonic damped behavior.
Since System Dynamics models are predominantly non-
linear, it is possible that a test input response analysis
cannot give a complete picture of the system’s behavior.

Before the problems of validation and implementation
are discussed, the structure and analysis of an implement-
ed inventory and production planning model will be de-
scribed.

6. The Sprague Electric Company Model
6.1. Description of the Model

To gain further insights we shall examine a model de-
signed by Forrester for the Sprague Electric Company.
This model analyzes the production operations of a line
of electronic components. (According to Sprague, “some
hundred thousand dollars™ were spent on the develop-
ment of this model [29, p. 321].)

CUSTOMERS COMPONENT MAMUFACTURER
TOTAL DELAY
AT CUSTOUERS LABOR
o o o o oHeNcE
< (A LAsF DECISTON
\ S LCHF
. vl —— e o LY
‘\ /’ S E = ""\-w-."‘“-
\ (RDERS Y /7
o—ol-dlo—o
e o—or-oo ‘}r FACTORY OR TR
§ INVENTORY
D“;géﬂ" —_ [ DECISION
Sl |
SYSTER A\ i 7
ORDERS I % o\ I
CINPUTY I % /
!
% 5 \ !
o petnecain | ) DELLVERY i INVENTORY
2t ! TELAY ! REORDER 215
i mcision [
A i i EMPLOYEES
,‘ 1 MOIF MENPE
5 ]
- ¥ /
£
'
]
|
\
A
R sy ] PRODUCTION
COMPONENTS UNiTs Invg:frunv
™ -
pronuction | N7 | coonet UNITS
N wveon \L
UNITS

Fig. 13. Important structural relations of the Sprague Electric Company Model
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The model includes both customers and company
behavior. We shall first describe the main relationships,
then examine each decision rule.?

Incoming customer ordersare divided into two streams
according to the ““factory or inventory decision™: one
consisting of customer orders, which can be filled directly
from inventory: the other, of orders which cannot be
filled from inventory (i.e. must be specially produced).
The latter forms the “backlog of special orders.” The in-
ventory, having been depleted by customer orders, is
restocked by inventory management with the help of the
“inventory reorder decision rule.” These production
orders compromise the “backlog of inventory orders.”
The rate of processing the two backlogs depends upon
the production rate (PR) which in turn depends upon
the number of men producing at factory (MENPF).
MENPF is determined by the “employment change de-
cision.”

6.1.1. Purchasing Decision Rule

The “purchasing decision of the customer™ (PDC) is
determined by:

PDCKL=ECPC.K/DEEDC.K

PDC ~ Purchasing decision (units/week)

ECPC — Engineering design in process (units)

DEEDC — Delay effective in engineering department
(weeks)

(50)

DEEDC is — in somewhat simplified terms — determined
by the difference between the target value of the “‘total
delay at customer™ (DTC), and the *‘delivery delay at
factory” (DFOF). DEEDC decreases as DFOF increases,
which creates an increase in the “‘purchasing decision
rate”™ (PDC). Since an increase in the purchasing decision
rate — ceteris paribus — causes an increase in the delivery
delay (DFOF), PDC shows self-induced growth.

6.1.2. Factory-or-Inventory Decision Rule

Items ordered which are in stock will be delivered imme-
diately. The fraction of orders which can be filled from

3 The model consists of 22 normal level equations, 24 rate
equations, and 35 auxiliary equations and is described in[11}.
One simulation run affords 0,86 s. (DT=0.25, LENGTH=100)
CPU-time on an IBM 370/158 with DYNAMO I1. Coyle has
drawn attention to the surprisingly small number of studies
examining the practical application of System Dynamics to
inventory and production control | 14, p. 445]
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inventory is expressed by a non-linear table function. It
is assumed that the fraction of orders which can be sup-
plied from inventory increases with inventory size.

6.1.3. Inventory Reorder Decision Rule

Inventory management policy is directed by the inventory
reorder decision. This is a linear is-ought decision rule:*

MOIEKL = ASIFK #— 1+

TIAF

*(IDF.K—IAF K+OINF.K-OIAF K) (51)

MOIF — Manufacturing orders for inventory
(units/week)

ASIF  — Average shipments from inventory
(units/week)

TIAF — Time for inventory adjustment (weeks)

IDF  — Inventory desired (units)

IAF  — Inventory actual (units)

OINF — Orders for inventory desired (units)

OIAF — Orders for inventory actual (units)

OINF is determined by

OINF K=ASIF .K#(DPF+BLIF K/PIOF.K) (52)

DPF — Delay in production (weeks)
BLIF — Backlog for inventory (units)
PIOF — Production of inventory orders (units/week)

in which the term BLIF K/PIOF K is the (variable) delay
in the backlog of inventory orders. As this term increases,
OINF also increases and — ceteris paribus — therefore
MOIF. Since MOIF is the inflow rate of the inventory
backlog (BLIF), MOIF, by means of this positive feed-
back relation, induces its own growth,

6.1.4. Employment Change Decision Rule

Since in this model there is no over- or underemploy-
ment, the production rate (PR) is determined directly
by the “number of men producing at factory™ (MENPF).
This level is controlled by the labor change decision
(LCHF), a nested linear is-ought decision rule:

4 The necessary condition of nonnegativity of decision variab-
les like MOIF, which must be guaranteed in the model by
special instructions, is not expressed in this and the following
equations
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1
K =—— (LASF.K+
LCHF K TLCF (

Is-ought backlog

4+ BLTF K—-BLNF K

= — MEIPF
CPLF*TBLAF s

Ought-working force

—LTF K+MENPF K)
L 1

(53)

Is-working force

LCHF — Labor change rate for hiring (men/week)

TLCF — Time for labor change (weeks)

LASF Labor for Average sales (men)

BLTF Backlog total (units)

BLNF — Backlog desired (units)

CPLF Productivity constant of labor (units/man-
week)

TBLAF — Time for backlog adjustment (weeks)

MEIPF — Men for excess inventory production (men)

LTF — Labor in training (men)

MENPF — Men producing (men)

The rate of processing the backlogs for customer and
inventory orders is given in the decision rule

BLCF.K BLCFK
KL= + + PEIF ]
PRRL=DMBLF © DMBLF % 4)
L 1 | i
production rate production rate
for inventory  for customer
PR — Production rate (units/week)
BLCF — Backlog for customer (units)
BLIF  ~ Backlog for inventory (units)

DMBLF — Delay in backlog (weeks)
PEIF  — Production excess for inventory (units/
week)

If the production capacity MENPF.K/CPLF cannot
satisfy the production rates specified by (54) for inven-
tories and special customer orders, the rates are reduced
correspondingly.

These are the essential relationships of the model.
Forrester’s model also includes a subsystem for raw
material planning (controlled by an is-ought decision
rule) which, however, has no decisive influence upon the
system’s behavior. The same is true of the subsystems
for cash flow, profits and dividends which Forrester added
after completion of the original model.

6.2. Analysis and Modification of the Sprague Model

Figure 14 depicts the step response of several variables
of the model. The system shows damped oscillation
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behavior with employment (MENPC) having greater
variation than incoming factory orders (RRFPC). The
long-term cyclical pattern of the system is conditioned
endogenously. An intensive study of the system reveals
that the cause of both internal oscillation and its ampli-
fication can be narrowed down to a few decision rules.
There is a cyclical shift in the amount of orders and the
size of work force. If the delivery delay increases, the
customer orders products immediately (“‘ordering
ahead™), which he otherwise would have ordered later.
The growing backlog of customer orders prompts the
hiring of more employees. The resultant shortening of
the delivery delay causes the customer to order less. The
manufacturer then dismisses employees in order to
decrease production capacity. This lenghtens the delivery
delay, the customer orders ahead, and the same mecha-
nism begins all over again. A self-perpetuating cycle is
present, similar to agriculture’s “pig cycle.”

The recurrent nature of the fluctuation is one aspect
of the problem; the other is that the degree of fluctua-
tion in employment, inventories, and order backlogs is
much greater than the fluctuation in incoming orders.
One reason for this is the inventory ordering rule (51):
an increase in incoming orders immediately occasions an
increase in restocking orders to adjust inventory to a
target level (which has been raised because of an increase
in the incoming orders). This mechanism of self-induced
growth is a positive feedback, which for OINF (added
orders for inventory desired) is the result of a precipitate
ordering-ahead policy. Instead of waiting until the peak
of customer orders is over, inventory management ampli-
fies this backlog peak by immediately reordering for
inventory adjustment.

In (54), production rates for special customer orders
and inventory orders, respectively, are determined pro-
portionally in relation to their backlogs, (only) when
the entire production capacity is engaged in filling orders.
The delivery delay, which leads to cyclical shifting, is
determined by the backlog of customer orders.

If the filling of special customer orders were given
priority over filling inventory, the delivery delay would
be reduced, thereby preventing the ordering ahead policy
of the customer. Therefore the inventory order policy
(51), in conjunction with the priority of order filling
policy (54), are the primary causes of cyclical shifting.

The system was modified as follows to avoid ampli-
fication and shifting effects. The policy of immediate
inventory adjustment as in (51) was eliminated. The
priority decision for production (54) was changed so
that, at all times, a fourth of the special orders backlog
is being manufactured; the remainder of production
capacity is used for inventory adjustment

PRKL =CPLF+MENPFK - BLCFK/4 (55)
PIFK PCOFK
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Fig. 14. Step response of some important variables in the initial Sprague Model

PR — Production rate starts for inventory
(units/week)

CPLF — Constant, productivity of labor (units/
man-week)

MENPF — Men producing (men)

BLCF — Backlog for customer (units)

PCOF — Production rate to customer order
(units/week)

PIF — Production rate start for inventory
(units/week)

The rate of inventory production is controlled by the
number of men producing at factory (MENPF). MENPF
is determined by the hiring and dismissal rate (LCHF).
The redesigned decision rule is:

1 1
— 2 FX+——
LCHF.K TICF [LASF.K TBLAE *
Is-ought Is-ought
inventory orders in production
[ 1 1
|

[
% [(‘_P_l_ji I(_IDF_KLIAF.K + OINF K ~OPIF K+

Ought-work-

Is-ought
order backlog
| 1

+BLCF K -BLNF K)] — LTF.K-MENPF K]
D ]

(56)

force Is-work force
LCHF — Labor change rate for hiring (men/week)
TLCF — Time for labor change (weeks)

LASF - Labor for average sales (men)

TBLAF — Time for backlog adjustment (weeks)

CPLF  — Constant productivity of labor (units/man-
week)

IDF — Inventory desired (units)

IAF — Inventory actual (units)

OINF  — Orders for inventory desired (units)

OPIF  — Orders in process for inventory (units)

BLNF — Backlog desired (units)
BLCF Backlog for customer (units)
LTF — Labor in training (men)
MENPF — Men producing (men)

In contrast to the original decision rule(52), OINF is now
determined by ASIF times DPF only. The new decision
rule (56) for LCHF results in the adjustment of the
actual inventory value to the target value (IDF). A simu-
lation using this new decision rule shows that this adjust-
ment occurs at the peak of the incoming order rate, thus
amplifying the fluctuation of total incoming production
orders.

By choosing alarger constant for exponential smooth-
ing of the incoming orders (which determines target in-
ventory IDF) and a larger adjustment factor (TBLAF) in
(56), it was possible to shift the peak of the inventory
adjustment more in the direction of lull in the incoming
customer orders. The effect was a contracyclical load of
the work force for inventory filling and special customer
order production which leads to stronger damping of
work force fluctuation. The step response of the rede-
signed model shows a fundamentally changed behavior
(Fig. 15):
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Fig. 15. Step response of some relevant variables in the redesigned Sprague Model

7. Validation of System Dynamics Models

Forrester maintains that a validation of his models ac-
cording to conventional statistical criteria is not necessary.
Although singularly open models (like the Sprague
model) can, in principle, be judged for validity by ex-
post forecasting, Forrester rejects this procedure, arguing
that these models are not intended for forecasting but
for studying and improving system behavior. The Sprague
model is, he says, empirically valid because “‘it createsa
pattern of the same qualitative nature as the real system
even in the presence of a constant final demand for the
product,” i.e. also in case of a step input [14, p. 58].
The criteria, “a pattern of the same qualitative nature,”
cannot be objectively defined, insists Forrester, Whether
a model is acceptable or not is up to the subjective judge-
ment of the model user. Forrester has been attacked for
these totally subjective criteria of validity [14, p. 81],
[1].

According to Forrester, a System Dynamics model is
merely an explication of the decision maker’s mental
model. One may ask, however, if mental models are of
such a precise nature that they can be represented by a
numerical mathematical model. For instance, it is highly
improbable that a decision maker could, without using
statistical methods, succeed in identifying a delay as an
exponential third order delay or know its average delay.
This is especially true because the form of the pulse
response function (19) cannot in any way be observed
directly.

Forrester’s complete rejection of binding objective
criteria for determining model validity is not shared by
other designers of System Dynamics models. Schlager,

for example, developed a complex inventory and produc-
tion model for a manufacturer of liquid flow measuring
instruments. He tested the validity of the model by
means of an ex-post forecast [25, p. 146]. Statistical
methods are also being used more frequently for hy-
pothesis testing and validation of System Dynamics
models in areas other than inventory and production
[see 33]. (Peterson has developed a statistical software
package for parameter estimation (GPSIE) on full-infor-
mation, maximum likelihood via optimal filtering [21].
A FORTRAN parameter fitting procedure for third order
delays is described in [34].)

A further criticism concerns the “infinitesimal ap-
proach” used by Forrester. In the models examined
here, a value of DT=1 has been chosen to enable a
plausible interpretation of the behavioral equations in-
volved. In Forrester’s view, however, DT should ideally
approach zero. This means that a System Dynamics
model should always be a differential equation model
which would have absurd consequences in the case of in-
ventory and production models. Let us consider, for
example, the decision rule (56) for the hiring and dis-
missal of production workers. If the value of DT is
chosen to be DT=1, the length of time between J and K
is one week. As Carlson reports, this decision rule is, in
fact, put into effect once a week by the Sprague company
[3, p. 16]. However, Forrester had specified DT=1/20
(per week) for the model. This means that the model
calls for a hiring-firing decision every 7-24/20=8.4 h. In
an ideal case, moreover, DT would be infinitely small;
only the need for an increase in computer time kept
Forrester from specifying an even shorter DT than he
did. In other words an “ideal” model of the Sprague
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company would call for decisions about employment,
production rate, etc. to be made at infinitely small time
intervals. What may be a valid practice in demographic
models presents, in production and inventory models,
problems of interpretation, needless waste of computer
time, and distortion of the hypotheses which the deci-
sion rules express. (Since using a value of DT—0 has
proven implausible in the case of inventory and produc-
tion models, the following examples of System Dynamics
models will continue to have DT=1.)

8. Implementation of System Dynamics Models

Implementation concerns the practical purposes for
which a System Dynamics model should be used and the
way in which these purposes can be achieved. According
to Weil, we can distinguish between four stages of imple-
mentation [32].

1. Change of the view of those involved in the pro-
ject. 2. Broader impact on opinion. 3. Results used to
support decisions. 4. Model adapted as a working tool.”

As opposed to Weil, Forrester makes no explicit state-
ment on the goal of implementation. He says the goal of
building a model is “to understand the reality better”
[10, p. 3—5] and to “‘get a better intuitive feeling for the
time-varying behavior of industrial and economic sys-
tems” [13, p. 28]. According to Forrester, “some of the
most useful insights to come from industrial dynamics
show which policies in a system have enough leverage
so that by changing them one can hope to alter system’s
behavior™ [15, p. 141]. Whether this system improvement
should be realized throughout by implementing the new
decision rule in the system remains unanswered. Never-
theless, Forrester says about the Sprague model:

“All of the changes made in the system model in this
chapter are one that can be readily made in the actual
system. Their implementation requires the formalizing
of critical policies of system control to ensure that they
are consistently and routinely executed™ [11, p. 308].
Since the new decision rules found in the Sprague model
have been implemented, the fourth stage of Weil’s imple-
mentation hierarchy has been achieved in this case.

9. An Appreciation of System Dynamics Models
in Inventory and Production Planning

First, we shall ask whether system Dynamics is not too
costly and time consuming for improving inventory and
production systems. Then we shall consider whether the
search for damping policies in production and inventory
systems is, in general, a desirable objective.

E. Zwicker: System Dynamics in Inventory and Production Planning

9. 1. Overkill Effects of System Dynamics Models

The first criticism concerns the practicality of System
Dynamics models to damp internal oscillation in inven-
tory and production systems. One can contend that the
Sprague model represents a case of overkill, i.e., is such
a gigantic model necessary to convince inventory man-
agement that their ordering policy needs improvement?
Certainly this would have been evident to anyone with
experience in inventory and production planning. For-
rester argues that model building is necessary since social
systems often behave counterintuitively, By this he
means the logical consequences of an assumption may
conflict with the intuitive conclusions one might draw.

Thus a mathematical model representing the mental
model is necessary to deduce the logically valid but
counterintuitive consequences of the mental model. It
is questionable whether this counterintuitive argument
really applies in the field of damping inventory and
production systems. Rosenkranz reports, for instance,
that detection of any internally generated oscillation in
the Ciba Geigy firm would have been possible “indepen-
dently from the model by a careful analysis of order
time series” [24, p. 337].

9.2. Goals for the Improvement of System Dynamics
Models

9.2.1. Damping of Internal Oscillations as the Primary
Goal

If it is the supreme objective of implementation that the
model user gets a better intuitive feeling of the system
(Stage 1 of Weil), then nothing can be said about the
success in improving the real system. It is hardly possible
to make a general forecast of how a better intuitive feel-
ing of a manager leads to a system improvement. There-
fore we assume for the following discussion that the
objective is to realize stage 4 of Weil’s list. This is using
a System Dynamics model (as the Sprague model) to
find better decision rules in order to implement them in
the system. Under this assumption, the objective for an
improvement of an inventory and production planning
model is the damping or elimination of internally generat-
ed oscillations.

This would mean that the use of System Dynamics
models in inventory and production planning would be
restricted to those systems in which such behavior can
be observed.

It is difficult, however, to decide which existing sys-
tem falls into this category. A single case which illustrates
this problem is documented by the Ciba Geigy report.
This firm developed a System Dynamics model of its
production and inventory system. The model, however,
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was not implemented, for “the analysis showed that the
inventory cycles were mostly induced by fluctuations of
external demand and were not internally generated™ [24,
p. 337].

Assuming Forrester’s method is used on a system
which does have internally generated oscillation, the goal
of reducing this oscillation behavior cannot, even in this
case, serve as the primary goal of inventory and produc-
tion planning. Rather, the actual goal of inventory and
production planning must be the introduction of those
decision rules which reduce or minimize inventory and
production costs.

What follows then is an evaluation of the effectiveness
of Forrester's method in achieving a minimization of in-
ventory and production costs. To develop a System Dy-
namics model of an inventory and production system,
it is, in principle, not necessary to know the function
of the inventory and production costs. Neither is it ne-
cessary to make a forecast of the exogenous variable or
its probability distribution. However, an evaluation of
Forrester’s method differs whether or not such informa-
tion about cost functions and exogenous variables is
available.

9.2.1.1. Damping Internal Oscillation when the Cost
Function is Unknown and no Forecast of the Exogenous
Variable is Known. Damping the internal oscillation of a
system may lead in many cases to a reduction of costs,
because the cost of changing the production rate and
work force level are thereby reduced. So if the function
of the inventory and production costs is unknown, and
a reasonable forecast of the exogenous sales variable
does not exist, then the use of Forrester’s method may
be recommended for improving oscillating systems. Such,
apparently, was the situation in the Sprague company
case. As Carlson reported about the project, “no attempt
has been made to measure exactly the effect on profits
of the new policies. This would be a very difficult and
costly undertaking requiring extensive changes in com-
pany-wide accounting systems ...” [3, p. 142].

The usefulness of Forrester’s damping policy for
reducing costs will be demonstrated in the following
example. Holt, Modigliani, Muth, and Simon developed
a planning model of a paint factory (HMMS-model). The
authors determined the ‘cost function of the inventory-
production and work force sector [17]:

C(t) =

340W(1)

+64.3[W(1) — W(t—1)]?
+0.2[P(t) - 5.67W(1)]?
+51.2P(t) — 281W(t)

+ 0.0825[1A(t) — 320]?

Regular payroll costs

Hiring and layoff costs

Overtime-undertime
costs

Inventory and
shortage cost

(57)
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with

C — Total cost ($/month)

W — Work force (men)

P — Production rate (units/month)
IA — Inventory (units)

The authors attempted to find for the work force (W)
and production rate (P), decision rules which would
minimize the expected value of C for a given planning
horizon. Actual inventory (IA), which in the case of
negative values represents the backlog of unfilled orders,
is defined:

IA(t) = IA(t—1) + DT[P(t)-S(1)]

S — Sales (units/month)
DT — Time increment (month) [DT=1]

(58)

The structure of the model proved to be a special case in
the theory of optimal multi-stage decisions for which an
optimal decision rule could be calculated in the form of
a linear function. For the goal function:

3 E{C(t)} ~ min
=0

the authors calculated the optimal linear decision rules:

W(t) = 0.045SE{S(t)} + 0.742W(t—1) —
—0.009961A(t—1) + 2.003536
(59)
P(t) = 0.8224E{S(t)} + 1.005W(t—1) —

—0.4641A(t—1) + 153.12

In the goal function, E{C(t)} is the expected value of the
total costs C(t), and E{S(t)} is the expected value of the
sales S.

Assume that a System Dynamics modelis to be made for
the production and inventory sector of this paint factory.
We assume further that neither the cost function (57)
nor the stochastic description of S are known to the
model designer.

The decision rules to determine the work force (W)
and the production rate (P), are assumed to be the same
as those used in the Sprague model. These same is-ought
decision rules were used in inventory and production
planning model I. Work productivity (PL) was assumed
to be constant in the Sprague model [11, p. 229], and it
will be assumed to be constant in the paint factory as |
well. The overtime-undertime costs in (57) are thus zero,
since every worker is working at full capacity. Given
these conditions, a work productivity factor of PL=5.2
(units/man) can be calculated from the term of overtime-
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Table 3. Expected value of the average unit cost, as affected by
use of typical System Dynamics decision rules for inventory-
production and work force planning in a paint factory

Case | Parameters Expected value of average cost
Nr. [8 per unit]

AF| SC|] TL| DF= DF= DF= DF=
1.0 0.8 0.64 0.25

1 8| 2 2 76.65 | 71.92 | 70.53 76.03
2 10 6 3 78.26 73.03 | 71.23 | 75.80
3 4| 4 8 78.29 7347 7202 | 7740
- 2| 8 2 8260 | 7739 75.63 80.38
5 2| 4 2 87.42 81.86 79.84 83.94
6 21 4 4 82.48 77.31 75.58 80.37

undertime costs in (57). Since this is the same work pro-
ductivity as that chosen in model I, the six cases in Fig. 9
show the different step response characteristics of the
paint factory model, i.e., the System Dynamics version
of the paint factory is identical with model I (except for
inclusion of the cost function (57)). Table 3 shows these
six different policies with various inventory depletion
factors (DF) compared with the expected unit costs as
determined by cost function (57) and a special stochastic
specification of 8.5

Comparing Fig. 8 with Table 3 we see that an increase
in the damping of the system will decrease the expected
values of the average unit cost. Thus the objective of
damping the internal oscillations largely conforms to the
objective of reducing costs.

9.2.1.2. Damping Internal Oscillation when the Cost
Function is Unknown and a Forecast of the Exogenous
Variable is Known. If the probability distribution (or
some of its parameters) of the exogenous sales variable is
known, then it should be asked if other goal variables
will lead to better conformity to the goal of reducing
costs. For instance, if the stochastic characteristics of
the exogenous variable S are known, it is possible to
determine the time path of the expected value and the
standard deviation of the production rate (P) and the
inventory (IA). The time path of the standard deviation
can provide a better measure of system oscillation (and
thus the existence of change costs) than the selection of
“improved™ models by test response simulation.

Other criteria are conceivable too. In a servo theory
analysis of an inventory control system, Vassian deve-
loped two decision rules, to achieve the best possible

5 The expected average unit costs are calculated for a planning
time of 50 periods. These were estimated on the basis of 50
simulation runs, and a distribution of S: S € N (X = 500,
o=1735)
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forecast of the minimization of inventory variations
resulting from forecast errors [31]. Similarly Elmaghraby
determined the parameter of a decision rule resulting
from the variance of the stochastic variable describing
the deviation between desired and actual inventory.

9.2.1.3. Damping Internal Oscillation when the Cost
Function and the Forecast of the Exogenous Variable
are Known. If an information situation is at hand in
which both the cost function and the probabilistic
structure of the exogenous variable S are known, then
a reasonable goal is to minimize the expected value of
inventory and production unit costs. Test input response
analysis, which requires less information, can play here
only a subsidiary or supporting role.

Minimization of inventory and production costs is
achieved by models which deal with the so-called prod-
uction smoothing and work force balancing problem.®
The analytical solution of such models, i.e., the deter-
mination of optimal decision rules, is possible only to a
limited extent. Nevertheless such models can be simulat-
ed using different decision rules, and in this way an opti-
mum can be approximated.

If S is merely an estimation of the expected value
time path of S, use of these estimated values creates a
deterministic model. Also in this case it may be possible
to reduce the total average costs through simulation in-
volving different decision rules, variation of parameters,
and redesign of model sections.

Since for large, multi-stage, deterministic, and sto-
chastic models there is no practicable optimization algo-
rithm available, one should simulate these models, but
not using test response simulation. Rather, the primary
goal should be the minimization of the cost function.

9.2.2. Reduction of Production and Inventory Costs as
the Primary Goal

Forrester's only goal in the analysis of production and
inventory systems is apparently the damping of internal
oscillation. Other designers of System Dynamics models
of inventory and production planning, however, appear
to place more value on cost reduction.

Schlager, in his previously mentioned model, included
a considerably more developed cost sector. As he remarks,
“all known costs related to production-inventory-em-
ployment were included to evaluate the cost benefits of
greater stability to management and to existing system™
[25, p. 147].

Thus it is clear that in this model the costs and not
the system damping represent the primary target. Oertli-

6 See(2).16).127).
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Cajacob’s System Dynamics model, which describes a
four-stage inventory and distribution system, serves as an
example of such a procedure [20, p. 320]. His model in-
cludes a strongly differentiated cost sector. In the model
simulation, Oertli-Cajacob assumes different organisa-
tional changes in the degree of centralization. As goal
functions he uses the average yearly costs and the average
order-filling ability. It seems as if the development and
redesign of System Dynamics models, with the primary
goal being the reduction of the unit costs, represents a
variant of the production smoothing and work force
balancing problem. This shall be investigated now.

9.2.2.1. Cost Reduction in System Dynamics Models
through Use of Test Input Response Analysis. If in a
System Dynamics model the unit costs should be reduced
by a better decision rule, test input response analysis is
not the appropriate method. The simulation of different
decision rules should not start from a model equilibrium,
and the time path of the exogenous variable should not
be a test input. Rather, in a deterministic model, S should
represent a forecast of S for the planning period, and in
a stochastic model S should be described by a sequence
of pseudo random numbers belonging to the probability
distribution of S. To judge the unit cost by carrying out
a test input response analysis is not a reasonable pro-
cedure,

When cost reduction is the primary goal of the System
Dynamics Model, one should not analyse and redesign
the model using a test input response analysis.

9.2.2.2. Cost Reduction in System Dynamics Models
using Is-Ought Decision Rules. As we have seen, Forrester
uses is-ought decision rules to control certain level vari-
ables such as inventory or work force. The class of is-
ought decision rules is, however, only one of the many
types of decision rules which are in principle possible.
Therefore the danger exists that, by restricting decision
rules to the is-ought type, the cost optimal decision rules
will be excluded from the model.

The above paint factory model will serve to illustrate
this. Calculation of the final equation of the optimal de-
cision rules according to the HMMS-model gives:

W(t) = 1.278W(t—1) — 0.407W(t—2) + 0.013E{S(t)} +
+0.0099S(t—1) — 0.595 (60)
P(t) = 1.278P(t—1) — 0.407P(t—2) — 0.464S5(t—1) —
— 0.3345(t—-2),
where E{S(t)} is the expected value of S(t). The final

equations of the System Dynamics model of this system
are given in (46).

167

A comparison of the decision rules reveals that there
is no parameter combination of IR, TL, SC, and AF by
which (46) becomes the optimal final Eq. (60). This
means that, in this example, use of only is-ought decision
rules has excluded the optimal case. Using the optimal
decision rule (59) the expected value of the unit costs is
63.13[$/unit], which is considerably lower than the unit
costs in Table 3, which are the result of using an is-ought
decision rule. The decision rules (59) cannot be inter-
preted as is-ought decision rules. They express only the
way in which P and W are to be chosen depending upon
certain state variables, so that the unit cost is minimized.

Moreover, Schneeweifs has shown that linear decision
rules (and a fortiori linear is-ought decision rules) yield,
when used with non quadratic cost functions, in most
cases only suboptimal strategies [26]. In many cases non-
linear policies such as (s,S), (s,q), or (z,q)-policies yield
better results. (See for these policies [19].) None of
these inventory policies can be interpreted as is-ought
decision rules, which have the goal of maintaining an
explicitly given target inventory. Strategies which opti-
mize stochastic dynamic decision models can be shown
by dynamic programming to have the form:
Xop(t) = Fy[S;(t—1), Sy(t—1),... Sa(t—-1)], (61)
where Xxop is the optimal policy variable and S are the
state (or level) variables of the system. This optimal de-
cision rule (or strategy) has no restriction in respect to
an explicitly stated is-ought structure. Following For-
rester’s proposal, the alternative strategies are restricted
in the case of the often used decision rule (26) to the
form:

RATKL=SOK+ A_Il”-r + (R1#SO.K—S1.K+...
.. +RN#SO K—SN K), 62)

where SO to SN are (some or all) state variables of the
system. Forrester’s is-ought decision rule seems to be a
“paradigm” which originated from classical servome-
chanism theory. Modern control theory has, however, re-
vealed the evident concept of is-ought decision rules to
be too restrictive. One must not forget to consider this
factor when attempting to find a reduced value of the
cost function by the simulation of is-ought decision
rules in a System Dynamics model,

10. Conclusion

The attempts in the last section to raise some points of
criticism should not be seen as an attack upon the value
of System Dynamics. Forrester’s level-rate interpretation
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and the feedback view of systems, combined with the
diagram technique of model representation make System
Dynamics a heuristically fertile method of problem
structuring and model building.

The System Dynamics diagram often provides a
valuable basis for sharpening the precision of model rela-
tions which are necessary to construct the actual DY-
NAMO model. In the DYNAMO language the user has a
very flexible and elegant tool for simulating models. The
System Dynamics approach enables employees to learn
very quickly a technique of describing and modelling the
organisational relations in their firm. Even an attempt to
develop a System Dynamics model often has positive
consequences. Rosenkranz, for example, commended
the usefulness and the “descriptive power™ of a System
Dynamics model of production planning, although this
model has not been implemented |24, p. 337]. Consider-
ing the fact that in many firms the organisation must be
described as far from ideal, the development of a System
Dynamics model is often the vehicle for a thoroughgoing
analysis of the system, frequently revealing “obvious™
structural shortcomings which had previously gone un-
recognized. A good example of this is the ordering ahead
policy of the Sprague company which could probably
have been recognized by a conventional organisational
analysis but was factually realized by a System Dynamics
study. System Dynamics has been approved as a valuable
contribution in the field of dynamic model building and
analysis.
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