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Cole und Curnow behandeln in einem Beitrag in Nature die Retrodiktion der beiden Weltmo-

delle von Forrester und Meadows.1) Dabei beziehen sie sich auf eine mit Meadows geführte 

Diskussion über die Akzeptanz der Retrodiktion als ein Verfahren zur Gültigkeitsprüfung von 

System Dynamics Modellen. Im Folgenden wird diese Diskussion kommentiert. Weiterhin 

sollen die Argumente der Kontrahenten kritisch analysiert werden. 

Cole und Curnow verwenden zur Retrodiktion der Weltmodelle ein Verfahren, welches man 

als DT-Minus-Verfahren bezeichnen kann. Wenn ein System Dynamics Modell simuliert 

wird, muss man einen Wert für das Zeitinkrement DT wählen. Im Idealfall ist DT infinitesi-

mal klein, denn Forrester geht davon aus, dass die von ihm zu beschreibenden realen Systeme 

ausschließlich anhand von Differentialgleichung abgebildet werden sollen. Diese Differenti-

algleichungen werden aber im Rahmen einer Simulation durch Differenzengleichungen ap-

proximiert. DT beschreibt daher das Zeitintervall der Differenzengleichung, mit welcher das 

infinitesimal kleine Zeitintervall der Differentialgleichung approximiert werden soll. 

Die Struktur und Semantik dieser Differenzengleichungen in einem System Dynamics Modell 

soll im Folgenden betrachtet werden. Dann wird ein Retrodiktionsverfahren vorgestellt, wel-

ches vom Verfasser entwickelt wurde. Es wird gezeigt wie das Cole-Curnowsche DT-Minus-

Verfahren im Lichte dieses Retrodiktionsverfahrens zu beurteilen ist. 

Damit ist die Grundlage geschaffen, um die Diskussion zwischen Meadows und Cole-Curnow 

kritisch zu kommentieren und zu zeigen, dass sie mit einigen Defekten belastet ist. 

Ein System Dynamics Modell besteht aus drei Typen von Gleichungen. (Level-, Raten- und 

Hilfsgleichungen). Eine Levelgleichung ist eine Bestandsfortschreibungsgleichung. In der 

Notation der System Dynamics Sprache wird sie wie folgt beschrieben:2) 

  JKABFJKZUFDTJLEVKLEV ....    (1) 

J und K sind Zeitsubskripte, die den gemeinhin verwendeten Zeitsubskripten t und t-1 ent-

sprechen. Im Folgenden soll diese Zeitnotation verwendet werden. LEV.K ist daher der End-

bestand des Levels am Ende der Periode t. LEV.J ist der Endbestand des Levels in der Periode 

t-1 und damit der Anfangsbestand in der Periode t. ZUF.JK ist der Zufluss, den der Level (die 

Bestandsgröße) zwischen den Zeitpunkten J und K erfährt. ABF.JK ist der entsprechende Ab-

fluss. ZUF.JK und ABF.JK werden durch sogenannte Ratengleichungen spezifiziert. Diese 

Ratengleichungen können als erklärende Größen Hilfs- und Levelvariable enthalten. In einer 

Ratengleichung der DYNAMO-Sprache werden die zu erklärenden Raten mit dem Zeitindex 

„KL“ spezifiziert. Die erklärenden Level- und Hilfsvariablen in dieser Gleichung besitzen den 

Zeitindex K. Wegen der Zeitinvarianz der Beziehungen kann man aber auch (was in der DY-

NAMO-Sprache nicht möglich ist) diese Ratengleichung um eine Periode verschieben. Die 

erklärten Ratenvariablen der auf diese Weise transformierten, aber strukturell identischen, 

Ratengleichungen besitzen damit statt „KL“ das Zeitsubskript „JK“ und die erklärenden Vari-

ablen der Ratengleichung besitzen statt „J“ das Zeitsubskript „K“. Setzt man die so umge-

                                                
1) Cole, H.S., Curnow, R.C., Backcasting with the World Dynamics Models, in: Nature Vol. 243, May 1973, 

Seite 63-65. 
2) Ein Malzeichen zwischen Klammern ist nicht erforderlich. Malzeichen werden in der System Dynamics 

Sprache (DYNAMO) mit einem Stern gekennzeichnet. Im Folgenden wird von der Notation der Sprache 

abgewichen. 
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formten Ratengleichungen in die Levelgleichungen der Form (1) ein, dann hängt LEV.K nur 

von Leveln der Vorperiode LEV.J ab. Die Hilfsvariablen, welche als erklärende Variable in 

die Ratengleichungen eingehen, besitzen nur den Zeitindex K oder, wenn man die beschrie-

bene Zeitverschiebung vornimmt, den Zeitindex J. Zwischen ihnen gibt es daher keine zeit-

verzögerten Beziehungen. Sie bilden somit ein System von algebraischen Gleichungen. Das 

System Dynamics Konzept (und damit Forresters Entwurf) schreibt vor, dass die Abhängig-

keiten zwischen den Hilfsvariablen immer nur durch rekursive Gleichungssysteme beschrie-

ben werden dürfen, d. h., die Verwendung simultaner aus Hilfsvariablen bestehender Glei-

chungssysteme ist verboten. 

Diese Kennzeichnung der Gleichungstypen lässt erkennen, dass sich durch algebraische Opera-

tionen ein System Dynamics Modell auf ein System von Gleichungen reduzieren lässt, in denen 

nur noch die Level als erklärte Variable auftreten. Dieses auf Levelgleichungen reduzierte Sys-

tem besitzt die Form3)  

         1,...,11 ´1  tLtLFDTtLtL niii  (2) 

mit i= 1,…, n. 

Der Ausdruck Fi(…) beschreibt zumeist eine nichtlineare Beziehung. Davon wird im Folgen-

den ausgegangen. DT ist, wie erwähnt, das Zeitinkrement, welches zur Durchführung der Si-

mulation zu wählen ist. Je kleiner man DT wählt, umso stärker nähert sich die zur Simulation 

verwendete Differenzengleichung (2) der als adäquates Beschreibungsmedium angesehenen 

Differentialgleichung an. 

Nimmt man nunmehr an, t beschreibe das Jahr 1900, so kann der Wert eines Levels zu diesem 

Zeitpunkt durch Li
1900

 gekennzeichnet werden. Setzt man diesen Wert in (2) ein, dann erhält 

man 

       1,...,11 ´1

1900
 tLtLFDTtLL niii  (3) 

(3) lässt sich umformulieren in 

       1,...,11 ´1

1900
 tLtLFDTLtL niii  (4) 

Um daher (im Rahmen einer Retrodiktion) den Wert vom Li(t-1) (oder Li
1900-DT

) zu berech-

nen, sind anhand des Gleichungssystems (4) die Werte der Variablen von Li(t-1) zu bestim-

men.4) 

Da sich die zu modellierenden Level eines Systems (nach Forresters Auffassung) immer in 

Feedbackkreisen befinden, bilden die Variablen L1(t-1) bis Ln(t-1) in (4) ein System von 

nichtlinearen simultanen Gleichungen. Will man daher in dem Gleichungssystem (4) die Wer-

te von L1(t-1) bis Ln(t-1) bestimmen, so ist dieses Gleichungssystem zu lösen. Mit der Be-

stimmung seiner Lösungswerte wird aber zugleich eine Retrodiktion praktiziert. Denn unter 

Vorgabe der Levelwerte von 1900, d. h. Li
1900

, werden die Levelwerte für Li
1900-DT

 bestimmt. 

Hat man die Werte von Li
1900-DT

 bestimmt, kann man mit demselben Verfahren wieder die 

Werte der n Level Li
1900-2DT 

bestimmen usw. Die Retrodiktion erweist sich daher als sukzessi-

ve Lösung eines Systems von nichtlinearen simultanen Gleichungen.  

                                                
 
3) Ein solches Gleichungssystem ist im Prinzip immer ermittelbar, weil System Dynamics Modelle rekursive 

Modelle sind. 
4) Wählt man DT =1/12 so wäre der nächste zu ermittelnde Wert Dezember 1899. 
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Um diese simultanen Gleichungssysteme zu lösen, wurde vom Verfasser das Gauss-Seidel-

Verfahren verwendet.  

Das Gleichungssystem (4) wird entsprechend dem Gauss-Seidel-Verfahren unter Verwendung 

einer Rechenschleife immer wieder durchgerechnet. Jeder Rechenschritt k führt zu einem 

Wert der Levelvariablen, d. h. L1
k 

bis Ln
k
. Als Anfangswerte für diesen Iterationsprozess wer-

den für L1(t-1) bis Ln (t-1) auf der rechten Seite der Gleichungen (4) die Werte des Jahres 

1900, d. h. L1
1900

 bis Ln
1900 

gewählt. Wenn der Prozess konvergiert (was zu hoffen ist), dann 

nähern sich von Schritt zu Schritt (von k-1 auf k) die Werte eines jeden Levels Li 
k
 auf der 

linken Seite des Gleichungssystems immer stärker den erklärenden Werten von Li 
k-1

 auf der 

rechten Seite der Gleichung an.  

Die Stärke der Annäherung wird durch das Konvergenzkriterium (Li
k
-

 
Li

k-1
)/Li

k
 beschrieben. 

Wenn dieses Konvergenzkriterium für alle Level einen Wert von z. B. 10
-6 

unterschreitet, 

dann ist das Gleichungssystem gelöst. Das Konvergenzkriterium ist so zu wählen, dass beim 

Einsetzen der gefundenen Werte von L1(t-1) bis Ln(t-1) in (1) genau der Wert des Levels L(t), 

d. h. L
1900

, realisiert wird. Bei dem Level Bevölkerung (Population) in Forresters Modell wa-

ren dies 1,65 Milliarden Einwohner. Der rückprognostizierte Levelwert muss nicht auf den 

Punkt genau mit dem Ausgangswert übereinstimmen. Das ist bei einem Iterationsverfahren 

nie möglich. Es kommt nur darauf an, dass der Zeitverlauf der Levelvariablen nach vorne 

„möglichst geringe Abweichungen“ zeigt. Durch eine Verschärfung des Konvergenzkriteri-

ums kann man aber die Anfangswerte wieder beliebig genau ermitteln. 

Diese Bemerkungen sind notwendig, um das Verfahren von Cole und Curnow zu verstehen. 

Denn Cole und Curnow führen kein Verfahren dieser Art durch. Ihr Verfahren ist extrem ein-

fach. Die ursprünglichen Levelgleichungen, die zur Formulierung eines System Dynamics 

Modells verwendet werden, sind in (1) beschrieben. Die Spezifikation des Zeitinkrementes 

von DT in diesen Levelgleichungen zur Durchführung der Simulation erfolgt durch eine gene-

relle Anweisung. 

Cole und Curnow wählen nunmehr, um eine Retrodiktion (sie sprechen von „backcasting“) 

vorzunehmen, einfach den negativen statt des bisher positiven Wertes des Zeitinkrementes 

und lassen damit das Modell „nach hinten“ laufen. 

Forrester wählte in seinem Modell DT = 0.25. Um die Retrodiktion im Sinne der Autoren 

vorzunehmen, braucht man also nur (in einer Spezifikationsanweisung) DT = -0.25 zu wählen 

und dann die Simulation zu starten. Einfacher geht es nicht. Nunmehr läuft das Modell nach 

hinten und nicht mehr nach vorne. 

Betrachtet man aber dieses Vorgehen im Lichte der bisherigen Ausführungen, dann erweist es 

sich als die Durchführung einer Gauss-Seidel-Prozedur mit gerade einem Iterationsschritt. 

Denn der erste Iterationsschritt der Gauss-Seidel-Prozedur besteht in einer Durchrechnung des 

Gleichungssystems (4) und, wie man erkennt, ist dort DT minus gewählt. 

Es fragt sich daher, ob bei einem Abbruch des Verfahrens nach dem ersten Iterationsschritt 

(ohne Verwendung eines Konvergenzkriteriums) die ermittelten Levelwerte von Li(t-1) (oder 

Li
1900-DT

) zu einem Wert führen, der zur Folge hat, dass die Werte Li
1900

 hinreichend genau 

realisiert werden, wenn man die Rückrechnung vornimmt. 

Die Genauigkeit muss so groß sein, dass der Zeitpfad nach vorne wiederum (weitgehend) der 

ursprünglichen Prognose entspricht. Meine Simulationen mit dem Forrester- und dem 
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Meadows-Modell kamen zu dem Ergebnis, dass dies nicht der Fall war. Aus meiner Sicht ist 

diese „DT-Minussetzung“ daher ein kaum zu akzeptierendes Retrodiktionsverfahren.5) 

Nach der Kennzeichnung der beiden Retrodiktionsverfahren soll auf die Diskussion von 

Meadows mit Cole-Curnow eingegangen werden. 

Die Autoren weisen darauf hin, dass System Dynamics Modelle durch ein System von „non 

probabilistic non linear first order difference equations“ repräsentiert werden.6) Sie kommen 

aber nicht auf den Gedanken, dass die Retrodiktion auch auf der Basis von Differenzenglei-

chungen praktiziert werden sollte. 

Cole und Curnow setzen in dem Modell DT minus und schauen, was dabei rauskommt. Daher 

gehen sie nicht der Frage nach, unter welchen Bedingungen der Retrodiktion mit dem Diffe-

renzengleichungsmodell (4) ein „eindeutiger Retrodiktionswert“ ermittelt werden kann. Sie 

sprechen nur davon, dass bei ungünstigen Bedingungen eine Retrodiktion mit „numerical 

errors in the computation“ behaftet sein kann. Im Lichte des simultanen Gleichungssystems 

(4) wird aber klar, unter welchen Bedingungen eine Retrodiktion nicht möglich ist. Sie ist 

dann nicht möglich, wenn das simultane nichtlineare Gleichungssystem mehr als eine - also 

keine eineindeutige - Lösung hat. Bei zwei Lösungen wäre es beispielsweise unentscheidbar, 

welcher Wert dann für den nächsten Rückrechnungsschritt gewählt werden soll. 

Diese Unklarheit über den Status einer inakzeptablen Rückrechnung zeigt sich in der Diskus-

sion mit Meadows über die Durchführbarkeit von Retrodiktionen. Meadows führte mit dem 

Forrester-Modell unter Verwendung des DT-Minus-Verfahrens eine Rückrechnung, begin-

nend im Jahre 1940, durch. Der von Meadows ermittelte Zeitverlauf der Bevölkerung ergab, 

dass er überhaupt nicht mit dem Zeitverlauf der Vorwärtsprognose des Modells von 1900 bis 

1940 übereinstimmte. Meadows schließt aufgrund dieses Ergebnisses, dass eine Rückwärts-

prognose oder Retrodiktion wegen der auftretenden numerischen Fehler in den Weltmodellen 

grundsätzlich nicht möglich ist. Die Autoren entgegnen hierauf, dass diese Ergebnisse einer 

Rückrechnung, die auch bei ihnen auftreten, durch „numerical errors in the computation“ 

bedingt sind. Begründet wird diese Behauptung aber nicht. 

Meadows verfehlte Rückrechnung könnte aber zwei Gründe haben. Zum einen könnte es sich 

zeigen, dass das nichtlineare simultane Gleichungssystem (4), mit welchem die Rückrechnung 

von 1940 ab erfolgt, in irgendeiner der sukzessiven Lösungen zu keiner eineindeutigen Lö-

sung gelangt. Dann läge die falsche Rückrechnung nicht an den „numerical errors in the 

computation“. 

Wenn aber tatsächlich numerische Fehler bei Anwendung der DT-Minus-Retrodiktion durch 

Meadows vorlagen, dann könnte dies dadurch nachgewiesen werden, indem man eine Rück-

rechnung vornimmt, bei welcher die Anfangswerte der Level im Jahre 1900 tatsächlich repro-

duziert werden. Eine solche Rückrechnung wurde vom Verfasser mit dem beschriebenen Ver-

fahren einer sukzessiven Lösung des simultanen Gleichungssystems (4) vorgenommen und es 

zeigte sich, dass diese Rückrechnung von 1940 an genau zu den Anfangswerten der Level des 

Weltmodells im Jahre 1900 führte. Damit ist die von Meadows anhand eines Beispieles beleg-

                                                
5) S. Zwicker, E., Möglichkeiten und Grenzen der modellgestützten Prognose sozioökonomischer Entwick-

lungen, dargestellt am Beispiel der Weltmodelle von Meadows und Forrester, Wissenschaftszentrum, Ber-

lin 1976, Aufruf: www.Inzpla.de/Weltmodell-Analyse.pdf. 
6) Sämtliche fett gedruckten Zitate entstammen dem zitierten Beitrag von Cole und Curnow in Nature. 

http://www.inzpla.de/Weltmodell-Analyse.pdf
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te generelle Behauptung, dass eine Retrodiktion schon allein aus numerischen Gründen nicht 

möglich sei, in begründeter Weise ausgeräumt.7) 

Neben diesem Einwand, d. h. der numerischen Unzulänglichkeit einer Rückrechnung, führt 

Meadows noch einen zweiten Einwand ins Feld, der als „Einwand der Unzulänglichkeit der 

Anfangswerte“ bezeichnet werden soll. 

Um diesen Einwand angemessen zu behandeln, ist es notwendig, den Status der Anfangswerte 

in sogenannten Verzögerungsleveln (Delay3- und Smooth-Leveln) zu erörtern. 

Cole und Curnow weisen darauf hin, dass System Dynamics Modelle stets durch ein System 

von Differenzengleichungen erster Ordnung beschrieben werden. Daher besitzen System Dy-

namics Modelle ihrer Auffassung nach keine wahren Verzögerungen (true delays).8) Damit 

meinen die Autoren, dass ein System Dynamics Modell keine verteilten Verzögerungs-

hypothesen (distributed lag hypotheses) der Form  

    



n

i

i itZUFwtABF
1

 (5) 

aufweist. Denn diese besitzen nicht nur wie Differenzengleichungen ersten Grades erklärende 

Variablen, welche höchstens um eine Periode verzögert sind. Die Funktion wi in (5) wird als 

die Gewichtsfunktion der Verzögerungshypothese bezeichnet. 

System Dynamics Modelle erlauben aber dennoch die Modellierung von verteilten Verzö-

gerungshypothesen der Form (5) Die verteilten Verzögerungshypothesen in System Dynamics 

Modellen erfahren dabei eine besondere Interpretation. Die Größe ZUF wird immer als der 

Zufluss in ein Verzögerungslevel interpretiert und die Größe ABF als der Abfluss aus diesem 

Level. Eine verteilte Verzögerungshypothese beschreibt daher die Übergangsfunktion zwi-

schen dem Zu- und Abfluss eines solchen (Verzögerungs-) Levels. Es werden dabei ganz be-

stimmte Typen von Gewichtsfunktionen wi verwendet, die sich ausschließlich durch die 

durchschnittliche Verzögerung (DVZ) beschreiben lassen, welche die Elemente im Durch-

schnitt erfahren, bevor sie nach ihrem Eintritt in das Level (über ZUF) diesen (über ABF) 

wieder verlassen. Daher sollen diese Hypothesen nicht als Verzögerungshypothesen, sondern 

spezieller als Delay3-Verweilzeithypothesen bezeichnet werden.9) 

Es fragt sich aber, wie solche Delay3-Verweilzeithypothesen der Form (5) in einem System 

Dynamics Modell verwendet werden können, wenn es nur aus Differenzengleichungen ersten 

Grades besteht. 

Die Antwort ist, dass die in System Dynamics Modellen verwendete Delay3-Verweilzeithy-

pothesen durch ein System von drei kaskadierenden Differenzengleichungen erster Ordnung 

beschrieben werden können. Mit anderen Worten: Obgleich man nur Differenzengleichungen 

erster Ordnung verwendet, können diese dennoch zur Modellierung solcher Delay3-Verweil-

zeithypothesen und damit zur Modellierung von „true delays“ verwendet werden. 

                                                
7) In der Programmiersprache DYNAMO wurde das Modell in einer FORTRAN-Version mit „single precisi-

on“ umgesetzt. Mein Programm wurde auf einer FORTRAN-Version der IBM 370/158 in dem Modus 

„double precision“ realisiert. 
8) „The equations used to introduce delays in the System Dynamics method also take the form of first order 

difference equations (they do not represent true delays)”. 
9) Forrester spricht von „exponential delays of third order“. Die Makrofunktionen, mit denen sie aufgerufen 

werden, haben den Namen Delay3. 
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Dies soll im Folgenden gezeigt werden, weil nur bei Kenntnis dieser Zusammenhänge 

Meadows Einwand der „Unzulänglichkeit der Anfangswerte“ angemessen erörtert werden 

kann. 

Exkurs 

Jede inhomogene lineare Differenzengleichung der Form 

A(t) = a1*A(t-1)  + a2*y(t-2) + ... + an*A(t-n)  + E(t)     (6) 

 kann auch durch ihre sequentielle Form beschrieben werden. Diese ist 

A(t) = 





1

)(*
i

i itEg         (7) 

Die Funktion gi wird als Gewichtsfunktion bezeichnet. Wenn man die Variable E als einem 

Mengengröße (Stromgröße) interpretiert, die in ein „black box“ (.z.B. ein Lager) und ohne 

Verluste oder eine Vermehrung verzögert als Ausgangsgröße (A) aus der „black box“ wieder 

herauskommt, dann kann man gi als Verzögerungsfunktion bezeichnen. Diese Verzögerungs-

funktion zeichnet sich dadurch aus, dass sie einen dynamischen Multiplikator von 1 besitzt. 

Dies ist dann und nur dann gewährleistet, wenn 

1
0




i

ig           (8) 

Es läßt sich zeigen, dass man die zyklische Form (6) in die sequentielle Form (7) überführen 

kann. Dies gilt aber nur dann, wenn bei t = 0 entweder sämtliche Anfangswerte A(t-1) bis A(t-

n) den Wert 0 besitzen sind oder ein Systemgleichgewicht vorliegt. Das ist der Fall, wenn  

A(t) = A(t – i)   für  i= 1,...,n        (9) 

d.h. die erklärte Variable A(t) in (6) und sämtliche Anfangswerte sind gleich. Es ist von Inte-

resse, den Verlauf eines solchen  Verzögerungsfunktion (Gewichtsfunktion) zu kennen. Wei-

terhin ist aber auch noch eine weitere Größe von Interesse. Das ist die durchschnittliche Ver-

zögerung (DVZ), die eine Element aus der in die „black box„ eintretenden Eingangsmenge 

(E)  erfährt, bevor es wieder als ein Element der Ausgangsmenge (A) die „black box“ verlässt. 

Diese durchschnittlicher Verzögerung (DVZ) wird durch 

DVZ = igi
i

*
1






         (10) 

beschrieben.  

Im Rahmen von System Dynamics werden inhomogene Differenzengleichungen der ersten 

Ordnung zur Beschreibung der Modellzusammenhänge verwendet. Eine Differenzenglei-

chung der ersten Ordnung besitzt die Form 

A(t) = a • A(t-1) + E(t)        (11) 

Ihre sequentielle Form läßt sich einfach ermitteln. Sie ist 
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A(t) = 





1

)(*
i

i itEa          (12) 

Die Verzögerungsfunktion a
i 
in (12) entspricht einer geometrischen Folge. 

Zur Darstellung der Delay3-Verzögerunsgslevel werden nunmehr von Forrester drei kaskadie-

rende Differenzengleichungen erster Ordnung verwendet. Wenn man bei dem „black-box-

Beispiel bleibt, dann kann man sich das so vorstellen , dass sich drei „black boxes“ hinterei-

nander angeordnet sind. Der Ausgang (A1) der ganz rechts befindlichen fungiert als Ein-

gangsgröße (E2) der in der Mitte befindlichen black box und deren Ausgangsgröße (A2) ist 

wiederum die Eingangsgröße (E3) der ganz links befindlichen mit der Ausgangsgröße (A3) 

Diese drei „kaskadierenden Differenzengleichungen“ können durch 

A1(t) = a1•A1(t-1) + b1 •E1(t-1)       (13) 

E2(t) =  A1(t)          (14) 

A2(t) = a2•A2(t-1) + b2 • E2(t-1)       (15) 

E3(t) =  A2(t)          (16) 

A3 (t) = a3•A3(t-1) + b3• E3(t-1)       (17) 

beschrieben werden. Die Verzögerungsfunktion jeder einzelnen Differenzengleichung ent-

spricht eine geometrischen Folge, aber insgesamt resultiert aus ihrem Verzögerungsverhalten 

eine Verzögerungsfunktion, die keine geometrische Folge darstellt, sondern eingipfeligen 

Verlauf besitzt  

Als Erstes wird nunmehr gezeigt, wie ein System von drei kaskadierenden Differenzenglei-

chungen mit einer bestimmten Struktur der Modellparameter die Beziehungen einer Delay3-

Verweilzeithypothese beschreibt, die wie erwähnt zur Gruppe der verteilten Verzögerungshy-

pothesen (5) gehören. Die spezielle Gewichtsfunktion wi einer Delay3-Verweilzeithypothesen 

wird daher im Folgenden aus den drei beschriebenen kaskadierenden Differenzengleichungen 

erster Ordnung hergeleitet.  

Nachdem diese Herleitung erfolgt ist, stellt sich die Frage, wie der Status der Anfangswerte 

der drei kaskadierenden Levelgleichungen im Lichte ihrer Verwendung als Delay3-Verweil-

zeithypothesen zu beurteilen sind. 

Hier wird sich zeigen, dass Cole und Curnow aufgrund der Unkenntnis dieser Zusammenhänge 

einen wesentlichen Kritikpunkt von Meadows gegen die Akzeptanz einer Retrodiktion nicht 

angemessen beantworten können. Aber noch viel weitergehender wird die folgende Analyse 

zeigen, dass das Weltmodell von Meadows wegen eines „gravierenden Anfangswertproblems“ 

ein aus zwingenden Gründen inakzeptables Prognosemodell darstellt. Um dies nachzuweisen, 

ist im Folgenden die Gewichtsfunktion einer Delay3-Verweilzeithypothese zu ermitteln. 

Beginnen wie mit der Beschreibung der speziellen Form der von Forrester verwendeten drei 

kaskadierenden Levelgleichungen. Sie besitzen einen Zu- und Abfluss (ZUF1 und ABF3), wel-

che dem Zu- und Abfluss (ZUF und ABF) in (5) entsprechen. Jede der drei Levelgleichungen 

hat einen Zu- und Abfluss. Die drei Levelgleichungen sowie die Verknüpfung ihrer Zu- und 

Abflüsse werden durch (18) und (19) beschrieben:  
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und 

  DTDVZT 3 . (20) 

(8) 

Man erkennt, dass die Parameter der drei Levelgleichungen eine besondere Struktur ihrer Pa-

rameter besitzen. Die verzögerte Variable ABFi (t-1) besitzt den Ausdruck „T-1/ T“ als Para-

meter , während ZUFi(t-1) durch den Parameter „1/T“ gekennzeichnet ist. T ist eine Größe, 

die von dem Modellanwender gewählt werden kann, indem er gemäß (20) die durchschnittli-

che Verzögerung der Delyay3-Verzögerung (DVZ) und das Zeitinkrement der Simulation 

(DT) in Bezug auf die Einheit von DVZ bestimmt. Wählt er beispielsweise DVZ in der Ein-

heit TIME= Monat und DT= 0,1 dann bedeutet dies, dass das Modell in Zeitabständen von 0,1 

Monaten durchgerechnet wird.10 Die Festlegung von T gemäß (20) geht von der Annahme 

aus, dass die Verzögerungsfunktion der Delay3-Verzögerung, die  durch (18) und (19) be-

schrieben wird eine gemäß (5) definierte durchschnittliche Verzögerung des mit (20) spezifi-

zierten Betrages von DVZ besitzt. Das ist aber eine Annahme, deren Richtigkeit man erst 

dann beweisen kann, wenn man die gesamte Verzögerungsfunktion gi der drei kaskadierenden 

Verzögerungen bestimmt hat und dann gemäß (5) deren durchschnittliche Verzögerung DVZ 

berechnet. Wenn die Annahme zutrifft muss sie mit  dem sich aus (20) ergebenden  

DVZ = T • 3 • DT  (21) 

übereinstimmen. 

Nunmehr soll die gesamte Verzögerungsfunktion gi der durch (18) bis (20) beschriebenen drei 

kaskadierenden Verzögerungen ermittelt werden  

Mit der Einführung des Differenzen-Operators 

    ntxtxK n   (22) 

folgt aus (6) und (9) 

  
 

 tZUF
T

K

T

TK
tABF ii 







 


1
1 . (23) 

Aus (23) folgt 

    tZUF
T

K

T

T
KtABF ii

1

1
1


















 
 . (24) 

Definiert man das Operatorpolynom der Übergangsfunktion in (24) mit 

                                                
10  Da der ursprüngliche Ansatz Forresters als Differentialgleichungsmodell konzipiert ist, handelt es sich hier 

um eine Approximation dieses Modells mit Hilfe eines Differenzengleichungsmodells. Im Idealfall ist da-

her DT infinitesimal klein. Forrester fordert, dass im Rahmen der Simulation die Relation DT< DVZ/6 ein-

gehalten werden muss. 

i=2,3 

i=1 
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      TKTTKG
1

11


 , (25) 

dann implizieren (24) und (25) 

    tZUFGtABF ii  . (26) 

Die Delay3-Verweilzeithypothese wird durch eine Kette von drei kaskadierenden Gliedern 

mit demselben Operatorpolynom G in (25) beschrieben. Die Operatorenübergangsfunktion 

zwischen dem Eingang ZUF1 und dem Ausgang ABF3 ergibt sich nach der Reduktionsvor-

schrift kaskadierender Glieder aus:11) 

    tZUFGtABF 1

3

3  . (27) 

Unter Anwendung der vereinfachenden Schreibweise 

    tABFtABF 3  (28) 

    tZUFtZUF 1  (29) 

folgt aus (27) bis (29) 
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11

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Mit (30) ist die Delay3-Verweilzeithypothese bestimmt. 

In einem zweiten Schritt soll die Verzögerungsfunktion (Gewichtungsfunktion) von(30) er-

mittelt werden. Aufgrund des Binominallehrsatzes gilt: 
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




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T
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 . (32) 

Aus (30) bis (32) folgt die sequenzielle Darstellung der Delay3-Verweilzeithypothese 
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Es gilt 
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Mit (20) und (21) folgt 
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. (35) 

Die Gewichtungsfunktion des „true delays“ oder der verteilten Verzögerungshypothese (5) 

ergibt sich aus (33). Sie ist die Gewichtsfunktion einer Delay3-Verweilzeithypothese. Sie be-

sitzt immer einen eingipfeligen Verlauf. 

                                                
11) Siehe Zwicker, E., Simulation und Analyse dynamischer Systeme in den Wirtschafts- und Sozialwissen-

schaften, Berlin 1981, S. 228 f. 
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Der Benutzer muss, wenn er in einem Modell mithilfe der DYNAMO-Sprache eine solche 

Delay3-Verweilzeithypothese formulieren will, eine sogenannte Makrofunktion verwenden. 

Hat der Benutzer somit entschieden, dass die Verzögerung zwischen dem Abfluss (ABF) und 

dem Zufluss (ZUF) eines Verzögerungslevels durch eine Delay3-Verweilzeithypothese be-

schrieben werden soll, dann wird dies in der DYNAMO-Sprache durch die Anweisung oder 

Makrofunktion 

  DVZJKZUFDELAYKLABF ,.3.   (37) 

ausgedrückt. DVZ ist, wie beschrieben, die durchschnittliche Verzögerung, die ein Element 

erfährt, wenn es in den Verzögerungslevel über ZUF eintritt, bevor es mit ABF wiederum den 

Level verlässt. Für DVZ hat der Benutzer bei einer konkreten Anwendung einen Zahlenwert 

einzugeben. Da eine Delay3-Verweilzeithypothesen wie beschrieben durch drei kaskadieren-

de Differenzengleichungen erster Ordnung beschrieben wird, führt eine Expansion der Mak-

rofunktion in die sie repräsentierenden elementaren Gleichungen der DYNAMO-Sprache zu 

den folgenden Levelgleichungen und deren Anfangswerten. 12) 

  .JKABFZUF.JKDT.JLV.KLV 111   (38) 

  311 DVZ/.KLV.KLABF   (39) 

  .JK.JK-ABFABFDT.J LV.KLV 2122   (40) 

  322 DVZ.KLV .KLABF   (41) 

  .JK.JK-ABFABFDT.JLV.KLV 3233   (42) 

  333 DVD.KLV.KLABF   (43) 

mit den Anfangswerten 

 3321 DVZ LV LVLV   (44) 

Dabei ist entsprechend (28) und (29) ZUF der Zufluss des gesamten DELAY3-Verzögerungs-

levels und ABF3 sein Abfluss (ABF). 

Für die drei Levelgleichungen (38), (40) und (42) wird jeweils ein Anfangswert gewählt, der 

(von Forrester so bestimmt und in DYNAMO fest programmiert) für alle drei Level mit 

DVZ/3 gewählt wird. Da die drei kaskadierenden Levelgleichungen aber eine Delay3-Ver-

weilzeithypothese beschreiben, liegt die Frage nahe, wie denn die die Spezifikationsvorschrift 

(44) zur Bestimmung der Anfangswerte der drei Level LV1 bis LV3 zu deuten ist. Die Antwort 

ist, dass diese Anfangswerte die verzögerten Einflüsse zwischen ZUF und ABF in „kompakter 

Form“ beschreiben, die vor Beginn der Modellprognose (z. B. zum Zeitpunkt 1900) stattge-

funden haben. 

Meadows verwendet in seinem Modell verschiedene Delay3-Verweilzeithypothesen, wobei er 

hierzu die beschriebene Makrofunktion mit den Levelgleichungen (38), (40), (42) und deren 

Anfangswertbestimmung (44) verwendet. Es stellt sich daher die Frage, wie die in der DY-

                                                
12) Die Notation entspricht nicht mehr vollständig der DYNAMO-Sprache. Dort gibt es keine Verwendung 

von Indizes wie in LV1. LV1 müsste daher in DYNAMO LV1 heißen. 
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NAMO-Sprache festgelegte Wahl der Anfangswerte der drei Level mit dem Wert DVZ/3 zu 

rechtfertigen ist, wenn man in Betracht zieht, dass die kaskadierenden Level eine Delay3-

Verweilzeithypothese mit der Gewichtsfunktion (36) beschreiben soll.  

Diese Rechtfertigung hierfür liefert Forrester. Er hat das System Dynamics Konzept ursprüng-

lich nur für eine bestimmte Art der Untersuchung verwendet, die aus der Regelungstheorie 

stammt und als Testantwortanalyse (test response analysis) bezeichnet wird. Eine Testant-

wortanalyse kann man an einem realen System aber auch anhand eines Modells durchführen, 

welches ein reales System beschreibt. Im Fall der Testantwortanalyse an einem realen System 

wird das System (z. B. ein Thermostat) in einen Gleichgewichtszustand versetzt. Dann wird 

dem System ein „Testeingang“ aufgeprägt. 

Das kann z. B. ein Impuls oder ein Step sein. Der zeitliche Verlauf einer damit aus dem 

Gleichgewicht gebrachten Systemvariablen, die von Interesse ist, nennt man dann einen „pul-

se response“ oder einen „step response“. Forrester hat das System Dynamics Konzept ur-

sprünglich nur für die Analyse von Unternehmen verwendet. Daher nannte er es Anfangs 

auch Industrial Dynamics.13) Erst später hat er diese Konzeption so erweitert, dass sie für alle 

denkbaren Systeme gelten soll und ihr den Namen System Dynamics gegeben. Die Modellie-

rungsprinzipien blieben aber unverändert. In seinem ursprünglichen Werk, in welchem er das 

„Industrial Dynamics Konzept“ beschreibt, wird dieses Konzept von ihm anhand der Ent-

wicklung und Analyse des System Dynamics Modells eines Unternehmens, der Sprague 

Electric Company, demonstriert. Die Analyse dieses Modells erfolgt ausschließlich mithilfe 

solcher Testantwortanalysen. Die Testantwortanalyse ist das einzige Analyseverfahren, wel-

ches Forrester zur Untersuchung seiner Modelle anwendete. 

Um eine solche Testantwortanalyse durchführen zu können, müssen die Anfangswerte der 

Level LV1 bis LV3 in (38), (40) und (42) so gewählt werden, dass sich der Verzögerungslevel 

im Gleichgewicht befindet. Das bedeutet, dass z. B. ein gleichgewichtiger (über die Zeit un-

veränderter) Zufluss des Betrages ZUF = 100 zu einem entsprechenden Abfluss (ABF) des 

Betrages ABF = 100 aus dem Verzögerungslevel führt. Durch die Wahl der Level-

anfangswerte DVZ/3 wird erreicht, dass die Ausdrücke in den Klammern von (38), (40) und 

(42) Null werden und damit die Levelwerte J den Levelwerten K entsprechen, also ein 

Gleichgewicht vorliegt. 

Meadows verwendet aber (und das ist ein elementarer Kritikpunkt an seinem Modell) diese 

Delay3-Funktionen mit den Anfangswerten zur Herbeiführung eines Gleichgewichtes im 

Rahmen seines Wachstumsmodells. Damit wird aber stillschweigend unterstellt, dass alle 

Variablen des Modells, die den Zufluss (ZUF) zu einem Verzögerungslevel beeinflussen, des-

sen Übergangsfunktion eine Delay3-Verweilzeithypothese ist, sich im Gleichgewicht befun-

den haben. Denn sonst wäre es unangemessen, diese Anfangsbedingungen für diese Delay3-

Verweilzeithypothese zu wählen. Da dies nicht der Fall ist, hat Meadows Modell einen gra-

vierenden Defekt. Cole und Curnow haben diesen Defekt des Modells nicht erkannt, was zur 

Folge hat, dass sie wie später gezeigt wird, auf Meadows Einwände gegen eine Retrodiktion 

kein Gegenargument zur Verfügung haben. 

                                                
13) Forrester, J. W., Industrial Dynamics, Cambridge, Mass. 1961. 
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Neben den Delay3-Verweilzeithypothesen gibt es noch eine weitere Input-Output-Relation, 

die den Zu- und Abfluss eines sogenannten Smooth-Levels (oder Prognose-Levels) be-

schreibt. Ein Smooth-Level beschreibt den von einer bestimmten Person oder Personengruppe 

über die Zeit prognostizierten Wert einer Größe X. Dabei wird unterstellt, dass die praktizierte 

Prognose immer anhand des Prognoseverfahrens einer exponentiellen Glättung erfolgt. Bei 

diesem Verfahren soll für eine Größe X(t) aufgrund einer Prognosegleichung Periode für Pe-

riode eine Prognose erstellt werden. Die zu prognostizierende Größe wird mit PX(t) bezeich-

net. Die Prognosegleichung im Falle des Prognoseverfahrens einer exponentiellen Glättung 

besitzt die Form: 

         111  tPXtRXGLKtPXtPX  (45) 

GLK ist die sogenannte Glättungskonstante. RX(t-1) ist der in der Vorperiode realisierte Wert 

von X. Forrester, der aufgrund seines Level-Raten-Paradigmas sämtliche Differenzenglei-

chungen ersten Grades als Levelgleichungen interpretieren muss, interpretiert nunmehr auch 

diesen Zusammenhang (allerdings missglückt) als eine Level-Ratenbeziehung. Das geht so: 

Die Prognosevariable PX (t) wird als fortzuschreibende Levelvariable eines Prognoselevels 

interpretiert. Dieses Prognoselevel wird durch den Levelwert der Vorperiode P.LEV.J = PX 

(t-1) sowie einem Zufluss ZUF.JK und einem Abfluss ABF.JK erklärt. Damit kann die Glei-

chung des Prognoselevels wie folgt in Form einer Levelgleichung geschrieben werden; 

    JKABFJKZUFDTJPLEVKPLEV ....   (46) 

Um aber eine exponentielle Glättungsprognose der Form (45) zu praktizieren, müssen die Zu- 

und Abflüsse der Levelgleichung (46) in einer bestimmten Form definiert werden. Diese ist 

 SMK.JKZUF  ZUF.JK 1  (47) 

mit  

 GLKSMK 1  (48) 

als Smoothkonstante.14) Die Abflussrate wird unter Verwendung der Smoothkonstante mit 

 SMK.JKABF ABF.JK 1  (49) 

definiert.  

Diese Beziehungen werden in der Smooth-Makrofunktion zu einer Gleichung zusammenge-

fasst, d. h. 

     SMKJPLEVJKZUFDTJPLEVKPLEV ....   (50) 

Als Anfangswert des Levels PLEV wird von Forrester 

  ZUFPLEV   (51) 

gewählt. In der DYNAMO-Sprache wird dieser Zusammenhang durch die Makrofunktion 

  SMKZUF.JKSMOOTHPLEV.K ,  (52) 

beschrieben.15) 

                                                
14) Forrester verwendet zur Spezifikation der exponentiellen Glättungsprognose diese Smoothkonstante (SMK) 

und nicht die übliche Glättungskonstante (GLK). Die Smoothkonstante entspricht dem Kehrwert der Glät-

tungskonstante. 
15) Wie man erkennt, ist der echte Zufluss zu dem Prognoselevel (46) der die Zuflussrate einer Beobachtungs-

größe darstellt, daher gar nicht ZUF sondern ZUF1 in (47) Damit ist die Interpretation der exponentiellen 

Glättung als eine Level-Raten-Deutung nicht möglich und Forresters Level-Raten-Interpretation der Welt 
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Auch diese Makrofunktion eines Smooth-Levels hat Forrester genau wie die Delay3-

Verzögerungslevel ursprünglich zur Durchführung seiner Testantwortanalyse generiert. Daher 

hat er in der von ihm definierten Makrofunktion den Anfangswert des Levels PLEV wiede-

rum so gewählt, dass ein Prognosegleichgewicht zustande kommt, d. h., es müssen im 

Gleichgewicht die Prognosewerte PLEV.K den Prognosewerten der Vorperiode, d. h. 

PLEV.J, entsprechen. 

Diese Anfangswertbestimmung ist in der von Forrester generierten Smooth-Makrofunktion 

enthalten. Diese Smooth-Makrofunktion wird aber auch von Meadows für sein Weltmodell, 

d. h. für ein Wachstumsmodell, verwendet.  

Die Verwendung einer Smooth-Makrofunktion wäre wie bei den Delay3-Makrofunktionen 

zur Beschreibung der Delay3-Verweilzeithypothesen aber nur dann akzeptabel, wenn alle Va-

riablen, die den Zufluss ZUF.JK einer Smooth-Makrofunktion in einem Modell beeinflussen, 

sich vor 1900 in einem Gleichgewichtszustand befänden hätten, was definitiv nicht der Fall 

war. 

Betrachtet man nunmehr die gesamten Beziehungen in dem Meadows-Modell, dann müssten 

aufgrund der verwendeten Smooth- und Delay3-Level die Beobachtungswerte sämtlicher in 

dem Modell beschriebenen Variablen vor 1900 einen konstanten (gleichgewichtigen) Verlauf 

besessen haben, wenn die Level-Anfangswerte in den Delyay3- und Smooth-Makrofunktio-

nen den Beobachtungsbefunden entsprechend gewählt worden wären. Das Meadows-Modell 

arbeitet daher mit Anfangswerten in den Smooth- und Delay3-Levels, die völlig der Realität 

widersprechen.  

Das Modell enthält neun „normale Level“, die wie die Bevölkerungsbestände durch Le-

velgleichungen der Form (1) explizit von Meadows formuliert wurden, aber sechzehn Le-

velgleichungen werden im Rahmen der verwendeten vier Smooth- und vier Delyay3-Level 

„Systemintern“ definiert und mit „falschen“ Anfangswerten (nämlich Gleichgewichtswerten) 

belegt. 

Diese ausführliche Erörterung des Status der Levelanfangswerte in den Makrofunktionen des 

Weltmodells von Meadows war notwendig, um die Defizite in der Diskussion zwischen 

Meadows sowie Cole und Curnow beurteilen zu können. 

Cole und Curnow haben offenbar nicht erkannt, dass die Levelwerte in den Makrofunktionen 

von einem Gleichgewichtszustand ausgehen. Denn dieser Befund wird von ihnen nirgendwo 

erwähnt. Er ist aber wichtig für die weitere Argumentation von Meadows gegen die Vornah-

me einer Retrodiktion. 

Meadows trägt neben dem erwähnten Einwand der numerischen Unzulänglichkeit einer Re-

trodiktion einen zweiten Einwand gegen die Durchführung einer Retrodiktion vor, der bereits 

als Einwand der Unzulänglichkeit der Anfangswerte bezeichnet wurde. Er behauptet, dass 

„disequilibra introduced through the assignment of initial values may insert transients in the 

models behaviour which cannot be produced in the reverse direction.“ 

Cole und Curnow erwidern auf dieses von Meadows in ihrem Nature Artikel angeführte Zitat: 

„The assignment of initial values can cause confusion in dynamic models … Inconsistency 

                                                                                                                                                   
ist nicht ganz konsistent. Diese Inkonsistenz des Forresterschen Level-Raten-Paradigmas gefährdet aber 

nicht die Anwendung solcher Prognoselevel. 
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between the initial values given to the parameters of a dynamic model and a set of equations 

which link them may arise” 

Damit antworten sie aber gar nicht auf Meadows Einwand, sondern behaupten ohne eine wei-

tere Begründung, dass Anfangswerte in einem dynamischen Modell Konfusionen (confusi-

ons) auszulösen vermögen. Was unter Konfusionen zu verstehen ist, wird nicht beschrieben. 

Dafür sind aber ihre Ausführungen über „parameters“ und „initial values“ eines dynamischen 

Modells selbst etwas konfus. Bei einem dynamischen Modell ist zwischen den Anfangswerten 

der Zustandsvariablen (hier der Levelvariablen) und den Hypothesenparametern, die in den 

Raten- und Hilfsgleichungen von System Dynamics Modellen auftreten, zu unterscheiden. 

Anhand der Hypothesenparameter werden für alle zukünftigen Perioden die Variablenwerte 

der jeweiligen Periode bestimmt. Wenn Cole und Curnow von den „initial values given to the 

parameters of a dynamic model“ sprechen, unterscheiden sie aber nicht zwischen diesen bei-

den Arten von Parametern. Denn bei ihrer Begriffsbildung gibt es auch „initial values“ der 

Hypothesenparameter. Was sind dann die „non initial parameters“ im Falle von Hypothesen-

parametern und wieso können „inconsistencies“ zwischen Hypothesenparametern auftreten? 

Kurzum: Cole und Curnow haben offensichtlich nicht erkannt, dass Meadows nur die An-

fangswerte der Levelvariablen meinen kann, weil die übrigen Parameter, d. h. die Hypothe-

senparameter, nicht als Anfangswerte bezeichnet werden können.  

Damit wenden wir uns Meadows zweiten Einwand gegen eine Retrodiktion, d. h. dem Ein-

wand der Unzulänglichkeit der Anfangswerte, zu. 

Meadows argumentiert hier „systemtheoretisch“, wenn er von einem Ungleichgewicht (dise-

quilibra) spricht, welches dazu führt, dass die „transients in the models behaviour“ nicht in 

die rückwärtige Richtung möglich ist. Mit den Termen „Ungleichgewicht“ oder dem „tran-

sientes Verhalten eines Modells in die eine oder andere Richtung“ kann man aber nichts an-

fangen, weil nicht zu erkennen ist, wie solche nicht weiter erläuterten Begriffe im Lichte der 

Lösung des simultanen Gleichungssystems (4) zu interpretieren sind. 

Entscheidend für die ganze Frage ist nur: Es liegt ein Differenzengleichungssystem erster 

Ordnung der Form (2) vor, welches man durch Lösung des simultanen Gleichungssystems (4) 

„nach hinten rechnen“ oder retrodizieren kann. Dabei stellt sich die Frage: Haben bestimmte 

Konstellationen der Levelanfangswerte einen Einfluss auf die Retrodiktion? Sie hätten nur 

dann einen Einfluss, wenn man wegen dieser Levelanfangswerte das nichtlineare Gleichungs-

system (4) nicht eineindeutig lösen könnte.  

Auf dieser Ebene eines zu lösenden simultanen nichtlinearen Gleichungssystems bewegt sich 

Meadows aber nicht im Rahmen seines Einwandes.16) Aus dieser Sicht stößt Meadows Ein-

wand, unzulängliche Anfangswerte würden Retrodiktion nicht zulassen, ins Leere. 

Meadows ist sich bewusst, dass auch in den Verzögerungsmakros Levelanfangswerte enthal-

ten sind, denn er bemerkt zusätzlich: „delayed relationships will also be asymmetric in time“, 

was dazu führt, dass seiner Meinung nach eine Retrodiktion „completely meaningless“ ist. 

Das trifft aber, wie erwähnt, im Lichte der erforderlichen Lösung des simultanen nichtlinearen 

Gleichungssystems (4) nicht zu. 

Cole und Curnow antworten auf diesen Einwand, dass man auch Delyay3-Verzögerungen 

zurückrechnen kann „by making the sign of the time increment negativ“. Das trifft zwar zu, 

                                                
16) Das Gleiche gilt aber auch für Cole und Curnow. 
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denn die expandierten Makrofunktionen enthalten ja wie beschrieben auch Levelgleichungen 

der (38), (40), (42) und (50) mit dem Zeitinkrement DT, welches im Rahmen der Expansion 

der Levelgleichungen der Makrofunktionen in DYNAMO negativ gesetzt wird. Allerdings 

erweist sich dieses DT-Minus-Verfahren, wie beschrieben, nur als erster Schritt des Iterati-

onsverfahrens zur Lösung des simultanen Gleichungssystems (4). 

Cole und Curnow haben mit ihrem DT-Minus-Verfahren gezeigt, dass man damit ein Modell 

im Prinzip rückrechen kann. Sie haben diese Analyse aber nicht aus der Sicht vorgenommen, 

dass man eine umfassende Rückrechnung nur auf der Basis eines nichtlinearen simultanen 

Gleichungssystems vornehmen kann. Auf dieser Grundlage hätten sie die mathematisch auf-

weisbaren Grenzen (keine eineindeutige Lösung) erkannt und auch erkannt, dass ihr Verfah-

ren nur der erste Iterationsschritt im Rahmen einer Gauss-Seidel-Prozedur zur Lösung des 

nichtlinearen Gleichungssystems darstellt. Weiterhin haben sie den gravierenden Defekt des 

gesamten Meadows-Modells nicht erkannt, der darin besteht, dass Meadows seine Verzö-

gerungslevel mit Gleichgewichtsanfangswerten initialisiert hat, indem er die Forresterschen 

Makrofunktionen verwendet, die dieser aber zur Durchführung einer Testantwortanalyse 

entwickelt hat. Damit wären die beiden Einwände von Meadows, die seiner Meinung nach 

dazu führen, dass eine Retrodiktion „completely meaningless“ sei, ausgeräumt.  

Zugleich zeigt sich aber, dass das Weltmodell von Meadows wegen seiner gleichgewichtigen 

Anfangswerte der Smooth- und Delay3-Makrofunktionen nicht den Standards einer wissen-

schaftlich begründeten Prognose entspricht, weil es von evidentermaßen falschen faktischen 

Behauptungen ausgeht.  

                                                
 Anmerkung: Dieser Text ist nur zum persönlichen Gebrauch bestimmt. Vervielfältigungen sind nur im Rahmen des privaten und 

eigenen wissenschaftlichen Gebrauchs (§ 53 UrhG) erlaubt. Sollte der Text in Lehrveranstaltungen verwendet werden, dann sollten 

sich die Teilnehmer den Text selbst aus dem Internet herunterladen. Dieser Text darf nicht bearbeitet oder in anderer Weise verändert 

werden. Nur der Autor hat das Recht, diesen Text auch auszugsweise, anderweitig verfügbar zu machen und zu verbreiten.  

 (R03-28-06-15) 
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