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Einführung und Überblick 

Das Verfahren der Integrierten Zielverpflichtungsplanung und -kontrolle arbeitet mit deter-

ministischen Modellen und stellt somit eine deterministische Planung dar.1 Es liegt die Frage 

nahe, ob es nicht auch möglich ist, eine entsprechende stochastische Integrierte Zielverpflich-

tungsplanung zu realisieren, welche auf der Anwendung stochastischer Modelle beruht. Dies 

ist der Gegenstand des ersten Abschnittes dieses Kapitels. 

Der zweite Abschnitt dient der systematischen Einordnung einiger in der Literatur häufig ver-

wendeter Planungsbegriffe in das Planungssystem der Integrierten Zielverpflichtungsplanung. 

Es handelt sich um die in der Literatur verwendeten Begriffe „Feedbackplanung“, „rückko-

ppelnde Planung“, „Lenkung“, „Steuerung“ und „steuernde Planung“. Im Folgenden wird 

gezeigt, dass diese Begriffe im Rahmen des Begriffssystems der Integrierten Zielverpflich-

tungsplanung anwendbar sind. Sie lassen sich, wie darzulegen sein wird, als spezielle Formen 

der Bottom-Up-Planung mit einer stochastischen Integrierten Zielverpflichtungsplanung 

kennzeichnen. 

1. Verfahren einer stochastischen Integrierten Zielverpflichtungsplanung 

Deterministische Gleichungsmodelle sind Modelle, in denen für die Basisgrößen feste Prog-

nosewerte vorgegeben sind. Als Folge davon wird für jede endogene Variable unter Verwen-

dung der Modellgleichungen ein eindeutiger Prognosewert berechnet. 

Wenn deterministische Gleichungsmodelle zu Planungszwecken verwendet werden, dann 

kann im Lichte der normativen Entscheidungstheorie nur eine Entscheidungssituation unter 

Sicherheit vorliegen. Die Anwendung der normativen Entscheidungstheorie unter Sicherheit 

ist aber nur möglich, wenn ein Modell der Integrierten Zielverpflichtungsplanung Entschei-

dungsvariablen besitzt. Denn nur die alternativen Ausprägungen dieser Größen repräsentieren 

im Rahmen eines Modells der Integrierten Zielverpflichtungsplanung die Entscheidungsalter-

nativen der normativen Entscheidungstheorie.  

Wenn ein Modell der Integrierten Zielverpflichtungsplanung daher keine Entscheidungs-

variablen besitzt und damit nur eine reine Zielverpflichtungsplanung praktiziert wird, dann 

sind die Normen einer „Entscheidung unter Sicherheit“ mangels einer Optimierung bei die-

sem Planungsverfahren nicht anwendbar. Entsprechend soll in diesem Fall von einer Zielver-

pflichtungsplanung unter Sicherheit gesprochen werden. Das Attribut „Sicherheit“ resul-

tiert aus dem Umstand, dass ein deterministisches Modell verwendet wird. Von diesem Fall 

wurde bisher ausgegangen, wenn von einer „Zielverpflichtungsplanung“ die Rede war. 

Neben deterministischen gibt es aber auch stochastische Gleichungsmodelle. Ihr Aufbau 

lässt sich am besten dadurch kennzeichnen, dass von der Existenz eines deterministischen 

Gleichungsmodells ausgegangen und dieses dann „stochastisiert“, d. h. in ein stochastisches 

Modell überführt wird. Eine solche Stochastisierung besteht darin, dass eine Basisgröße, der 

bisher ein (sicherer) Prognosewert zugeordnet wurde, nunmehr nur durch eine Wahrschein-

lichkeitsverteilung beschrieben wird. Für alle von diesen Basisgrößen abhängenden endo-

genen Variablen des ehemals deterministischen Modells kann man nunmehr keinen eindeuti-

                                                
1 Siehe: Zwicker, E., Integrierte Zielverpflichtungsplanung und -kontrolle- ein Verfahren der Gesamtunter-

nehmensplanung und –kontrolle, Berlin 2008. 
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gen Wert mehr berechnen. Es ist nur möglich, ihre Wahrscheinlichkeitsverteilung zu bestim-

men. Das Modell wird durch die Einführung einer stochastischen Basisgröße sozusagen 

„stochastisch verseucht“ und damit zu einem stochastischen Modell. Ein stochastisches Glei-

chungsmodell ist daher ein Modell, dessen endogene Variablen durch Wahrscheinlich-

keitsverteilungen beschrieben werden, weil sie von stochastischen Basisgrößen abhängen. 

Die Stochastisierung eines deterministischen Modells der Integrierten Zielverpflichtungs-

planung wäre nur zulässig, wenn es eine stochastische Planungslogik einer Zielverpflich-

tungsplanung gäbe, d. h. eine Art Zielverpflichtungsplanung unter Risiko. Sie würde neben 

der bisher erörterten deterministischen zu einer stochastischen Integrierten Zielverpflichtungs-

planung führen. Die Frage, ob ein solches Verfahren möglich ist, wird im Folgenden erörtert. 

Vorerst ist aber zu klären, welche Arten von Basisgrößen in einem Modell der Integrierten 

Zielverpflichtungsplanung als stochastische Basisgrößen infrage kommen. Das dominierende 

Kennzeichen von Entscheidungsparametern und Entscheidungsvariablen besteht darin, dass 

sie von den Unternehmen voll beeinflussbar sind. In einem solchen Fall ist es geboten, die 

vorgegebenen Werte dieser voll beeinflussbaren Basisgrößen auch in dem Modell zu verwen-

den. Eine Stochastisierung würde keinen Sinn ergeben. Entsprechendes gilt für Basisziele. Sie 

sind zwar nicht vollständig beeinflussbar, aber im Rahmen der Integrierten Zielverpflich-

tungsplanung wird gerade von der Annahme ausgegangen, dass die Bereiche die ausgehan-

delte Wertgröße realisieren. Sie zu stochastisieren würde den Gedanken einer Ziel-

verpflichtung ad absurdum führen.  

Es bleiben daher nur die nicht beeinflussbaren Basisgrößen als potenzielle stochastische Ba-

sisgrößen. Welche nicht beeinflussbaren Basisgrößen kommen aber in Kosten-Leistungs-

modellen als stochastische Variable infrage? Der Mietzins, welcher für das anstehende Jahr 

durch Vertragsabschluss nicht mehr beeinflussbar ist, gehört wohl nicht dazu. Das Gleiche 

gilt für Verbrauchsmengensätze, welche aufgrund der konstruktiven Bedingungen beschrei-

ben, wie viele Teile (z. B. Reifen) für ein Hauptprodukt (z. B. Pkw) erforderlich sind. Eine 

stochastische Beschreibung dagegen könnte für den Wechselkurs einer Währung erfolgen. 

Auch könnte man annehmen, dass die Preis-Absatz-Funktion eines Artikels auf einem be-

stimmten Markt nur durch eine stochastische Gleichung der Form 



P C1 C2 N   (1) 



 NV 0,  



P Preis 



N Nachfrage  



NV Normalverteilung 

beschrieben wird. C1 und C2 würden hierbei als nicht beeinflussbare Basisgrößen fungieren.  

wäre eine stochastische Basisgröße in Form einer Normalverteilung mit dem Mittelwert 0 und 

der Standardabweichung . Es ist schwierig, weitere Beispiele für stochastische Variablen in 

Kosten-Leistungsmodellen zu finden. Dasselbe gilt für UEFI-Modelle. Hier könnte man über-

legen, ob die Zinssätze der Kapitalgeber als stochastische Basisgrößen beschrieben werden 

sollten. 
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In der Praxis werden stochastische Modelle für die Unternehmensgesamtplanung praktisch 

nicht verwendet. Diese Feststellung wurde von Eliasson aufgrund einer Untersuchung der 

Unternehmensgesamtplanung von sechzig Unternehmen getroffen.2 Wie Keen und Scott Mor-

ton feststellen, bereitet es Praktikern große Schwierigkeiten, mit dem Begriff „Wahrschein-

lichkeit“ zu arbeiten und damit auch Wahrscheinlichkeitsaussagen für das Auftreten bestimm-

ter Ereignisse vorzunehmen.3 Im Hinblick auf die praktische Anwendbarkeit besteht daher 

kein Bedarf, gegenüber der bisher beschriebenen deterministischen Integrierten Zielverpflich-

tungsplanung eine Integrierte Zielverpflichtungsplanung unter Risiko oder eine stochastische 

Integrierte Zielverpflichtungsplanung zu entwickeln. 

Im Folgenden soll aber dennoch eine Variante der stochastischen Integrierten Zielverpflich-

tungsplanung beschrieben werden. Sie soll als stochastische erwartungswertäquivalente 

Integrierte Zielverpflichtungsplanung oder kürzer als stochastische Integrierte Zielver-

pflichtungsplanung vom Typ EWÄ bezeichnet werden.  

Im Rahmen des INZPLA-Systems ist es möglich, eine deterministische Planung nach dem 

Abschluss der Planung bezüglich ihrer nicht beeinflussbaren Basisgrößen nachträglich zu 

stochastisieren. Dieses Vorgehen ist nur dann angemessen, wenn die Bedingungen zur Reali-

sierung einer stochastischen Integrierten Zielverpflichtungsplanung von Typ EWÄ vorliegen. 

INZPLA-
Modelle

ohne Entscheidungs-
variablen

mit Entscheidungs-
variablen

SKLOP-Modelle
Planungshorizont

1 Planjahr

NSKLOP-
Modelle

UEFI-Modelle
Planungshorizont

1 Planjahr

Jahresmodelle
Planungshorizont

1 Planjahr

Monatsmodelle
Planungshorizont

1 Planjahr

1 2

2.1 2.2

2.1.1 2.1.2

 

Abb. 1: Arten von INZPLA-Modellen unter Kennzeichnung ihres Planungshorizontes  

Eine stochastische Integrierte Zielverpflichtungsplanung vom Typ EWÄ soll nur für INZ-

PLA-Modellen ohne Entscheidungsvariablen beschrieben werden, sie beschränkt sich daher 

                                                
2 Eliasson, G., Business Economic Planning- Theory, Practise and Comparison, Stockholm 1976, Seite 46. 
3 Keen, P. G. W., Scott Morton, M. S., Decision Support Systems. An Organisational Perspective Reading, 

Mass. 1978, Seite 129. 
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auf SKLOP-Modelle (1 in Abb. 1). Wir gehen davon aus, dass ein Anwender ein stoch-

astisches Standard-Kosten-Leistungsmodell ohne Profitcenter (SKLOP-Modell) entwickelt 

hat.4 Dieses zeichnet sich, wie erwähnt, gegenüber seinem deterministischen Äquivalent 

dadurch aus, dass wenigstens eine seiner nicht beeinflussbaren Basisgrößen durch eine Wahr-

scheinlichkeitsverteilung beschrieben wird. Die Wahrscheinlichkeitsverteilungen dieser 

stochastischen Basisgrößen haben einen Erwartungswert. Ersetzt man in dem stochastischen 

SKLOP-Modell X die stochastischen Basisgrößen durch ihren Erwartungswert, so erhält man 

ein deterministisches Modell, welches als ÄD-Modell von X bezeichnet werden soll.5 Ein 

solches ÄD-Modell von X besitzt eine Erwartungswertäquivalenz bezüglich einer endoge-

nen Variablen E, wenn sein für E errechneter Wert mit dem Erwartungswert von E des stoch-

astischen Ausgangsmodells X übereinstimmt. 

BE BERE

stochastisches 
Ausgangsmodell X

B = BE BER = BERE

ÄD-Modell des stochasti-
schen Ausgangsmodells X

 

Abb. 2: Beispiel zur Demonstration einer BER-Erwartungswertäquivalenz  

In Abb. 2 wird beispielsweise angenommen, dass das stochastische Ausgangsmodell X eine 

einzige stochastische Basisgröße mit dem Erwartungswert BE besitzt. Als Folge davon wird 

das Betriebsergebnis, wie man im oberen Teil von Abb. 2 erkennt, durch eine Wahrschein-

lichkeitsverteilung mit dem Erwartungswert BERE beschrieben. Eine Erwartungs-

wertäquivalenz bezüglich der endogenen Variable BER liegt vor, wenn man in dem stoch-

astischen Ausgangsmodell für die stochastische Basisgröße B den feste Wert BE wählt und als 

Folge davon der Wert des Betriebsergebnisses in diesem nunmehr deterministischen Modell 

genau dem Erwartungswert BERE des stochastischen Ausgangsmodells entspricht. Das durch 

diese „Entstochastisierung“ erhaltene deterministische Modell ist das ÄD-Modell des stoch-

astischen Ausgangsmodells. Bei einer Integrierten Zielverpflichtungsplanung ohne Bereichs-

ziele ist nur die Erwartungswertäquivalenz des Betriebsergebnisses (BER-Erwartungswert-

äquivalenz) von Bedeutung. Bei einer Bereichszielplanung muss sie auch für die Bereichs-

ziele gelten. 

                                                
4 Dies ist das Standardmodell, von welchem Kilger im Rahmen seiner flexiblen Plankostenrechnung ausgeht. 

Es liegt auch dem Controllingsystem von SAP zugrunde. Im Rahmen der Integrierten Zielverpflichtungs-

planung liegt ein solches Modell immer vor, wenn es durch die Standard-Modelltableaus des Konfigurati-

onssystems der Integrierten Zielverpflichtungsplanung beschrieben werden kann. Zum Aufbau dieses Mo-

delltableausystems. siehe: Zwicker, E., Das Modelltableausystem von Kosten-Leistungsmodellen im Sys-

tem der Integrierten Zielverpflichtungsplanung, Berlin 2000. 
5 ÄD-Modell = äquivalentes deterministisches Modell. 
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Es ist zu verlangen, dass die Erwartungswertäquivalenz bezüglich aller möglichen Basisziel-

kombinationen der Referenzvariablen, d. h. dem Betriebsergebnis oder auch der Bereichszie-

le, gilt. Ist dies der Fall, liegt eine generelle Erwartungswertäquivalenz bezüglich der Refe-

renzvariablen vor. 

Wenn bei einer Integrierten Zielverpflichtungsplanung ohne Bereichsziele eine generelle 

BER-Erwartungswertäquivalenz vorliegt, dann kann eine stochastische Integrierte Zielver-

pflichtungsplanung vom Typ EWÄ in folgender Weise betrieben werden: 

1. Ersetze die nicht beeinflussbaren stochastischen Basisgrößen des Ausgangsmodells X 

durch ihre Erwartungswerte. 

2. Mit dem auf diese Weise gewonnenen deterministischen Modell (ÄD-Modell von X) wird 

die (bisher allein beschriebene deterministische) Integrierte Zielverpflichtungsplanung (in 

Form der Planungstriade) praktiziert. 

3. Nach dem Abschluss der Jahresplanung kann das deterministische Modell mit seinen Plan-

end-Basisgrößen in ein stochastisches umgewandelt werden, indem die stochastischen 

nicht beeinflussbaren Basisgrößen wieder gelten sollen. Von diesem stochastischen Pla-

nend-Jahresmodell kann die Wahrscheinlichkeitsverteilung des Betriebsergebnisses durch 

eine Monte-Carlo-Simulation ermittelt werden.6 Die Wahrscheinlichkeitsverteilung des 

Betriebsergebnisses gibt dem Benutzer über den Erwartungswert hinausgehende weitere 

Informationen über die Realisierungswahrscheinlichkeit des Betriebsergebnisses. 

Die unterjährige Planung wird wie im deterministischen Fall betrieben. Nach ihrem Abschluss 

kann das verwendete Monatsmodell in entsprechender Weise stochastisiert werden. Ent-

sprechendes gilt für die Bereichszielplanung. 

Eine Voraussetzung für eine stochastische Integrierte Zielverpflichtungsplanung des Typs 

EWÄ ist, dass eine generelle BER-Erwartungswertäquivalenz vorliegt. Wie stellt man diese 

aber fest? Im Rahmen des INZPLA-Systems wird ein Verfahren praktiziert, bei welchem eine 

solche Feststellung auf experimentellem Wege erfolgt. 

Die ersten zwei beschriebenen Schritte einer stochastischen Integrierten Zielverpflichtungs-

planung vom Typ EWÄ werden praktiziert, ohne die Voraussetzung einer generellen BER-

Erwartungswertäquivalenz zu überprüfen. Vor Beginn des dritten Schrittes wird eine Monte-

Carlo-Simulation mit steigender Stichprobenzahl praktiziert. Konvergiert der Erwartungswert 

der Schätzverteilung des Betriebsergebnisses gegen den deterministischen Planendwert, dann 

soll das Verfahren akzeptiert werden.7, 8 

                                                
6 Genau genommen handelt es sich um eine Schätzfunktion der Wahrscheinlichkeitsverteilung. 
7 Der Schluss, dass eine Konvergenz vorliegt, beruht bei solchen Monte-Carlo-Simulationen auf einer sub-

jektiven Beurteilung des Anwenders. Es ist daher kein zwingender Schluss möglich, ob eine solche Erwar-

tungswertäquivalenz vorliegt. Der Benutzer hat aber die Möglichkeit, mit Hilfe des vorhandenen Com-

puteralgebrasystems die reduzierte Gleichung des Betriebsergebnisses zu berechnen, in welcher nur die 

stochastischen Basisgrößen symbolische Variable des Erklärungsteiles bilden. Anhand dieser reduzierten 

Gleichung und einschlägiger Theoreme der Stochastik kann der Benutzer u. U. zu dem zwingenden Schluss 

kommen, daß eine BER-Erwartungswertäquivalenz vorliegt. Siehe zu einem solchen Vorgehen Zwicker, 

E., Simulation und Analyse dynamischer Systeme in den Wirtschafts- und Sozialwissenschaften, Berlin 

1981, Seite 380. 
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Damit ist eine stochastische Integrierte Zielverpflichtungsplanung für SKLOP-Modelle mit 

Erwartungswertäquivalenz beschrieben. Im Prinzip ist dieses Verfahren auch für NSKLOP-

Modelle (2 in Abb. 1), d. h. Modelle mit Entscheidungsvariablen, möglich. Hier müsste die 

generelle BER-Erwartungswertäquivalenz nicht nur bezüglich der möglichen Basisziel-

kombinationen, sondern auch bezüglich der möglichen Wertekombinationen der Basisziele 

und Entscheidungsvariablen gelten. 

2. Feedbackplanung, rückkoppelnde Planung, steuernde Planung sowie 

Lenkung und Steuerung im Lichte einer stochastischen Integrierten Ziel-

verpflichtungsplanung 

Im zweiten Abschnitt dieses Kapitels sollen, wie beschrieben, bestimmte Planungsbegriffe, 

die in der Literatur Erwähnung finden, daraufhin überprüft werden, ob sie in das Begriffssys-

tem der Integrierten Zielverpflichtungsplanung eingeordnet werden können. Es handelt sich, 

wie erwähnt, um die Begriffe „Feedbackplanung“, „rückkoppelnde Planung“, „Lenkung“, 

„Steuerung“ und „steuernde Planung“.9 Diese Begriffe müssen entweder eine Art der Zielver-

pflichtungs- oder Optimierungsplanung kennzeichnen, um im System der Integrierten Ziel-

verpflichtungsplanung anwendbar zu sein.  

Wie gezeigt werden wird, kennzeichnen sie besondere Formen einer Optimierungsplanung, 

die im Rahmen einer stochastischen Integrierten Zielverpflichtungsplanung auftreten können. 

Es handelt sich um Formen einer optimierenden Bottom-Up-Planung mit einem stochasti-

schen NSKLOP-Monatsmodell (2.1.2 in Abb. 1). Die Begriffe treten daher in einer Form der 

stochastischen Integrierten Zielverpflichtungsplanung auf, welche bisher nicht beschrieben 

wurde. Hier kennzeichnen sie eine unterjährige Bottom-Up-Planung. Bei der unterjährigen 

Bottom-Up-Planung einer stochastischen Integrierten Zielverpflichtungsplanung wird, wie im 

deterministischen Fall, das Monatsmodell über den Planungshorizont von zwölf Monaten 

optimiert. Im deterministischen Fall ist die Summe aller monatlichen Betriebsergebnisse 

(BERt) zu maximieren. Im stochastischen Fall soll immer der Erwartungswert der aufsum-

mierten monatlichen Betriebsergebnisse maximiert werden.10 

Abb. 3 zeigt das Beispiel eines NSKLOP-Monatsmodells. Es ist stochastisch, weil die Varia-

blen Xt, BERt und Bt von der stochastischen Basisgröße t beeinflusst werden. Das mehrper-

iodige Modell ist dynamisch, weil zwischen den Perioden über die Variable Bt verzögerte Be-

ziehungen auftreten, denn die Variable Bt hängt auch von ihrem Wert der Vorperiode Bt-1 ab. 

Solche verzögernden Beziehungen laufen fast immer über Bestandsgrößen. In einem 

NSKLOP-Modell können solche Bestandsgrößen durch die Lagerbestände beschrieben wer-

                                                                                                                                                   
8 Es wird nur eine BER-Äquivalenz bezüglich der Planendwertebasisziele geprüft. Diese Einschränkung ist 

kein „sauberes“ Vorgehen. Denn es ist nicht gesichert, daß die während der Planung verwendeten sonstigen 

Basiszielkombinationen zu einer BER-Äquivalenz führen. 
9 Die so genannte „Regelkreisplanung“, welche eine definitorische Nähe zu einigen dieser Planungsbegriffe 

besitzt, wird in einer Betrachtung zur kybernetischen Planung beschrieben, siehe: Zwicker, E., Integrierte 

Zielverpflichtungsplanung und kybernetische Planung, Berlin 2002. 
10 Es wären auch andere Zielfunktionen denkbar, welche weitere Parameter der Wahrscheinlichkeitsver-

teilung von BER berücksichtigen. 
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den.11 Als Zielgröße der optimierenden Planung soll wie erwähnt die Summe der Erwartungs-

werte aller monatlichen Betriebsergebnisse (BERS) verwendet werden, d. h. 



BERS  EW BERt
t1

12











.

  (2) 

 

B0

At  Aktionsvariable

Bt

BERt  (Betriebsergebnis)

t

Xt

stochastische Basisgröße

1 2 12

...
Monate

...

 

Abb. 3: Beispiel einer dynamischen stochastischen Optimierung  

Die sich ergebende stochastisch dynamische Optimierung zeichnet sich dadurch aus, dass 

die Wahl einer Aktionsvariablen im Monat t* die Werte der monatlichen Betriebsergebnisse 

in den Folgemonaten t = t*+1, t*+2...beeinflusst. Die Optimierung kann daher nicht separat 

Periode für Periode vorgenommen werden. Vielmehr sind sämtliche Monatswerte der Akti-

onsvariablen als Variablen einer Optimierung zu bestimmen. Diese Feststellung gilt auch für 

eine entsprechende deterministische Planung.  

Bei einer stochastisch dynamischen Planung wird der Alternativenbereich durch eine Form 

der Entscheidungsalternativen beschrieben, die sich von der Beschreibung der Alternativen 

der Optimierungen eines deterministischen Modells mit Entscheidungsvariablen wesentlich 

unterscheidet, d. h. den Fällen 2.1.1 und 2.2 in Abb. 1. Ein stochastisches dynamisches Mo-

dell besitzt Optimierungsalternativen, die in Form von Entscheidungsvorschriften beschrieben 

werden müssen, welche besagen, unter welchen Umständen welcher Zahlenwert für die Ent-

scheidungsvariablen zu wählen ist. Der Alternativenbereich einer deterministischen Optimie-

rung wird dagegen durch Zahlenwerte der Entscheidungsvariablen beschrieben. Das Erfor-

dernis, eine Entscheidungsvorschrift als Alternative einer stochastisch dynamischen Optimie-

rung verwenden zu müssen, soll anhand eines einfachen Beispiels demonstriert werden. 

                                                
11 Es handelt sich dann um NSKLOP-Modell mit einer Lagerdurchflussmodellierung. 
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Periode: 0 1 2 3

0

0

0

0

0

0

0

0

10

12

12

1200

 

Abb. 4: Beispiel eines Modells zur Kostenminimierung  

Abb. 4 zeigt ein Netzwerk, dessen Knoten bestimmte Zustände eines Systems repräsentie-

ren.12 Die senkrechten, unterbrochenen Linien umfassen dabei jeweils die Knoten der mög-

lichen Zustände in einer bestimmten Periode. Durch eine Entscheidung geht man von einem 

Zustand (Knoten) zu einem der in der nächsten Periode gelegenen Zustände über. Die Zu-

stände (Knoten), zwischen denen Übergänge möglich sind, sind durch Richtungspfeile mit-

einander verbunden. In jedem Zustand (Knoten) hat man die Möglichkeit, zwei alternative 

Entscheidungen A oder B vorzunehmen. Durch eine Entscheidung A kann sowohl der Zu-

stand realisiert werden, zu dem der nach oben als auch nach unten weisende Richtungspfeil 

hinführt. 

Die Wahrscheinlichkeit, mit der die Entscheidung A zu dem durch den oberen Richtungspfeil 

gekennzeichneten Zustand führt, sei ¾, während der Zustand, zu dem der nach unten weisen-

de Pfeil führt, mit einer Wahrscheinlichkeit von ¼ realisiert wird. Durch eine Entscheidung B 

können ebenfalls beide Zustände realisiert werden, wobei die Wahrscheinlichkeit der Reali-

sierung des oberen Zustandes ¼ und des unteren Zustandes ¾ beträgt. 

Mit dem Übergang von einem Zustand zu einem anderen sind Kosten verbunden, deren Be-

träge auf den zu den Zuständen führenden Richtungspfeilen eingetragen sind. Die Zielgröße Z 

ist damit 



Z  K t 
t 0

3

   (3) 

                                                
12 Vgl. zu diesem Beispiel Dreyfus, S. E., Introduction to Stochastic Optimization and Control, in: Optimi-

zation and Control, Karreman, H. F. (Hrsg.), New York 1968, Seite 3 ff. 
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K(t) beschreibt die in der t-ten Periode auftretenden Kosten. Das Entscheidungsproblem be-

steht in der Ermittlung der Alternative R
*
, die den Erwartungswert von Z minimiert. 

Es stellt sich nunmehr die Frage nach der konkreten Gestalt der Alternativen R1, R2,  unter 

denen sich auch das optimale R
*
 befindet. Die Aktionsvariable besitzt in jeder Periode zwei 

Ausprägungen A und B. Der Planungszeitraum umfasst drei Perioden. In Periode 0 besitzt die 

Zustandsvariable eine Ausprägung Z(0). Dagegen weist die Zustandsvariable in der 1. Periode 

zwei Zu(1), Zo(1) und in der 2. Periode drei Ausprägungen Zu(2), Zm(2), Zo(2) auf.13 Jede Al-

ternative Ri umfasst damit eine Vorschrift, welche Entscheidung (A oder B) zu wählen ist, 

falls eine bestimmte Realisation der Zustandsvariablen in einer Periode auftritt. Eine Alter-

native wird beispielsweise durch folgende bedingte Forderungen oder Entscheidungsvor-

schrift ausgedrückt: 

 Wähle A 

 Wenn Zu(1) dann wähle A 

 Wenn Zo(1) dann wähle B 

 Wenn Zu(2) dann wähle A 

 Wenn Zm(2) dann wähle A 

 Wenn Zo(2) dann wähle B 

Diese Alternative lässt sich durch den Vektor 



A,A,B,A,A,B  kennzeichnen. Alternativen, 

die sich wie in diesem Fall in Gestalt bedingter Forderungen ausdrücken lassen, sollen als 

Entscheidungsvorschriften bezeichnet werden. 

Insgesamt stehen 64 Entscheidungsvorschriften zur Beeinflussung des Systems zur Verfü-

gung. Jede Praktizierung dieser Entscheidungsvorschriften hat einen bestimmten Erwar-

tungswert zur Folge.  



EAABAAB 
3

4

1

4

1

4
10

3

4

1

4

3

4
10

3

4

3

4

3

4
1210

3

4

3

4

1

4
10

     SSS           SSF          SSF               SSF


1

4

1

4

1

4
12

1

4

3

4

3

4
1200

1

4

3

4

1

4
0

1

4

1

4

3

4
12  683,25

    SSS           SSF              SSF         SSF

 (4) 

Der Prozess der Kostenentstehung kann insgesamt acht verschiedene Verlaufsformen anneh-

men. Bezeichnet man mit dem Symbol S, dass der Prozess in Abb. 4 einen steigenden und mit 

dem Symbol F einen fallenden Pfad realisiert, so ergeben sich die acht Verlaufsformen SSS, 

SSF, SFS, SFF, FFF, FSF, FFS, FSS. Jede dieser Verlaufsformen kann mit einer bestimmten 

Wahrscheinlichkeit bei jeder praktizierten Entscheidungsvorschrift realisiert werden. Der Er-

                                                
13 Die Indizes u, m, o kennzeichnen die Lage des Knotens in der betreffenden in Klammern angegebenen 

Periode. Es bedeuten: u: unten, m: in der Mitte, o: oben, d. h. z. B. Zm(2): mittlerer Knoten in Periode 2. 
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wartungswert der Kosten einer bestimmten Entscheidungsvorschrift berechnet sich aus der 

Summe aller Wahrscheinlichkeiten einer Verlaufsform multipliziert mit den jeweiligen Kos-

ten, die bei dieser Verlaufsform realisiert werden. Die Strategie 



A,A,B,A,A,B  liefert bei-

spielsweise den Erwartungswert 

In analoger Weise können sämtliche Entscheidungsvorschriften ermittelt werden. Abb. 5 zeigt 

die Erwartungswerte der durch verschiedene Entscheidungsvorschriften bewirkten Wahr-

scheinlichkeitsverteilungen von Z. 

Mittelwert Durch die folgenden Entscheidungsvorschriften 

(Alternativen) bewirkt 

Mittelwert Durch die folgenden Entscheidungsvorschriften 

(Alternativen) bewirkt 

345,75 { A,A,A,A,A,B } (1), { A,A,A,A,A,A } (2), 

{ A,A,A,B,A,B } (3), { A,A,A,B,A,A } (4), 

567,25 { B,A,A,A,A,B } (33), { B,A,A,A,A,A } (34), 

{ B,A,A,B,A,B } (35), { B,A,A,B,A,A } (36), 

120,75 { A,A,A,A,B,A } (5) { A,A,A,A,B,B } (6), 

{ A,A,A,B,B,A } (7), { A,A,A,B,B,B } (8), 

192,25 { B,A,A,A,B,A } (37), { B,A,A,A,B,B } (38), 

{ B,A,A,B,B,A } (39), { B,A,A,B,B,B } (40), 

683,25 { A,A,B,A,A,B } (9), { A,A,B,A,A,A } (10), 

{ A,A,B,B,A,B } (11), { A,A,B,B,A,A } (12), 

679,75 { B,A,B,A,A,B } (41), { B,A,B,A,A,A } (42), 

{ B,A,B,B,A,B } (43), { B,A,B,B,A,A } (44), 

233,25 { A,A,B,A,B,A } (13), { A,A,B,A,B,B } (14), 

{ A,A,B,B,B,A } (15), { A,A,B,B,B,B } (16), 

229,75 { B,A,B,A,B,A } (45), { B,A,B,A,B,B } (46), 

{ B,A,B,B,B,A } (47), { B,A,B,B,B,B } (48), 

234,75 { A,B,A,A,A,B } (17), { A,B,A,A,A,A } (18), 

{ A,B,A,B,A,B } (19), { A,B,A,B,A,A } (20), 

234,25 { B,B,A,A,A,B } (49), { B,B,A,A,A,A } (50), 

{ B,B,A,B,A,B } (51), { B,B,A,B,A,A } (52), 

84,75 { A,B,A,A,B,A } (21), { A,B,A,A,B,B } (22), 

{ A,B,A,B,B,A } (23), { A,B,A,B,B,B } (24), 

84,25 { B,B,A,A,B,A } (53), { B,B,A,A,B,B } (54), 

{ B,B,A,B,B,A } (55), { B,B,A,B,B,B } (56), 

572,25 { A,B,B,A,A,B } (25), { A,B,B,A,A,A } (26), 

{ A,B,B,B,A,B } (27), { A,B,B,B,A,A } (28), 

346,75 { B,B,B,A,A,B } (57), { B,B,B,A,A,A } (58), 

{ B,B,B,B,A,B } (59), { B,B,B,B,A,A } (60), 

197,25 { A,B,B,A,B,A } (29), { A,B,B,A,B,B } (30), 

{ A,B,B,B,B,A } (31), { A,B,B,B,B,B } (32), 

121,75 { B,B,B,A,B,A } (61), { B,B,B,A,B,B } (62), 

{ B,B,B,B,B,A } (63), { B,B,B,B,B,B } (64), 

Abb. 5: Zusammenstellung der Alternativen (Entscheidungsvorschriften) im Falle des 

Kostenmodells  

Die den Erwartungswert minimierenden Entscheidungsvorschriften sind die in Abb. 5 mit den 

Nummern 53 bis 56 gekennzeichneten Vorschriften. 

Für die weitere Betrachtung sollen zwei Formen einer Entscheidungsvorschrift unterschieden 

werden. Entscheidungsvorschriften lassen sich in echte und unechte unterscheiden. Eine 

Entscheidungsvorschrift soll als echt bezeichnet werden, wenn sie sich nicht als eine Menge 

unbedingter Forderungen formulieren lässt. Das ist immer dann der Fall, wenn es mindestens 

eine Aktionsvariable gibt, für welche die Wahl der Ausprägungen von der Ausprägung einer 

Zustandsvariablen abhängt. 

Die Entscheidungsvorschrift 



A,B,A,B,B,A  ist im angeführten Beispiel eine echte Entschei-

dungsvorschrift, weil in Periode 2 bei Realisierung des Knotens Zu(2) eine andere Ausprä-

gung der Aktionsvariable (B) zu wählen ist, als bei der Realisierung von Zo(2), die die Akti-

onsvariable A erfordert. Alle Alternativen des Beispiels mit Ausnahme der Nummern 2, 8, 26, 

32, 40, 58, und 64 sind daher echte Entscheidungsvorschriften. 

Von einer unechten Entscheidungsvorschrift soll dagegen gesprochen werden, wenn eine Ent-

scheidungsvorschrift als eine Menge unbedingter Forderungen formuliert werden kann, d. h. 

die Wahl der Aktionsvariablen nicht von den Realisationen der Zustandsvariablen abhängt 

und daher auch vor Beginn des Planungszeitraums bestimmt werden kann. Die Alternative 



A,B,B,A,A,A  ist beispielsweise eine unechte Entscheidungsvorschrift, da immer B in Peri-

ode 1 und A in Periode 2 unabhängig von dem realisierten Knotenpunkt zu wählen ist. Unech-
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te Entscheidungsvorschriften sind damit in dem behandelten Beispiel die bereits erwähnten 

Alternativen 2, 8, 26, 32, 34, 40, 58, und 64. 

Überträgt man die Betrachtungen auf das Beispiel in Abb. 3, dann wird die Realisationen der 

Zustandsvariable durch die Werte des Lagerbestandes der Vorperiode gekennzeichnet. Eine 

echte Entscheidungsvorschrift der Aktionsvariablen A besitzt die Form 



At  ft Bt1   (5) 

Eine unechte Entscheidungsvorschrift führt dazu, dass für jeden Monat t At einen bestimmten 

Wert besitzt. Die Anwendung einer echten optimalen Entscheidungsvorschrift für At kann 

durch Abb. 6 beschrieben werden. 

System

At = f*[Bt-1]

At Bt

stochastische Variable

 

Abb. 6: Schema einer stochastisch dynamischen Planung mit einer echten optimierenden 

Entscheidungsvorschrift  

Man erkennt, dass zur Bestimmung der zu realisierenden Aktionsvariablen At ein „Feedback“ 

oder eine rückkoppelnde Information erforderlich ist. Man kann eine solche Planung daher als 

eine optimale Feedbackplanung oder optimale rückkoppelnde Planung bezeichnen. 

Auch ist der Begriff einer optimalen strategischen Planung für eine solche Planungsform 

anwendbar. Der Begriff einer strategischen Planung wird allerdings oft auch in einem anderen 

Sinne verwendet. In der Betriebswirtschaftslehre wird sie als Planung „zur Sicherung beste-

hender und/oder zur Erschließung neuer Erfolgspotenziale” angesehen.14 Das ist eine Defi-

nition, die es nicht erlaubt, sie als Form einer stochastisch dynamischen Planung einzuordnen. 

Strategische Planung wird hier in einem anderen Sinne gebraucht. Es soll darunter eine Pla-

nung verstanden werden, welche die Maßnahmen benennt, die bei dem Eintritt bestimmter 

(nicht beeinflussbarer) Ereignisse zu ergreifen sind. In diesem Sinne ist eine strategische Pla-

nung eine Planung mit Entscheidungsvorschriften, wie in Abb. 6 an einem Beispiel demon-

striert wurde. Der Begriff der Lenkung wird teilweise im selben Sinne verwendet. 

Die erwähnten Planungsbegriffe lassen bei dieser Definition auch die Verwendung des Attri-

butes „optimal“ zu. Man kann daher von einer optimalen Feedbackplanung, rückkoppeln-

                                                
14 Zahn, E., Stichwort: Strategische Planung. In: Handwörterbuch der Planung, Hrsg. Szyperski, N., Stuttgart 

1989, Seite 1903. 
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den Planung, strategischen Planung und Lenkung sprechen. Damit lassen sich diese Be-

griffe als eine besondere Form einer optimierenden Planung kennzeichnen. 

Werden nur unechte Entscheidungsvorschriften realisiert, so können die Werte der Aktions-

variablen schon am Anfang der Planungsperiode bestimmt werden. Ein Feedback ist nicht 

erforderlich. 

System

A1

At Bt

stochastische Variable

...
A2

At

 

Abb. 7: Schema einer stochastisch dynamischen Planung mit unechten Entscheidungsvor-

schriften  

Eine solche Planung kann aber auch als Steuerung oder als steuernde Planung bezeichnet 

werden. Auch sie führt zu einer optimalen steuernden Planung (oder Steuerung). Bei dieser 

Optimierung werden aber nur sämtliche möglichen unechten Entscheidungsvorschriften als 

Alternativen betrachtet. 

Die Begriffe einer optimalen steuernden oder optimalen Feedbackplanung basiert daher auf 

einer unterschiedlichen Alternativenmenge, aus welcher eine Alternative gewählt wird, die 

das Optimum dieser optimierenden Planung bildet.  

Zur Durchführung einer optimalen Feedbackplanung bilden sämtliche echten und unechten 

Entscheidungsvorschriften den Alternativenbereich. Im Beispiel des Kostenmodells ergeben 

sich vier optimale echte Entscheidungsvorschriften 



B,B,A,A,B,A ,



B,B,A,A,B,B , 



B,B,A,B,B,A  und 



B,B,A,B,B,B  mit einem Erwartungswert von 84,25. Im Falle einer 

optimalen Steuerung ist die unechte Entscheidungsvorschrift 



A,A,A,B,B,B  mit 120,75 der 

optimale Wert. Eine optimale Feedbackplanung ist nach dem Postulat der maximalen Alter-

nativenausschöpfung immer einer optimalen steuernden Planung vorzuziehen, weil sie einen 

größeren Alternativenbereich umfasst und damit zu besseren Ergebnissen führen kann, was in 

dem Beispiel auch der Fall ist. 

Es zeigt sich somit, dass die angeführten Begriffe als Verfahren einer optimierenden stochas-

tisch dynamischen Planung im Rahmen des beschriebenen Systems einer Optimierungs- und 

Zielverpflichtungsplanung expliziert werden können. 

Die Begriffe „Feedbackplanung“ oder auch „rückgekoppelten Planung“ werden in der Litera-

tur auch im Zusammenhang mit den Begriffen einer kybernetischen Planung und Regel-
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kreisplanung verwendet. Ihr Gebrauch läuft darauf hinaus, dass ein Planer „irgendwie“ die 

Ergebnisse der Vorperiode als Grundlage für die Planung einer anstehenden Planperiode ver-

wendet Die Beschreibung einer solchen kybernetischen Planung erfolgt nicht auf der Grund-

lage eines Modells, sondern allein verbal. Solche nicht modellbasierten Begriffsbildungen zur 

verbalen Beschreibung von Prozessen mögen fruchtbar sein oder nicht. In dem vorliegenden 

Zusammenhang werden diese Begriffe aber nur modellbasiert definiert. Erst auf dieser Grund-

lage ist es möglich, solche Planungen eine präzise Fassung zu geben und damit auch ein Ur-

teil darüber abzugeben, ob sie als „optimal“ oder „suboptimal“ bezeichnet werden können. 
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