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3. System Dynamics - ein Modellierungs-
konzept dynamischer Systeme

System Dynamics ist eine Modellierungskonzeption dynamischer Systeme,
die von Jay W. FORRESTER am Massachussets Institute of Technology in
Cambrigde (M.1.T.) entwickelt wurde.

Das System-Dynamics-Konzept geht von einer bestimmten Interpretations-
weise dynamischer Systeme aus. Hiernach k&nnen technische und soziale
Systeme stets durch bestimmte zeitverdnderliche BestandsgrdBen (Level)
und deren verzdgert beeinfluBte Zu- und Abginge (Rates) beschrieben
werden.

Die ebenfalls am M.1.T. entwickelte Programmiersprache DYNAMO ist
dieser Interpretationsweise angepaBt und liefert die sprachlichen
Kategorien zu einer einfachen und computeraddquaten Formulierung von
System~Dynamics-Modellen. [163]

FORRESTER und seine Schiiler haben unter Anwendung des System-Dynamics-
Konzeptes eine Reihe von Modellen betrieblicher,ustédtebaulicher, bio-
logischer und militdrischer Zusammenhinge entwickelt. [561,[78],[133]
[1611,01961,[219]

Berichte lberdie Entwicklung neuer Modelle und Verfahren erscheinen

in dem von FORRESTER j&hrlich herausgegebenen System-Dynamics News-
letter. [198]

Die Zeitschrift 'Dynamica, System Dynamics and Socio-Economic Systems'
ist ausschlieBlich diesem Modellierungskonzept gewidmet. [142]

Bekannt wurde das System-Dynamics-Konzept in jlingster Zeit durch die
von FORRESTER und MEADOWS entwickelten Skologischen Entwicklungsmodel-
le der Welt. Diese im System-Dynamics-Konzept formulierten 'Weltmodel-
le' haben insbesondere auBerhalb der Fachwelt wegen ihrer pessimisti-
schen Prognosen groBes Aufsehen erregt. [57], [135]

Da System Dynamics heute in sehr starkem Umfang zur Modellierung so-
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zio-dkonomischer Systeme verwendet wird, soll es im folgenden ausfihr-

lich erdrtert und auch kritisch analysiert werden.

Mit Hilfe eines sukzessiv erweiterten Modells werden die Grundelemen-
te einer System-Dynamics-Modellierung eingeflihrt und unter Verwendung
der Simulationssprache DYNAMO simuiierfdhig formuliert. Dieser ersten
Prdzisierung der Konzeption schiieBt sich die Erdrterung bestimmter
konzeptioneller Forderungen sowohl zur Gewinnung und Interpretation
von System-Dynamics-Modellen als auch zur Bestimmung ihrer Modell-
grenzen an. Mit demrfolgenden Abschnitt lber die Sensitivitdts- und
Retrodiktionsanalyse von System-Dynamics-Modellen werden die wich-
tigsten Methoden der Implikationenaufdeckung einschlieBlich ihrer
technischen Realisierung eingehend erdrtert.

Danach beginnt eine kritische Diskussion der konzeptionellen Pra-
.missen des System-Dynamics-Ansatzes, die zu dem Entwurf einer als

FOLR-Modellierung bezeichneten alternativen Modellierungskonzeption
fiihrt.

3.1. Aufbau und Wirkungsweise der Modellelemente
3.1.1. Levelvariablen

Die zentralen Elemente eines im:-System-Dynamics-Konzept entwickelten
Modells bilden die sogenannten Level. Prinzipiell kann jedes als Be-
standsgrtBe interpretierbare Phdnomen.als Level angesehen werden,
wie zum Beispiel Auftrags- oder Kapitalbestdnde, Bestd@nde an Wohnun-
gen oder Geldvermdgen.

Jeder Level erfdhrt in gleichen Zeitabstd@nden einen Zu=- und AbfluB.
Die damit bewirkte zeitliche Entwicklung wird durch die folgende Le-

velgleichung dargestellt:

L(t) = L{t-1) + Z(t-1,t) - A(t-1,t) (31.1)

Hierbei beschreibt Z(t-1,t) die dem Level wdhrend der t-1-ten Periode
zugeflossenen und A(t-1,t) die in derselben Periode den Level verlas-

senden Mengeneinheiten. in Gleichung (31.1) wird eine Formulierung ver-
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wendet, die nicht genau der DYNAMO-Sprache entspricht. Dort werden
die laufenden Zeitindizes mit den GroBbuchstaben J, K und L bezeich-
net, wobei J=t-1, K=t und L=t+1 zu setzen ist, Die Formulierung der
LeQelgleichung (31.1) in der von DYNAMO geforderten Schreibweise er-
gibt:

L L.K=L.J+DT*(Z.JK-A.JK) (31.2)

Der Buchstabe L vor der Levelgleichung dient der Identifizierung die-
ses Gleichungstyps durch den DYNAMO-Compiler. Befremdlicher wirkt die
GréBe DT, mit der die Zu- und Abgdnge Z.JK und A.JK zu multiplizieren
sind. Zur ersﬁen Darstellung der Konzeption wollen wir vorldufig da-

von ausgehen, daB das sogenannte Zeitinkrement DT immer gleich Eins

sein soll. Diese Einschrankung beeinfluBt nicht das Verstdndnis der
Konzeption, abstrahiert jedoﬁh vorldufig von einer schwer verstdnd-
lichen Eigenschaft dieser Konzeption. Die bisherige Beschreibung ei-
ner Levelgleichung 14Bt erkennen, daB es sich um einfache Definitions-
gleichungen .von BestandsgréBeh handelt.

Nach FORRESTER 1388t sich jedes reale System als ein System von Le-
veln interpretieren, deren Zu- und Abfllisse von eben diesen Leveln
verzbgert beeinfluBt Werden. Folgende mechanistische Anaiogie dient
‘zur Veranschaulichung dieser Weltsicht:

Man kann sich vorstellen,. daB jeder Level durch einen Wasserbehdlter
dargestellt wird, der einen Zu- und AbfluB aufweist. Die sogenannte
LevelhShe wird hierbei durch die HShe des Wasserstandes in dem be-
treffenden Behdlter gekennzeichnet. In diskreten Zeitabstdnden er-
féhrt der Wasserbehdlter einen bestimmten Zu- und Abflufl, dessen Be-
trag durch die bereits in der Vergangenheit realisierten Wasserstands-
hohen (LevelhBhen) bestimmter Wasserbeh#lter (Level) bestimmt wird.
Der dynamische Effekt eines derartigen Systems resultiert damit aus
der Tatsache, daB ein bestimmter Level im Zeitpunkt t von den verzot-
gerten Levelhthen seines eigenen und auch anderer Level beeinfluBt
wird. Abbildung 31.1 zeigt eine graphische Darstellung des grunds&dtz-

lichen Aufbaus eines im System-Dynamics-Konzept beschriebenen Systems.
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Abb, 31.1 Zusammenhang zwischen Leveln und FluBraten in einem System-
Dynamics-Modell

In dieser von FORRESTER eingefiihrten Diagrammtechnik werden die Level
durch ein Rechteck und die FluBraten durch ein Ventilsymbol reprédsen-
tiert. Die FluBraten steuern die durch Pfeile gekennzeichneten mate-
riellen Zu- und Abfilisse der Level. Der Betrag einer FluBrate dage-
gen wird durch die Level bestimmt, von denen unterbrochene EinfluB3-

pfeile zum Ratensymbol fihren.

3.1.2. FluBraten und Hilfsvariablen

Mit der Spezifizierung der in die Levelgleichungen eingehenden Zu-

und AbfluBraten durch sogenannte Ratengleichungen ist man in der La-

ge, ein einfaches System-Dynamics-Modell zu entwickeln. Die Raten-
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gleichungen représentieren stets bestimmte empirische Hypothesen.
Denn es handelt sich um zeitinvariante Behauptungen, in welcher Wei-
se bestimmte Bestdnde eine Anderung erfahren.

Abbildung 31.2 zeigt das Diagramm eines System-Dynamics-Modells, wel-

ches aus einem Level besteht.
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Abb. 31.2 Diagrammm eines aus einem Level bestehenden System-Dynamics-
Modells

Das Diagramm bedarf einer kurzen Erléuteruhg. Der den LevelzufliuB be-
schreibende Pfeil entspringt einem wolkenartigen Gebilde, welches man
als Quelle bezeichnet, wdhrend das gleiche Gebilde, in welches der Le-
velabfluB flhrt, Senke genannt wird. Durch diese Symbole wird zum Aus-

druck gebracht, daB die Weiterverfolgung der Zu- und Abfllisse nicht
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mehr Gegenstand der beabsichtigten Modellierung sein soll. Die mit A
und B bezeichneten Symbole reprdsentieren bestimmte Konstanten.

Als Beispiel sei ein einfaches System-Dynamics-Modell mit einer Zu-
fluBrate ZUF und einer AbfluBrate ABF angefiihrt.

Die Levelgleichung lautet:
L LEV.K=LEV.J+DT*(ZUF.JK-ABF.JK) (31.3)

Es wiirde nahe liegen, die FluBraten ZUF und ABF mit den Zeitindizes JK
zu definieren, denn diese Zeitindizierung tritt auch in der rechten
Seite der Levelgleichung (31.3) auf. Die DYNAMO-Sprache verlangt je-
doch eine zeitliche Verschiebung der zeitinvarianten Ratengleichung
um eine Periode, wodurch der empirische Gehalt der Hypothese nicht
verandert wird. Die Ratengleichungen, die in der DYNAMO-Sprache durch
ein R gekennzeichnet werden, bestimmen sich damit durch:

R ZUF.KL=A%¥LEV.K
R ABF.KL=B*LEV.K

Die Konstanten A und B werden in einer speziellen, durch ein 'C' cha-

rakterisierten Konstantengleichung

C A=0.94/B=0.975

definiert.

Es ist einsichtig, daB jeder Level als eine BestandsgrdBe auch einen
Anfangswert besitzen muB, der den Bestand in der Anfangsperiode angibt.
Bei einem unterstellten Anfangswert von 100 Einheiten wird diese In-

formation durch die Anfangswertgleichung

N LEV=100

ausgedriickt. Das angeflihrte Modell ist damit vollstdndig beschrieben.
Fir seine Simulation sind allein noch drei weitere Anweisungen erfor-
derlich.

SPEC DT=1/PLTPER=1/PRTPER=1/LENGTE=50
PLOT LEV=L(0,100)/2UF=2(0,200)/ABF=A(0,150)
PRINT LEV,ZUF,ABF
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Die Spezifikationsanweisung (SPEC) schreibt vor, daB (verabredungsge-

m&B) DT=1 gewshlt werden soll. PLTPER=1 fordert den Ausdruck eines Hi-
stogrammes filir die in der Plot-Anweisung angeflihrten Variablen LEV,
ZUF und ABF; PRTPER=1 entsprechend den Ausdruck der numerischen Werte
der in der Print-Anweisung angeflihrten Variablen im Simulationszeit-
raum. Mit LENGTH wird die Anzah] der zu simulierenden Perioden be-
stimmt.

Die Schrdgstriche in der Plot-Anweisung (PLOT) besagen, daB im Histo-
gramm der Variablenverldufe fir LEV, ZUF und ABF verschiedene Ordina-
tenmaBstibe definiert werden sollen. Das hinter éiner Variablen in
Klammern angefiihrte Zahlenpaar legt den Ordinatenbereich fest. Unter-
188t man diese Angabe, dann wdhlt das Programm entsprechend den Si-
mulationsergebnissen jeweils einen eigenen MaBstab. Der Zeitverlauf
der Variablen LEV soll im Histogramm durch den Buchstaben L beschrie-
ben werden, wdhrend die Verl&ufe von ZUF und ABF entsprechend durch

Z und A zu kennzeichnen sind. Die Print-Anweisung (PRINT) schreibt vor,
daB LEV in der ersten, ZUF in der zweiten und ABF in der dritten Spal-
te ausgedruckt werden sollen. Die sogenannte Run-Anweisung schlieBt

jedes Programm ab.

Es ergibt sich das unmittelbar simulierfdhige Modell

* EIN-LEVEL-MODELL

L LEV.X=LEV.J+DT*(ZUF.JK-ABF.JK)

N LEV=100

R ZUF.KL=A*LEV.X

R ABF.KL=B*LEV.K

A=0.94/3=0.975

SPEC DT=1/LENGTE=5@8/PRTPER=1/PLTPER=1

PRINT LEV,ZUF, ABF

g%ﬁT LEV=L(@,100)/2UF=2(9,208)/ABF=A(9,150)

a

Dieses DYNAMO-Programm fiihrt zur Berechnung des Zeitverlaufes der en-
dogenen Variablen LEV, ZUF und ABF. Aufgrund der Print-Anweisung
wird er in Form einer Zeitreihenliste ausgegeben.

Die erste Zeile unter den Variablenbezeichnungen gibt liber den ge-
wdhlten MaBstab der ausgedruckten Zeitreihen. Auskunft. Die Zahlen

hinter dem Symbol E kennzeichnen die Potenz der Zehnereinheit, mit
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TIME LEV ZUF ABF
E+80  E+00  E+08  E+080
.¢ 100.0¢ 94.000 97.500
1. 96.5¢ 90.71¢ 94.087
2. 93.12 87.535 90.794
3. 89.86 84,471 B87.617
4. 86.72 B81.515 B84.550
5. B83.68 178.662 B81.591
6. B88.75 75.989 78.735
7. 77.93 73.252 75.979
B, 75.20 78.688 73.320
9. 72.57 68.214 70.754
1¢. 70.83 65.827 68.278

Ld L d . L4
L L L3 L
. L ] L L]
L] L o L

der jedes Glied der Zahlenreihe zu multiplizieren ist. Im vorliegen-
den Fall ist dieses Multiplikationsglied mit 10%=1. Die laufende Pe-
riodenbenennung in Form von TIME wird vom Programm ohne besondere
Anweisung erstellt.

Durch die Plot-Anweisung wird das in Abbildung 31.3 angeflihrte Histo-
gramm erzeugt. In der ersten Zeile des Histogrammes erfolgt die An-
gabe, welche Plotsymbole mit welchen Variablen korrespondieren. Hin-
ter den OrdinatenmaBstdben sind die Plotsymbole der Variablen ange-
fiihrt, auf welche sich die MaBstidbe beziehen. Die Levelvariable LEV,
gekennzeichnet durch das Plotsymbol L, wird daher durch den ersten
OrdinatenmaBstab mit dem Definitionsbereich 0 bis 100 beschrieben.
Zur Erhdhung der Ubersichtlichkeit sind die ausgedruckten Symbolfol-
gen einer Variablen nachtrdglich durch Linien miteinander verbunden.
Neben den Leveln und Raten werden im System-Dynamics-Konzept noch so-

genannte Hilfsvariablen verwendet. Sie werden als Zwischenglieder ein-

geflihrt, wenn die Verknlpfungen zwischen den Raten und Leveln eines
Modells zu komplex werden, oder wenn diese Zwischenglieder flr die
Beurteilung des Systemverhaltens von Bedeutung sind.

Gehen wir in dem entwickelten Beispiel von der Modifizierung aus, daB

die AbfluB- und die ZufluBrate von einem konstanten Vielfachen der
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Abb. 31.3 Histogramm des simulieften Einlevelmodells

Differenz zwischen einem Sollevel SLEV und dem tatsd@chlichen Level-

wert LEV bestimmt wird, dann ergibt sich bei Anderung der Konstanten

A und B R ZUF.KL=A*(SLEV-LEV.K;
R ABF.KI=B%(SLEV-LEV.K
C A=0.8/B=0.65/SLEV=450

Bezeichnet man die Differenz zwischen Soll- und Istlevelwert als SIDIF,

so kann man die oben beschriebenen Beziehungen auch so formulieren:

R ZUF.KL=A*SIDIF.X

R ABF .KL=B*SIDIF.K

A SIDIF.E=SLEV-LEV.K

C A=¢.8/B=0.€65/SLEV=459

SIDIF ist eine Hilfsvariable, die durch eine Hilfsgleichung zum Aus-




L,2UF=2,ABF=A

LEV=
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druck gebracht wird. Hilfsgleichungen werden durch

'A' gekennzeichnet.
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Abb. 31.4 Histogramm des erweiterten Einlevelmodells

Das Histogramm dieser Modifizierung bei Wahl der Plot-Anweisung

PLOT LEV=L(9,%00),2UF=2(0,350),ABF=A(0,350)

zeigt Abbildung 31.4

3.1.3. Graphische Darsteliung von System-Dynamics-

Modellen

Das erdrterte Einlevelmodell wurde in Abbildung 31.1 und 31.2 anhand
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eines Diagrammes dargestellt. Wshrend im vorliegenden Fall die Dia-
grammdarstellung eines derartig einfachen Modells nur aus didaktischen
Grinden zu rechtfertigen ist, fiihrt eine graphische Reprdsentation
bei komplexen System-Dynamics-Modellen oft zu einer wesentiich besse-

ren Beurteilung der vorliegenden Zusammenhdnge.

FORRESTER verwendet zur Darstellung einer im System-Dynamics-Konzept
interpretierten Welt besondere Diagrammsymbole und Darstellungskon=-
ventionen, die anhand der Abbildungen des Einlevelmodells schon teil-
weise beschrieben wurden und nunmehr noch einmal systematisch erdr-
tert werden sollen.

Ein Level wird durch ein Rechteck dargestellt.

Die einem Level zu- und abflieBenden Strdme werden anhand von durch-
gehenden Pfeilen beschrieben, die in den Level hinein bzw. aus dem

Level herausfiihren.

!

Die Beeinflussung dieses Levelzu- und -abflusses erfolgt, wie erwdhnt,
durch die Zu- und AbfluBraten, welche durch sogenannte Ventilsymbole
beschrieben werden. Unter Einbeziehung der Ventilsymbole ergibt sich
das auf Seite 410 oben angefiihrte Bild. Die bereits erwdhnten Hilfs-
variablen werden durch ein Kreissymbol zum Ausdruck gebracht, wdhrend
als Konstantensymbol ein kleiner Kreis mit einem waagerechten Quer-
balken dient.

Die Einfllisse zwischen den Variablen eines System-Dynamics-Modells
werden mit Ausnahme der Levelzu- und -abfllisse durch unterbrochene
Pfeillinien dargestellt. Auf die Bedeutung des Quellen- und Senken-

symbols als Anfangs- und Endpunkt eines im Modell unerkldrten Level-



Lo

zu- oder -abflusses wurde bereits hingewiesen.
Das nachfolgende Bild zeigt das vollstdndige System-Dynamics-Diagramm

des erdrterten Modells.
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Abb. 31.5 System-Dynamics-Diagramm des erweiterten Einlevelmodells

Fir bestimmte Arten von Level- und Hilfsvariablen werden im Rahmen

der beschriebenen Diagrammtechnik die Symboldarstellungen noch stéar-
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ker konkretisiert. Doch reicht die vorliegende Beschreibung aus, um
jedes beliebige System-Dynamics-Modell durch ein Diagramm zu repra-
sentieren.

System-Dynamics-Diagramme besitzen nicht denselben Informationsgehalt
wie die auf ihrer Grundlage entwickelten Modelle. Sie erweisen sich
daher als die weniger scharfe Vorstufe eines Modellierungsansatzes,

die durch weitere Verschdrfung der Model lhypothesen zu dem eigentli-

chen parametrisch-singuldren System-Dynamics-Modell flihrt. Die fol-
gende Ubersicht zeigt die in einem System-Dynamics-Modell verwende-

ten Gleichungstypen und Diagrammsymbole:

Element Glei- Gleichungstyp Diagramm-
chungs- Symbol
symbol
Level L L.K=L.J+DT#(ZUF.JK-ABF.JK)
Rate R R.KL=FIL1.K,...,LN.K,AT.K, ... ,AM.K] [)x(f_-—_T
Hilfsva- A A.K=F[L1.K,... ,LN.K,AT.K, ... AM.K] (:)
riable -
Anfangswert| N N = numerischer Wert kein Symbol
Parameter C C = numerischer Wert it
Symbolbezeichnung ' Diagramm- Verwendung
symbol
Senke C:::%:::) Ende eines Levelabflusses
Quelle Beginn eins Levelzuflusses
unterbrochene Pfeilspitze kennzeichnet Beeinflus-
Pfeillinie- = = = — =B | suyngsrichtung einer Variablen durch
Level, Hilfsvariable oder Parameter

Da simultane Gleichungen unter den Hilfsvariablen nicht zugelassen
sind, und die erkldrenden Variablen der Level- und Ratengleichungen
um eine Periode verzdgert sind, ist ein System-Dynamics=-Modell stets

rekursiv.
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3.1.4. Exponeniielie Besiands- und informations-
verzdgerungen

A. Exponentielie Bestandsverzogerungen

Jeder Level kann als ein schwarzer Kasten gedeutet werden, aus dem
die Zuflisse verzdgert abflieBen. Die Art der Verzdgerung, die die
Elemente in dem Level erfahren, hdngt von der AbfluBratenhypothese
ab. Da die in diese Hypothesengleichung eingehenden Variablen wie-
derum durch andere Hypothesen erkl&rt werden, ergibt sich in der Re-
gel ein System von Hypothesen, welches indirekt an der Erkldrung der
AbfluBvariablen beteiligt ist. Wie bereits anl&Blich der Beschreibung
der Verweilzeithypothesen erwdhnt wurde, ist es unter Umstdnden mdg-
lich, aus dem vorliegenden Hypothesensystem eine sekunddre Verweil-
zéithypothese abzuleiten. Denn wiirde es gelingen, in einem System-
Dynamicé~Mode11 die Verkniipfung zwischen den Zu- und Abfllssen eines
Levels zu modellieren, dann wdre diese Beziehung stets als Verweil-
zeithypothese aufzufassen.

Primdre Verweilzeithypothesen k&nnen immer dann verwendet werden,
wenn dem Modellentwickler die impulsantwort zwischen einem Levelzu-
und -abfluB bekannt ist. Dies ist zum Beispiel der Fall, wenn die
Einkaufsabteilung eines Unternehmens die Art der Verzdgerung zwi-
schen ausgehenden Bestellungen und eingehénden Lieferungen und damit
die Impulsantwort zwischen den Bestellungen ZUF (als Eingang) und
den auf diese Bestellungen verzdgert eingehenden Lieferungen ABF
(als Ausgang) kennt. Eine schematische Darstellung dieses Zusammen-

hanges zeigt Abbildung 31.6.

EINGIPFELIGER
2UF apr VERLAUF
| BESTAND AN |
100 . 18
BESTELLUNGEN 12 //(1’11“]\T\\
6 |
0 PERIODE 2UF ABF 0  PERIODE

Abb. 31.6 Schematische Darstellung der verzdgerten Beziehung zwischen
ausgehenden Bestellungen (ZUF) und eingehenden Lieferungen (ABF)
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Zwei Ausprdgungen einer derartigen Impulsantwort der Liefereingdnge
zeigt Abbildung 31.7.
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Abb. 31.7 Charakteristiken des verzdgerten Eingangé bestellter Waren
bei einer einmaligen Bestellung von 100 Einheiten in Periode 0

FORRESTER verwendet zur Modellierung von Leveln, deren Impulsantwor-
ten bekannt sind, bestimmte Teilklassen von Verweilzeithypothesen,

die sogenannten exponentiellen Verweilzeithypothesen. Die von ihm im

Rahmen dieser Teilklasse fast ausschlieBlich angewendeten exponentiel -
len Verweilzeithypothesen dritter Ordnung zeichnen sich durch einen
eingipfeligen Verlauf ihrer Impulsantworten aus. Ist ein Modellent-
wickler zu der Auffassung gelangt, daB die Impulsantwort eines vor-

liegenden Levels dieser Klasse entstammt, dann reicht es zur voll-
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stidndigen Modellierung einer parametrisch-singul&@ren Verweilzeithy-
pothese aus, die sogenannte durchschnittliche Verz8gerung numerisch

zu spezifizieren., Die durchschnittliche Verz8gerung ist ein Parame-

ter, der die durchschnittliche Verweildauer eines in den Level ein-
tretenden Elementes zum Ausdruck bringt.] Beide in Abbildung 31.7
dargestellten Impulsantworten sind exponentielle Verweilzeithypothe-
sen dritter Ordnung. Die mit Z gekennieichnete Impulsantwort besitzt
eine durchschnittliche Verztgerung von zwanzig Perioden, wdahrend der
mit F beschriebene Kurvenverlauf eine Durcﬁéchnittsverzagerung von

finfzehn Perioden aufweist.

Die Modellierung derartiger Verweilzeithypothesen kann in DYNAMO

durch folgende Makrofunktion beschrieben werden:2

R ABF.KL=DELAY3(ZUF.JK,DVZ) (31.4)

ABF und ZUF kennzeichnen hierbei die Zu- und AbfluBvariablen, wihrend
mit DVZ die durchschnittliche Verz8gerung angegeben wird. Mit DELAY3
kommt zum Ausdruck, daB eine exponentielle Verwei lzeithypothese drit-
ter Ordnung vorliegt. Sie wird in einem System-Dynamics-Diagramm mit

folgendem Symbol beschrieben:

BEV

3 |ABF |DVZ

|D3' besagt, daB es sich um eine exponentielle Verweilzeithypothese
dritter Ordnung (Delay3) handelt. Das mittlere Segment kennzeichnet
den Namen der AbfluBrate der Verzdgerung (ABF). Der Parametername der
durchschnittlichen Verzdgerung (DVZ) wird im rechten Segment der un-
teren Symbolh&lfte eingetragen. Ist man daran interessiert, auch den
Bestand des Verzdgerungslevels zu kennen, so wird die diesen Bestand
kennzeichnende Levelvariable (BEV) in die obere Symbolhilfte eingetra-
gen. Da die AbfluBrate ABF eines DELAY3-Levels nicht von anderen Le-
veln direkt beeinfluBt wird, wird sie im Diagramm nicht durch ein

T Siehe auch Seite 288
2 Zum Begriff einer Makrofunktion siehe Seite 434
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besonderes Ventilsymbol gekennzeichnet. Die Angabe der Bezeichnung
der AbfluBrate im Levelsymbol ersetzt daher gewissermaBen das Ven-

tilsymbol.

Die Bestimmung und Anwendung derartiger exponentieller Verweilzeit-
hypothesen im Rahmen des System-Dynamics-Konzeptes ist nicht unpro-

blematisch und wird spdter eingehender diskutiert. >

B. Exponentielle Informationsverzégerungen

Bei der Beschreibung von System-Dynamics-Diagrammen wurde darauf hin-
gewiesen, daB die Beeinflussung einer Raten- oder Hilfsvariablen
durch unterbrochene Pfeillinien gekennzeichnet wird. Diese Pfeilli-

nien bezeichnet FORRESTER als informationelle Verknlipfung. Dieser Be-

zeichnungsweise liegt die Deutung zugrunde, daB die Raten, welche das
Verhalten bestimmter Einheiten wie Personen oder technische Aggrega-
te beschreiben, durch 'informationen' in Form der Level-, Hilfsvaria-
bien- und Parameterwerte beeinfluBt werden. Wdhrend die durchgezoge-
nen Pfeillinien damit substantielle Fllisse beschreiben, werden durch
die zu den Raten fihrenden unterbrochenen Linien gewissermaBen Infor-
mationsverbindungen zur Ausdruck gebracht. Diese Informationen, d.h.
Kenntnisse liber die Level- und Hilfsvariablenausprdgungen, miissen
von der beschriebenen Verhaltenseinheit nicht unmittelbar zur Raten-
festlegung herangezogen werden. Sie kdnnen (oder werden) vielmehr
(bewuBt oder unbewuBt) verzdgert. Der Beschreibung dieser Verz8gerun-

gen dienen die sogenannten exponentiellen Gldttungsverzbdgerungen.

Exponentielle Gléttungsverzagerungen definieren einen Level, dessen
Inhalt die zeitliche Entwicklung eines Prognosewertes beschreibt,
der mit Hilfe des als exponentielle Gl&attung bezeichneten Prognose-
verfahrens ermittelt wird.

Die Levelgleichung dieses 'Prognoseleveltyps' lautet:

L PLE.K=PLE.J+DT*(ZUF.JE-PLE.J)/APF (31.5)

3 Vgl. Seite 489ff.
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APF wird als Anpassungsfaktor bezeichnet. Unter Verwendung des lbli-
chen Gl&ttungsfaktors a=1/APF 13Bt sich Gleichung (31.5) in die {ib-

liche Darstellungsform einer exponentiellen Glattung

PLE(t) = PLE(t-1) + a[ZUF(t-1)=-PLE(t-1)]
Uberfihren.

In der DYNAMO-Sprache wird eine exponentielle Gl&ttung der Form (31.5)
durch eine Makroinstruktion (SMOOTH-Funktion)

A PLE.K=SMOOTH(ZUF.JK,APF) (31.6)

ausgedrilickt.

Als Prognoselevel kann beispielsweise die Schdatzung einer Verkaufs-
menge (PLE) in Abh#ngigkeit von den realisierten Verkaufsmengen (ZUF)
zur Anwendung kommen. Allgemein werden mit Prognoseleveln Schitzwer-
te beschrieben, welche als erkldrende Variablen (direkt oder indi-
rekt) in bestimmte Ratengleichungen eingehen. Fiir Prognoselevel wird

ein spezielles Levelsymbol der folgenden Art verwendet:

S |PLE | APF

Mit 'S' wird zum Ausdruck gebracht, daB es sich um einen Glattungs-
level (Smooth) handeln soll. Die Eintragung im mittleren Segment ent-
hElt den Namen der prognostizierten Variablen, wdhrend im rechten
Segment der Name des Anpassungsfaktors eingetrégen‘wird.

Die beiden beschriebenen Formen einer exponentiellen Verweilzeithy-
pothese dritter Ordnung und einer Gl&ttungsverzdgerung sollen im fol-
genden anhand eines einfachen Fertigungsmodells demonstriert werden.
An die Fertigung eines Betriebes gerichtete Bestel lungen BMR sollen
in der Fertigung eine Verzdgerung erfahren, die sich durch eine ex-
ponentielle Verweilzeithypothese dritter Ordnung mit einer durch-
schnittlichen Verzdgerung von DVZ=10 Wochen beschreiben 1&8t. Die

aus der Fertigung abgehenden ausgeflihrten Bestellungen FZU erhdhen

zugleich den Fertiglagerbestand FLB. Der den Fertiglagerbestand ver-
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mindernde Fertiglagerabgang FLA soll stets das 0,3fache des Fertig-

lagerbestandes betragen. Die an die Fertigung gerichteten Bestellun-

gen BMR werden von dem entsprechenden Disponenten als die RF-fache

Differenz zwischen dem tatsdchlichen Fertiglagerbestand FLB und ei-

nem Sollagerbestand SLB zuzliglich des prognostizierten Fertiglager-

abgangs festgelegt. Der Sollagerbestand des Fertiglagers wird so

festgelegt, daB er stets das MF-fache des mit Hilfe einer exponen-

tiellen Gldttung prognostizierten Fertiglagerabganges PFLA plus 500

'betrégt.

BMR

Dy | Fzu

DVZ

APFl 4

Abb.

tungssystems

31.8 System-Dynamics-Diagramm eines Fertigungs- und Lagerhal-
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Das DYNAMO-Programm des beschriebenen Modells ergibt

FERTIGUNGS-UND LAGERHALTUNGSSYSTEM

BMR.KL=PFLA .K+RF*(SLB .K-FLB.K)
FZU.KL=DELAY3(BMR.JK,DVZ)
FLB.K=FLB.J+DT*(FZU.JK~FLA.JK)
FLB=45¢
PFLA.X=SMOOTH(FLA.JK,APF)
SLB.EK=MF*PFLA .K+500
FLA.KL=0.3¥FLB.X
RF=0.3,DVZ=10,APF=2 ,MF=0.25
SPEC DT=1,LENGTH=2¢,PRTPER=1,PLTPER=1
PLOT FLB=F/FZU=Z/FLA=4/SLB=S
PRINT FLB,FZU,FLA,SLB

RUN

QP bz %W

In dem Qorliegenden Modell sind manche Parameter direkt im Modell
numerisch spezifiziert, wie zum Beispiel in der Gleichung flir FLA,
wdhrend andere wie DVZ erst im Rahmen einer Konstantengleichung ei-
nen numerischen Wert erhalten. Eine Belegung der Parameter in den
strukturellen Gleichungen durch Symbolausdriicke, die erst im Rahmen
von Konstantengleichungen definiert werden, empfiehlt sich immer,
wenn die betrachteten Parameter in sukzessiven Simulationsldufen va-
riiert werden sollen. Denn DYNAMO gestattet im Rahmen sogenannter
Reruns, d.h. wiederholten Simulationen desselben Moqells mit geénder-
ten Parametern, eine sehr flexible Variation der Parameter, die im

Rahmen von Konstantengleichungen definiert werden.

3.1.5. Tabellenfuhktionen und sonstige Makrofunktionen

Raten- und Hilfsgleichungen eines System-Dynamics-Modells sollen die
empirischen Hypothesen in Form der Verknlipfung bestimmter metrischer
GroBen  zum Ausdruck bringen. Diese Verknlipfungen kdnnen in einigen
Féllen mit Hilfe elementarer algebraischer Funktionen beschrieben
werden; wie in Abbildung 31.9 beispielsweise durch die Funktion

2 .
Y=0,01x"*1.
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Y=0,01X2+1
Y=F(X>
+ + + -+ — — + + ~ B
0 1 2 3 4 -5 6 [§ 8 S X

Abb. 31.9 Funktionsverldufe in dynamischen Modellen

In derselben Abbildung ist jedoch auch eine Funktion F(x) eingetra-
gen, die nicht durch eine elementare Funktion beschrieben werden
kann. Zur Modellierung derartiger Funktionsverldufe in der DYNAMO-

Sprache kann man sogenannte Tabellenfunktionen verwenden.

Die zu beschreibende Funktion wird in gleichen Abszissenabst&nden
durch senkrechte Linien geschnitten und die Ordinatenwerte dieser
Schnittpunkte werden als Stlitzpunkte einer stlickweise linearisierten
Funktion verwendet, welche die urspringliche Funktion nZherungsweise

beschreibt.

Entscheidet man sich im Beispiel der Funktion F(x) filir eine von 0
bis 9 laufende Abszissenstlickelung von 1, dann ergibt sich ein Poly-
gonzug, dessen Ordinatenstlitzwerte in Abbildung 31.10 angefiihrt sind.

Dieser Funktionszusammenhang wird durch

A Y.K=TABLE(TAB,X.X,%,9,1)
T PAB=2.3/2.7/53.1/3,15/3.:1/3.8/2.6/2.3/1.5/1.2

beschrieben. Das erste Argument der Makrofunktion nennt den Na-
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men der Tabelle (hier TAB genannt), in dem die Ordiqatenwerte ab-
gespeichert sind. Das zweite Argument kennzeichnet den Namen der un-
abh3ngigen Variablen (in diesem Fall X.K) der Funktion. Die letzten
drei Argumente spezifizieren den grdBten und kleinsten Definitions-
wert des Abszissenbereiches (0 und 9) sowie die Schrittweite des ge-

wdhlten Abszissenabschnitts.

Y
4
3
2
1
. t 4 i ~+ : § b S i oo
0 1 2 3 4 5 6 7 8 9 X

Abb. 31.10 Beispiel einer Tabellenfunktion im System-Dynamics-Kon=-
zept

Derartige Tabellenfunktionen werden in System-Dynamics-Modellen in
groBem Umfang verwendet und tragen entscheidend zur Nichtlinearitdt
dieser Modelle bei. FORRESTER verwendet in seinem Weltmodell allein
21 Tabellenfunktionen.

Das von uns entwickelte Modell eines Fertigungs- und lLagerhaltungs-
systems soll um eine derartige Tabellenfunktion erweitert werden
und damit alle wesentlichen Elemente enthalten, die in System-Dyna-
mics-Modellen auftreten.

Wir unterstellen, daB der Fertiglagerabgang FLA durch

A FLA.K=FAK.K*FLB.K
beschrieben wird, wobei FAK entsprechend der in Abbildung 31.11 be-

schriebenen Funktion von FLB abhdngt.
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FAK

0,3 % * —_
0,2 -pn
0,11
4 At t * $ + + t += B
0 100 500 1000
Abb. 31.11 Tabellenfunktionsverlauf am Beispiel eines Fertigungs-

und Lagerhaltungsmodells

Dieser Zusammenhang wird durch

& FAK .X=TABLE(TAFA,FLB.K,0,1008,100)
T TAFA=C.02/0.05/¢.27/2.11/0.18/0.25/0.29/0.32/0.32/2.32/2.32

beschrieben. Man erhdlt das DYNAMO-Programm

: FERTIGUNGS-UND LAGEREALTUNGSSYSTEM

R BMR.KL=PFLA K+RF*(SLB.K-FLB.K) BESTELLMENGENRATE

R FZU.KL=DELAY3(BMR.JK,DVZ) FERTIGLAGERZUGANG

L FLB.XK=FLB,J+DT*(FZU.JE~-FLA.JK) FERTIGLAGERBESTAND

A PFLA .K=SMOOTH(FLA.JK,APF) PROGNOSTIZIERTER LAGERABGANG

A SUB.E=MF*PFLA.K+500 SOLLAGERBESTAND:

N FLB=450

R FLA.KL=FAK.E*FLB.K FERTIGLAGERABGANG

A FAXK.K=TABLE(TAFA,F1B.X,0,1000,108) LAGERABGANGSEOEFFIZIENT

T TAFA=0,02/8.05/0.067/0.11/0.18/06.25/8.29/0.32/8.32/0.32/0.32
FUNKTIONSWERTE

C RF=0.3 BESTELLFAETOR

C DVZI=10 DURCHSCHNITTL. VERZOEGERUNG

C APF=2 = ANPASSUNGSFAKTOR

C MF=£.25 SOLLBESTANDSFAKTOR

SPEC DT=1,LENGTH=5¢ ,PRTPER=1 ,PLTPER=1
PRINT ¥LB,FZU,FLA,BMR

ﬁ%gT SLB=S(309,550) /FLB=1L(300,550)/F2U=2(100,1508)/FLA=A(100,158)



und das System-Dynamics-Diagramm

MF

\ ' s T \‘6‘ 500
D, | FzU |DVZ \
3 : [ \ S
~

N\
\ N \
{>$_~\\ l /,
S PFj\LﬁA\AiF//

Abb. 31.12 System-Dynamics-Diagramm eines Fertigungs- und Lagerhal-
tungssystems

Das aufgrund des Programmes erstellte Histogramm zeigt Abbildung

31.13. Man erkennt, daB das System einem Gleichgewicht zustrebt.
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Abb. 31.13 Histogramm eines Fertigungs- und Lagerhaltungssystems

Neben den Makrofunktionen wie DELAY3, SMOOTH oder TABLE stehen eine
Reihe von anderen Funktionen zur Verfiligung, mit welchen beispielswei-
se bestimmte Zufallszahlensequenzen oder Verldufe der exogenen
Variablen erzeugt werden k6nnen.h Erwdhnt werden sollen an dieser
Stelle nur noch die CLIP- und SWITCH-Funktionen, welche spdter

ofter verwendet werden. Beide Funktionen beschreiben logische Ope-
rationen, da in Abhﬁngigkeit von dem Ergebnis eines Vergleichspro-
zesses unterschiedliche Alternativen zur Anwendung kommen.

Die SWITCH-Funktion besitzt die Form:

SWITCH{A,B,V)

L Siehe [163]
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und bringt die Beziehung

_ A wenn V=0
SWITCH(A,B,V) = {5 "~ V40

zum Ausdruck.

Durch die CLIP-Funktion
cLIP(A,B,V1,V2)

wird die Beziehung

A wenn V12V2

CLIP(A,B,V1,V2) = {B wenn Vi<V2

beschrieben.

CLIP- und SWITCH-Funktionen dienen oft zur Formulierung von Entschei-

dungsregeln.

Eine Lagerabgangsforderung LAF kann beispielsweise nur dann voll be-
friedigt werden, wenn der tatsichliche Lagerbestand LAB mindestens
so groB ist wie die abgerufene Menge. Der tatsichliche Lagerabgang
LAT ergibt sich daher nach der Beziehung:

LAF wenn LABZLAF

AT = % a8 wenn LABSLAE

"Unter Verwendung der CLIP-Funktion kann diese Verhaltensweise durch

A LAT.K=CLIP(LAF.X,LAB.K,LAB.K,LAF.K)

modelliert werden.

Die sukzessive Entwicklung der Beschreibungselemente von System-Dyna-
mics-Modellen wurde von Anfang an unter Verwendung der Simulations-
sprache DYNAMO vorgenommen, da diese speziell zur Modellierung die-
ser Konzeption entwickelt worden ist und sich daher als besonders
einfach und libersichtlich erweist. Die Formulierung der im folgenden
erdrterten System-DynamiEs-Mode11e erfolgt daher ebenfalls in DYNAMO.
Man sollte sich jedoch bewuBt sein, daB die Beschreibungselemente ei-
nes System-Dynamics-Modells nicht auf eine Formulierung im Rahmen der
DYNAMO-Sprache angewiesen sind, sondern, wie spdter gezeigt werden
wird, auch mit Hilfe anderer Programmiersprachen, wie zum Beispiel

FORTRAN oder CSMP, vollstdndig erfaBt werden kdnnen. DYNAMO ist da-



425

her nur eine (allerdings sehr geeignete) von mehreren Sprachen zur

4

computeradaquaten Formulierung von System-Dynamics-Modellen.

3.2. Feedbackheuristik und Geschlossenheitsprinzip
als Elemente der System-Dynamics-Konzeption

Bisher wurde die sogenannte Léve]~Raten-lnterpretation des System-
bynamics-Konzeptes geschildert, nach welcher die Welt als eine Bezie-
hung von Bestands- und FluBgr&Ben éesehen werden kann.

Auf der Basis dieser Level-Raten-Interpretation wurde die Modellie-
rung realer Systeme bis zur Entwicklung simulierfdhiger Modelle dar-
gestellt.

Nachdem die flir System-Dynamics-Modelle so fundamentale Level-Raten-
lnterpretation erdrtert und ‘durch Beispiele illustriert wurde, sol-
len zwei weitere Elemente der System-Dynamics-Konzeption beschrieben
werden.

Das erste konzeptionelle Element bezieht sich auf die Art der Hypo-

thesengewinnung eines System-Dynamics-Modells. FORRESTER ist der Auf-

fassung, daB sich soziale Systeme als ein Geffecht von Feedbackkrei-
sen deuten lassen. An diese Deutungsweise anknlipfend, fordert er, die
Entwicklung von System-Dynamics-Modellen an der Identifizierung_be—
stimmter Feedbackkreise auszurichten. Diese Vorgehensweise zur Hypo-

thesengewinnung soll als Feedbackheuristik bezeichnet werden. Das

zweite konzeptionelle Element ist eine Maxime, welche sich auf die
Modellgrenzen eines System-Dynamics-Modells bezieht und als Geschlos-

senheitsprinzip bezeichnet wird.

5 Auch DYNAMO ist im Hinblick auf seine Funktion als Darstellungs-
mittel von System-Dynamics-Modellen verbesserungsfdhig. Beispiels-
weise ist die Kennzeichnung der Gleichungstypen mit Buchstaben red-
undant, weil der DYNAMO-Compiler schon aus der Indizierung den
Gleichungstyp erkennen kdnnte. Auch wdre es angebracht, auf die
Ratenindizierung KL zu verzichten. Man k&me mit weniger Zeitindi-
zes aus, wenn die zu erkl3renden Ratenvariablen mit demselben In-
dex JK versehen werden wiirden, mit welchem sie in den Levelglei-
chungen auftreten.
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3.2.1. Feedbackheuristik des System-Dynamics-
Konzeptes

Wir erinnern uns, daB jede Schleife in der Verknlipfungsmatrix eines
rekursiven dynamischen Modells als ein Feedbackkreis interpretiert
werden kann. Die Aufweisung bestimmter Feedbackkreise wird von vie-
len Model lanwendern nach der Entwicklung eines primdren Hypothesen=
systems vorgenommen, um zusdtzliche lnfcrmationeh Uber die Struktur
des Systems zu erhalten. Im Gegensatz dazu dient FORRESTER die lden-
tifizierung bestimmter Feedbackkreise als Vorstufe zur Entwicklung
eines parametrisch-singuldren Modells. FORRESTERs Vorgehen 138t sich

in folgende Stufen aufgliedern:

(1) ldentifizierung der Feedbacks, welche in einem System wirken und
Entwicklung eines Feedbackdiagrammes, das die Wirkungsrichtungen
der Feedbacks zum Ausdruck bringt sowie die Variablen kennzeich-
net, Uber welche die Feedbacks laufen.

(2) Verschdrfung des informatorischen Gehalts des Feedbackdiagrammes,
indem die erkannten Feedbackkreise als positiv oder negativ cha-
rakterisiert werden.

(3) Entwicklung eines komparativen Kausaldiagrammes anhand des Feed-
backdiagrammes.1

(4) Entwicklung eines System-Dynamics-Diagrammes auf der Grundlage
eines komparativen Kausaldiagrammes

(5) Formulierung eines System;Dynamics~Mode11s (zum Beispiel in der

Simulationssprache DYNAMO).

FORRESTERs Forderung, die erste Stufe einer Modellentwicklung mit der
Identifizierung der wirkenden Feedbacks einzuleiten, wird als Feed-
backheuristik bezeichnet, weil dieser Weg sich unter Umstdnden als
eine heuristisch fruchtbare Hypothesenfindungsmethode erweisen kann.
Seine Forderung zur Feststellung der Feedbackkreise kann nicht so
verstanden werden, daB alle in dem System wirkenden Feedbacks zu er-
mitteln seien, sondern die als wesentlich erachteten.

1 Aus den Verdffentlichungen von FORRESTER und seinen Schiilern ist
nicht klar zu erkennen, ob ein Kausaldiagramm immer einem Feed-
backdiagramm nachfolgt oder umgekehrt.
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Ein Modellentwickler wdre bei groBen Modellen Uberfordert, wenn er
die umfangreiche Anzahl von Schleifen zu identifizieren hdtte, die
man in der Regel nach einer Modellformulierung mit Hilfe einer Schlei-
fenanalyse der Verknilipfungsmatrix feststellen kann.

Die erste Stufe der Modellentwicklung 188t sich in unserer Termino-
logie dadurch charakterisieren, daB ein nichtparametrisches Schau-
bildmodell eines Systems entwickelt wurde, in welchem bestimmte
Schleifen als 'wesentliche' Feedbackkreise gekennzeichnet sind.

In der zweiten Stufe miissen die wesentlichen Feedbacks als positiv
oder negativ erkannt Werden. Diese Bestimmung diirfte vielen Personen
erst aufgrund eines komparativen Kausaldiagrammes mglich sein. Of-
fenbar handelt es sich bei dieser Festlegung um eine mehr intuitive
Bestimmung die unter Umstdnden bei der Entwicklung eines Kausaldia-
grammes revidiert werden kann.

Im Falle des beschriebenen Fertigungs- und Lagerhaltungssystems 188t

sich folgendes Feedbackdiagramm formulieren:

" BESTELLMENGE
1,3 3
FERTIGLAGER- 1 SOLLAGER-
ZUGANG BESTAND
1,3
3
FERTIGLAGER- FERTIGLAGERABGANGS-
BESTAND PROGNOSE
2
3
2,3 = 2
FERTIGLAGER-
ABGANG

Abb. 32.1 Feedbackdiagramm eines Fertigungs- und Lagerhaltungssystems
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Man kann zwischen drei Feedbackkreisen unterscheiden, die durch die
Zahlen 1 bis 3 gekennzeichnet sind. Die Unterscheidung, ob es sich
um positive oder negative Feedbackkreise handelt, wird unter der Vor-
aussetzung getroffen, das System befdnde sich in einem Gleichgewicht
und der Wert einer Variablen, die sich in dem zu beurteilenden Kreis
befindet, wiirde erhSht. Unter dieser Annahme verfolgt man gedanklich
die Auswirkung der ErhShung lber die einzelnen Variablen des Feed-
backkreises bis zu der urspriinglich erhShten Ausgangsvariablen. Hat
die gedankliche 'Durchwanderung' des Feedbackkreises eine Erhdhung
der Ausgangsvariablen zur Folge, dann liegt ein positiver Feedback-
kreis vor, wdhrend eine Verminderung als ein negativer Feedbackkreis
angesehen wird.2

Betrachten wir als erstes den durch 2 gekennzeichneten Kreis: Eine
ErhShung des Fertiglagerbestandes flihrt zur ErhShung des Fertiglager-
abganges, und die Erh&hung des Fertiglagerabganges wiederum fiihrt

zur Verminderung des Fertiglagerbestandes. Es liegt damit ein nega-
tiver Feedbackkreis vor.

Die mit den Zahlen 1 und 3 gekennzeichneten Kreise filihren beide Ulber
die Variable 'Bestellmenge'. Diese GrdBe kann sowohl zunehmen als
auch abnehmen, wenn im Falle der Analyse von Kreis 1, der Fertigla-
gerbestand oder, im Falle von Kreis 3, der Sollagerbestand als wach-
send angenommen wird. Denn die Entscheidung, ob die Bestellmenge.be}
wachsendem Soll- oder Fertiglagerbestand wdchst oder f&llt, hdngt

von der Relation zwischen dem Soll- und Istlagerbestand ab. Die Ver-
kntipfung zwischen der Bestellmenge und den beiden Lagerbestdnden wird
daher durch eine nichtkomparative Hypothese beschrieben. Es ist somit
nicht m&glich, die beiden Kreise als (stdndig) positiv oder negativ
zu klassifizieren. Mit diesem Beispiel wurde deutlich, daB8 die For-
derung FORRESTERs, die-positiven und negativen Feedbacks von Syste-
men zu identifizieren, aus empirischen Griinden nicht immer mdglich
ist.

Im Rahmen der dritten Stufe wird ein komparatives Kausaldiagramm des

betreffenden Systems entwickelt.

2 Vgl. Seite 59f. und 282f.
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In Abbildung 32.2 ist das Kausaldiagramm des beschriebenen Fertigungs-

und Lagerhaltungssystems dargestellt.

Im Hinblick auf die Bestelimenge wird durch das Zeichen * zum Aus-
druck gebracht, daB die Bestellmenge durch eine nichtkomparative und
in diesem Fall auch multikausale Hypothese beschrieben wird. Es ist
daher im vorliegenden Beispiel nur unter Vorbehalt mdglich, von ei-

nem komparativen Kausaldiagramm zu sprechen, da es nicht nur kompa-

rative Hypothesen enthdlt.
BESTELLMENGE

/ _
SOLLAGER-

ZUGANG .

1+

1+

+ +

FERTIGLAGER- FERTIGLAGERABGANGS-
BESTAND PROGNOSE

FERTIGLAGERABGANG

Abb. 32.2 Komparatives Kausaldiagramm eines Fertigungs- und Lager-
haltungssystems

In der vierten Stufe kommt nunmehr die schon beschriebene Level-Ra-
ten-interpretation zur Anwendung. Die Variablen des komparativen Kau-
saldiagrammes werden daraufhin untersucht, ob sie sich als Level-,
Raten- oder Hilfsvariablen klassifizieren lassen. Die Beziehungen
zwischen den Variablen und Parametern werden durch die uns bereits

bekannten System-Dynamics~Diagramme beschrieben.
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Die Formulierung des parametrisch-singuldren System-Dynamics-Modells

vollzieht sich in der fiinften Stufe.

3.2.2. Geschlossenheitsprinzip und System-Dynamics

"Das Geschlossenheitsprinzip charakterisiert eine bestimmte Auffas-
sung FORRESTERs beziiglich des Auftretens exogener Variablen in einem
System-Dynamics-Modell. Im Hinblick auf die Existenz bestimmter exo-
gener Variablen 1388t FORRESTER nur zwei Modellformen zu: geschlosse-

ne Modelle und singulér offene Modelle. Geschlossene Modelle sind,

wie uns bereits bekannt ist, Modelle ohne zeitverdnderliiche exogene

Variable. Unter einem'singu\ér-offenen Modell soll ein Modell mit nur
einer zeitverdnderlichen exogenen Variablen verstanden werden.

A. Singular offene System-Dynamics-Ansétze
a) Kennzeichung singulér offener System-Dynamics-Ansitze

Singuldr offene Modelle dienen nicht der Ex-post- oder Ex-ante-Prog-
‘nose bestimmter endogener Variablen, sondern der Ermittlung bestimm-
ter typischer Systemverhaltensweisen. Zu diesem Zweck wird ein Mo-

dell kiinstlich in einen (in der Realit3t fast nie vorliegenden) Gleich-
gewichtszustand versetzt und dann im Hinblick auf seine Reaktion be-
zliglich bestimmter Testeingdnge untersucht.3 Eine derartige Testant-
wortanalyse dient dem Studium des Systemverhaltens. Singuldr offene
System-Dynamics-Model le, welche ausschlieBlich fiir Testanwortanaly-

sen entwickelt werden, sollen als Testantwortmodelle bezeichnet wer-

den. Durch bestimmte Anderungen der kontrollierbaren Systemparameter
versucht man nach der Formulierung eines Testantwortmodells das Mo-
dellverhalten im Hinblick auf bestimmte wlinschenswerte Eigenschaften
wie etwa eines monotonen Verhaltens zu verdndern. Flhrt die Wahl ei-
nes anderen Parameterwertes im Rahmen der Testanwortanalyse zu dem
gewlinschten Erfolg, dann werden diese Parameterdnderungen am konkre-
ten System realisiert.

3 Vgl. zu dieser Methode Seite 202f.
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Als Beispiel sei eine Version des bereits erdrterten Einlevelmodells
angeflihrt, in der die Abgangsrate ABF eine exogene Variable darstellt.
ABF soll durch eine Testfunktion in Form eines in der Periode 5 auf-
tretenden Impulses von 500 Einheiten ersetzt werden. Hierzu verwen-

det man die Funktion,
R ABF.KL=PULSE(500,5,1208)

in der das erste Argument die ImpulshShe und das zweite den Zeitpunkt
des Impulsauftretens kennzeichnet. Das dritte Argument gibt die Im-
pulsfrequenz an, d.h. den Zeitabstand, nach welchem ein neuer impu]s
auftritt. Dieser liegt mit 1000 auBerhalb des Simulationszeitraumes.

Man erhdlt folgendes Programm:

z EIN-LEVEL-MODELL

L LEV.K=LEV.J+DT*(2UF.JK-ABF.JK)

N IEV=200 ANFANGSWERT DES LEVELS
R ZUF.KL=APF*(SLEV~LEV.K)

R ABF.KL=PULSE(500,5,1000)

C APF=0.1 ANPASSUNGSFAKTOR

C SLEV=600 SOLLBESTAND

SPEC DT=1,PLTPER=1,PRTPER=1,LENGTH=5@
PLOT LEV=L/ZUF=Z/ABF=j
§%§NT LEV,ZUF,ABF

Manchem Leser wird nicht entgangen sein, daB das vorliegende Modell
fir eine Testantwortanalyse noch nicht geeignet ist, da von einem

Gleichgewichtszustand auszugehen ist, d.h. durch eine geeignete Wahl

der Levelanfangswerte eine kiinstliche Gleichgewichtssituation zu

schaffen ist. Wdhrend (wie wir spiter sehen werden) diese Gleichge-
wichtssetzung in vielen Modellen durchaus keine Trivialitdt ist, ge-
staltet sich hier das Auffinden eines g]eichgéwichtigen Levelanfangs-
wertes als sehr einfach. Im Gleichgewicht muB der Sollbestand SLEV=600
dem Istbestand LEV entsprechen, d.h. LEV ist gleich SLEV zu setzen.
Aus der Gleichung fir ZUF erkennt man, daB unter der Annahme LEV=SLEV
die ZufluBrate ZUF=0 wird. Da ABF ebenfalls Null ist, folgt:

LEV.K=LEV.J, d.h. die Levelwerte 3ndern sich nicht, und eé herrscht



LEV.BASE=L,LEV.LAUF2=2,LEV.LAUF3=3,
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somit ein Gleichgewicht. Wir ersetzen damit die urspriingliche Level-

anfangswertgleichung durch die Anfangswertgleichung

N LEV=SLEV  GLEICHGEWICHTSANFANGSWERT

und erhalten damit ein gleichgewichtiges System. Man erkennt, daB
auch Anfangswertgleichungen auf der rechten Seite Variablen enthal-
ten diirfen, die erst Uber andere Anfangswertglieichungen auf numeri-
sche Werte zurlickgefiihrt werden.

In Abbildung 32.3 sind verschiedene Impulsantworten flir unterschied-

liche Anpassungsfaktoren APF angefilhrt.
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Abb. 32.3 Impulsantwort des gleichgewichtigen Einlevelmodells bei
unterschiedlichen Anpassungsfaktoren APF



Der Anpassungsfaktor APF=0,5 zeigt eine schnellere Anpassung des Le-
velwertes an den Gleichgewichtspfad als der urspriinglich gewdhlte
Faktor. Geht man von dem Ziel einer Verminderung der Fluktuation aus,
dann sollte im konkreten System APF=0,5 dem ursprilinglichen Anpassungs-
faktor von APF=0,1 vorgezogen werden.

Es fragt sich, wie die empirische Uberprifung derartiger Gleichge-
wichtsmodel le erfolgen soll, denn die kiinstlich geschaffene Gleich-
gewichtssituation stimmt erkl&rtermaBen nicht mit der Realitit Uber-
ein.

Im Prinzip sollte es moglich sein, bei Kenntnis des historischen Ver-
laufs der exogenen FluBrate eine Ex-post-Prognose vorzunehmen und an-
hand dieser die empirische Addquanz des Modells zu beurteilen. Ein
derartiges Vorgehen lehnt FORRESTER jedoch ab. Er ist.vielmehr der
Auffassung, daB ein Modell dann gerechtfertigt ist, wenn die auf-
grund einer normativen Modellanalyse gefundenen MaBnahmen zum ge-
wlinschten Erfolg fUhréh. Im Falle des Sprague-Modells, dem singular
offenen Modell eines Elektrobetriebes, flhrten beispielsweise die an-
hand des Modells gewonnenen MaBnahmen zu einer Verminderung def La-
ger- und Persona}fluktuation.h Im Sinne von FORRESTER liefert dieses

Ergebnis eine hinreichende Rechtfertigung des Modells.

b) Zur Bestimmung von gleichgewichtigen Levelanfangswerten
in singuldr offenen System-Dynamics-Ansétzen

Es wurde bereits darauf hingewiesen, daB die Bestimmung der zu einem
Gleichgewichtssystem fiihrenden Levelanfangswerte Schwierigkeiten be-
reiten kann. Dies soll am Beispiel des erdrterten Lagerhaltungs= und
Fertigungsmodells gezeigt werden.

Die AbfluBrate des Fertiglagerbestandes FLA soll nicht nur wie in dem
auf Seite 421 beschriebenen (geschlossenen) Modell vom Fertiglagerbe-

stand abhd@ngen, sondern auch von einer exogen bedingten GroBe EX, d:.h.
R FLA.EL=FAK.E*FLB.K+EX.K

Geht man davon aus, daB EX im Gleichgewicht 25 betragen soll, und

L Zum Aufbau dieses Modells siehe [53,5.173] und [230]
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pragt dem im Gleichgewicht befindlichen System in Periode 5 einen Im-

puls der GréBe 150 auf, dann wird dies durch das Programm dargestellt.

FERTIGUNGS~UND LAGERHALTUNGSSYSTEM

BMR.KL=PFLA .E+RF*(SLB.K-FLB.K)
FZU.KL=DELAY3(BMR.JK,DVZ)
FLB.E=FLB.J+DT*(FZU.JK-FLA.JK)
FI1B=452

PFLA.E=SMOOTE(FLA.JK,APF)
SLB.K=MF*PFLA .K+500

FLA.KEL=FAK .K*FLB.K+EX.K

EX .K=25+PULSE(158,5,100)
FAK.K=TABLE(TAFA,FLB.XK,0,1000,1080)
TAFA=0.02/0.25/2.07/0.11/2.18/0.25/0.29/0.32/0.32/8.32/6.32
RF=0.3,DVZ=10, APF=2 ,MF=0.25

SPEC DT=1,LENGTH=50 ,PRTPER=1,PLTPER=1
PLOT FLB=F/FZU=Z/FLA=A//SLB=S

PRINT FLB,FZU,FLA,SLB

RUN

QHEM> O o R #

Es stellt sich nunmehr die Frage, wie die Levelanfangswerte zu wah-
len sind, um ein Modellgleichgewicht herzustellen.

Man koénnte meinen, daB ausschlieBlich die Bestimmung des gleichge-
wichtigen Levelanfangswertes fiir FLB notwendig sei, der den nur vor-
ldufig gewdhlten Anfangswert der HBhe 450 ersetzt. Da in den verwen-
deten DELAY3- und SMOOTH-Makros ebenfalls Levelvariablen auftreten,
ist auch der Frage nachzugehen, wie die Anfangswerte dieser Variab-
len im Falle eines Gleichgewichts zu wdhlen sind. Diese grundsdtzli-

che Frage soll vorab geklart werden.

ba) Makrofunktionen in gleichgewichtigen Modellen

Makrofunktionen - im>folgenden kurz Makros genannt - stehen stellver-
tretend flr eine Reihe von elementaren DYNAMO-instruktionen, die

beim Aufruf dieser Makrofunktionen aktiviert werden. Makrofunktionen
kdnnen neben den vorhandenen vom Benutzer in DYNAMO selbst definiert
werden. Die im Rahmen des DYNAMO-Compiiers vorgenommene Definition

des SMOOTH-Makros lautet:

MACRO SMOOTH(IN,DEL)
1 SMOOTH.K=SMOOTH.J+DT*(IN.J-SMOOTHE.J)/DEL

N SMOOTH=IN
MEND
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Die elementaren Instruktionen des Makros sind von den Zeilen MACRO
und MEND eingeschlossen. An das Wort MACRO hat sich der zu definie-
rende Makroaufruf anzuschlieBen, wobei die als MakroeingangsgrdBen
dienenden Argumente in ihrer Bezeichnung (IN und DEL) mit den ent-
sprechenden Bezeichnungen dieser GrdBen in den Gleichungen Uberein-
stimmen missen.

Der Makroname (SMOOTH) muB mit der Variablen in den Gleichungen iden-
tisch sein, deren Wert durch die Makrofunktion ausgedriickt werden
soll. Variablen, die in den Gleichungen des Makros auftreten, aber
weder Eing3nge noch Ausgénge bilden, erhalten als erstes Variablen-
symbol ein $-Zeichen. im Fall des SMOOTH-Makros treten solche makro-
internen Variablen nicht auf. Anders dagegen in der folgenden Makro-

funktion einer exponentiellen Verzdgerung dritter Ordnung:

MACRO DELAY3(IN,DEL)

A DELAY3.E=3LV3.K/$DL.K

L $LV3.K=$LV3.J+DT*($RT2.JK-DELAY3.J)
N SLV3=$DL*IN

R $RT2.KL=$LV2.K/$DL.K

L SLV2.K=8LV2.J+DT*(4RT1.JK-$RT2,.JK)
N $LV2=3LV3

R §RT1 JKL=4LV1.K/4DL.K

L SLV1.K=$LV1.J+DT*(IN.JK~ $RT1 JK)

N $LV1=$LV3

A $DL.K=DEL/3.

MEND

Werden in einem Modell eine SMOOTH- oder DELAY3-Makrofunktion verwen;
det, so kann man diese durch ihre elementaren Gleichungen ersetzen.
Da Makros aber gerade dem Ziel dienen, den mit der Formulierung die-
-ser Gleichungen verbundenen Aufwand zu vermeiden, ist ein solches
Vorgehen fiir praktische Zwecke nicht sehr sinnvoll. Stellen wir uns
jedoch im Hinblick auf die zur Diskussion stehende Frage vor, daB al-
le SMOOTH- und DELAY3-Makros eines Modells durch entsprechende elemen-
tare Gleichungen ersetzt werden, dann wird deutlich, daB weitere Le-
velgleichungen in dem Modell enthalten sind, deren Anfangswerte of-

fenbar bei der Herbeifilihrung eines Gleichgewichtszustandes zu berilick-
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sichtigen sind.

Eine genauere Untersuchung der angefilihrten Makrofunktionen zeigt,
daB3 die Anfangswerte in bestimmter Weise definiert sind.

Der Anfangswert von SMOOTH ist gleich dem als konstant anzusehenden.
IN gesetzt, mit der Folge, daB der Klammerausdruck in der Levelglei-
chung Null wird und sich damit SMOOTH.K=SMOOTH.J ergibt.

Fiir den DELAY3-Makro soll die Existenz eines Gleichgewichts nur fﬁf
SLV1 gezeigt werden. Setzt man die Gleichung flir $RT1 in die Level-
gleichung $LV1 ein, dann folgt:

§LVT . K=bLVT . J+DT# (IN. K- (5LV1. J/$DL. J))

Geht man davon aus, daB das System im Gleichgewicht sein soll, dann

ist IN.J ein konstanter Wert. Mit den Anfangswertgleichungen

SLvi=5Lv3
und

SLV3=$DL#IN
folgt

IN=SLV1/$DL

Bei konstantem IN verschwindet damit der Klammerausdruck in der Glei-
chung fiir $LV1, und es wird LV1.K=LV1.J fiir alle Zeitpunkte, in denen
IN konstant ist. Eine analoge Betrachtung kann fiir die Level $LV2 und
$LV3 durchgefiihrt werden. '
Als Ergebnis ist festzuhalten, daB SMOOTH- und DELAY3-Makros, die ei-
nem konstanten input IN ausgesetzt sind, immer auch einen konstanten
Output SMOOTH(IN,DEL) bzw. DELAY3(IN,DEL) zur Folge haben.

.bb) Gleichgewichtsbestimmung von Modellen durch Simulation

Kehren wir zu dem Problem der Bestimmung von Gleichgewichtsanfangs-
werten in dem Fertigungs; und Lagerhaltungsmodell zurilick. Wir wissen
nunmehr, daB bei SMOOTH- und DELAY3-Makros ein gleichgewichtiger Ein-
gang einen gleichgewichtigen Ausgang hervorruft. Doch unbeantwortet
blieb bisher die Bestimmung des Gleichgewichtsanfangswertes flir den
Level FLB.



Vorab eine kurze Festlegung: Der Gleichgewichtswert eines Levels oder
einer Rate soll durch einen Querstrich Uber dem Variablennamen gekenn-
zeichnet werden. Anhand der Gleichungen des Lagerhaltungs- und Ferti-
gungsmodel Is kdnnen wir folgende Betrachtungen anstellen:

Im Gleichgewicht muB der gleichgewichtige Sollagerbestand SLB dem
gleichgewichtigen Fertiglagerbestand FLB entsprechen, d.h.

FLB=SLB

weiter gilt immer im Falle eines Gleichgewichtes

——

B=MF#PFLA +500

Durch sukzessives Einsetzen erhdlt man die Gleichgewichtsbedingung
fir FLB

LB=MF#* [ FLB*TABLE (FLB)+25]+500

Da TABLE(FLB) eine nichtlineare Funktion reprdsentiert, muB zur Er-
mittlung von FLB eine nichtlineare Gleichung geldst werden.

Handelt es sich in realistischeren Fillen um'ein System mehrerer,

in vielfdltig nichtlinearer Weise miteinander verkniipfter Level, so
ist ein nichtlineares simultanes Gleichungssystem zur Ermittiung

der Levelanfangswerte zu l8sen.

Angesichts dieser Schwierigkeiten, die mit dem Ldsen derartiger Glei-
chungssysteme verbunden sind, bietet sich ein anderer Weg zur Gleich-
gewichtsermittlung an:

Man simuliert den Zeitveriauf der Level eines Systems bei Unterdrik-
kung der Testfunktion, ermittelt die Gleichgewichtswerte und setzt
diese als Levelanfangswerte ein. Da eine Verdnderung bestimmter Sy-
stemparameter (in unserem Fall MF) jedesmal zu anderen Gleichgewichts-
werten flihrt, ist dieses Verfahren miihselig, wenn Parametermodifika=-

tionen getestet werden sollen.
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in diesem Fall sei das folgende Programm empfohien, welches bewirkt,
daB im Simulationsiauf eine Testfunktion erst nach dem Erreichen des
Gleichgewichtszustandes dem System aufgeprdgt wird und nur von der
gewlinschten Testantwort ein Histogramm erstellt wird.

Folgende Instruktionen sind dem eigentlichen Programm voranzustellen:

MACRO VE1(A)

L VE1.K=VE1.J+(DT/DT)($AA.J-VE1.J)
A $AA.K=A.K

N VE1=0

MEND

MACRO A(X)

A AQK=CLIP(XQK'-XOK|XCK'G)

MEND

MACRO S(LI,GK)

A $Z.X=A((LI.K-VE1(LI.K))/LI.K)
A S.KE=CLIP(2,1,%Z.K,GK)

MEND

MACRO SU(1)

A SU.K=VE1(SU.K)+A.K

MEND

* BRUECKENINSTRUKTIONEN ZWISCHEN MACRO UND PROGRAMMTEIL

A PLTPER.K=CLIP(DT,2,SU(CLIP(1,8,2Z5U.K,AGP)),1)

A 2SU.K=SU(DT*SG .E~-(1-56.K)*VEL(25U.K))

& STE.K=CLIP(1,8,5U(PLTPER.K),AGA+DT)  STEPEINSCHALTER

A IME.K=SWITCH(1,¢,STE.E-VE1(STE.K)-1) IMPULSEINSCHALTER
* .

* STEUERGROESSEN

C GK=0.0001

C AGA=10

C AGP=5

Die Parameter bedeuten:

GK: Kriterium fiir das Erreichen eines Gleichgewichtszustandes, aus-
gedriickt durch die relative Anderungsrate eines Levels zwischen
Periode J und K. Es genligt in der Regel GK=0.0001.

AGP: Anzahl der Perioden, in welchen das Gleichgewichtskriterium er-
fillt sein soll.

AGA: Anzahl der Glejchgewichtsperioden im Histogramm vor Beginn des

Testeinganges.
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Die Variable STE bestimmt im Falle, das der Testeingang eine Sprung-
funktion darstellt, den Beginn des Sprunges, d.h. STE wird nach AGA
Perioden auf Dauer 1. Soll eine Sprungfunktion die Sprunghdhe STH

besitzen, so wird sie durch
STEPF.K=STE. K#STH

beschrieben.

Eine Impulsfunktion IMPF mit der Impulsh8he IPH kann analog durch
IMPF.K=IME.K#IPH
dargestellt werden.

Nach den SteuergrdBen ist vor dem eigentlichen Simulationsmodell ei-
ne Hilfsgleichung flir SG.K zu definieren, in die alle die Level
L1,L2,...,LN des Modells eingehen, von denen man verlangt, daB sie
sich beim Ausltsen der Testfunktionen im Gleichgewicht befinden. S$SG.K

lautet:
A SG.K=S(L1.K,GK)#S(L2.K,GK)#*...%S(LN.K,GK)

Als Anwendungsfall sei .das uns bekannte Fertigungs- und Lagerhaltungs-
model | verwendeﬁ, welchem im Gleichgewicht ein Impuls der HBhe 80 auf-

gepragt werden soll.

MACRO VE1{a)
SIEHE PROGRAMM S. 438

STEUERGROESSEN

AGA=10

AGP=5

GK=0.00081

VCM BENUTZER ZU DEFINIERENDE GLEICHUNG
SG.KE=S(FLB.K,GK)

FERTIGUNGS-UND LAGERHALTUNGSSYSTEM

> OO *""_V"‘)*

} SIEHE PROGRAMM S. 434

A EX . K=25+IMPF.K

& IMPF.K=IME.K*IPH
¢ IPHE=80

RUN



=p

X, IMPF

FLB=

'e
~
Te]

443.8 467.5 531.2 '

4C2.
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Dieses Programm erzeugt das nachfolgende Histogramm.
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Abb. 32.4 Histogramm der Impulsantwort eines im Gleichgewicht befind-
lichen Fertigungs- und Lagerhaltungssystems

B. Geschlossene System-Dynamics-Anséatze

Die urspriinglichen Versionen des Einlevelmodells sowie des Ferti-
gungs- und Lagerhaltungsmodells gehdren zur Familie der gesch]osée-
nen Modelle. Denn sdmtliche Zu- und AbfluBraten.lieBen sich (liber
die Hilfsvariablen) auf andere Level zuriickfilhren. Auch die Weltmo-
delle von FORRESTER und MEADOWS sowie das von FORRESTER verdffent-
lichte Stadtentwicklungsmodell fallen in diese Kategorie. Geschlos-

sene System-Dynamics-Modelle missen in der Lage sein, den histori-
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schen Zeitverlauf des modellierten Systems zu reproduzieren. Oder
anders ausgedrilickt: Die Akzeptierbarkeit eines geschlossenen System-
Dynamics-Modells kann anhand von Ex-post-Prognosen beurteilt werden.
Nach der Formulierung und empirischen Uberpriifung eines geschlosse-
nen System-Dynamics-Modells werden verschiedene Politiken erprobt,
mit denen man versuchen will, unerwlinschte Zeitverl&ufe bestimmter
Modellvariablen im 'positiven' Sinne zu beeinflussen. Im Rahmen des
Weltmodells von MEADOWS zeigte sich beispielsweise, wie in Abbildung
32.5 zu erkennen ist, ein starkes Uberschwingen der Weltbevdlkerung
mit einer anschlieBenden BevSlkerungskatastrophe (overshoot and col-
lapse). Diese unerwlinschte Entwicklung versuchte man durch die Ande-

rung geeigneter kontrollierbarer Parameter abzufangen.
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Abb. 32.5 Prognose der Bevdlkerungsentwicklung ohne (X) und mit Inve-

stitionsstop (*) im Modell von MEADOWS [Einheit M: Millionen]
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In diesem Fall wurde von MEADOWS unter anderem ein Investitionsstop
vorgeschlagen, als dessen Folge, wie aus Abbildung 32.5 zu erkennen,

die Bevdlkerungskatastrophe ausbleiben sollte.

3.3. Analysemethoden von System-Dynamics-Modellen

. Die Analyse von Testantwortmodellen anhand von Simulationen gestal-
tet sich etwa folgendermaBen: Singuldr offene Modelle werden wie
beschrieben in einen Gleichgewichtszustand ijberfijhrt.1 Auf dieser
Grundlage wird dem Modell liber die exogene ZufluBrate eine bestimm=-
te Testfunktion 'aufgepragt', und die Testantwort in Form bestimm-
ter Verl&ufe der endogenen Variablen wird.simu]iert. Durch Variation
der kontrollierbaren Parameter versucht man dann im Rahmen eines Tri-
al-and-Error-Prozesses eine Parameterkombination zu finden, die einer
festgelegten normativen Vorstellung iliber ein 'erstrebenswertes' Sy-
stem- bzw. Modellverhaiten entspricht. Im Falle des erwdhnten Mo-
dells der Sprague-Electric-Company ist die Testantwort der interes-
sierenden endogenen Variablen in Abbildung 17.7 dargestel]t.2 Durch
eine entsprechende Wah]l bestimmter Kontrollparameter gelang es FOR-
RESTER bei gleicher Testfunktion einen wesentlich gedampfteren Ver-

lauf der betreffenden endogenen Variablen zu erreichen.

Im Falle geschlossener Modelle wird in analoger Weise versucht, durch
die zuklinftige Modifizierung bestimmter kontrollierbarer Parameter
einen gegeniiber dem Ausgangsmodell 'wilinschenswerteren' Verlauf einer
oder mehrerer endogener Variablen zu bewirken. Als Beispiel sei der
urspriingliche Verlauf der WeltbevSlkerung im Modell von MEADOWS an-
gefiihrt, der durch die Wah! bestimmter Parameter wesentlich geddmpf-
ter wurde, so daB wie aus Abbildung 32.5 zu ersehen ist, bei einer
tatsdachlichen Realisierung der gewdhlten Parameter eine BevSlkerungs-

katastrophe ausbleiben wiirde.

Das bisher beschriebene Analyseverfahren, welches relativ einfach

und einsichtig ist, dient allein dem Ziel einer wie immer im einzel-

1 Vgl. Seite 433
2 Siehe Seite 134
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nen zu definierenden Modellverbesserung, d.h. normativen Zwecken.

In den vorangehenden Ausflhrungen wurde jedoch ausfiihrlich dargelegt,
daB die Aufdeckung von Implikationen zur GlUltigkeitspriifung von Mo-
dellen mit herangezogen werden kann.3
Dieses Ziel der Implikationenbestimmung miiBte auch bei System=Dynamics-
Modellen zum Tragen kommen. Sie sind ihrer Intention nach zwar Ent-
scheidermodelle, d.h. Modelle, deren Hypothesen nicht aufgrund sta-
tistischer Sch@tzungen, sondern prihér aufgrund subjektiver Experten-
schdtzungen gewonnen wurden.

Aber auch 'subjektive Expertenmodelle' miissen in der Lage sein, die
Vergangenheitsentwicklung der endogenen Variablen eines Systems ange-
ndhert wiederzugeben, d.h. eine befriedigende Ex-post-Prognose zu er-
moglichen.

Im Falle von singuldr offenen Modellen begniigt sich FORRESTER wie

beim Modell der Sprague-Electric-Company mit einem Turingtest, d.h.

er ist der Auffassung, daB man durch einen Vergleich des Modellver-
haltens im Falle einer bestimmten Testfunktion mit dem beobachteten
Systemverhalten zu einem Urteil kommen kann, ob mit dem tatsdchli-
chen Modell ein addquates Abbild des Systems dargestellt werden kann
oder nicht.Ll

Im Gegensatz zu einer so]chen-relativ problematischen Addquanzent-
scheidung gilt im Falle geschlossener Modelle die angendherte Ex-post-
Reproduktion der Beobachtungsvariablien durch das Modell als Akzeptanz-

kriterium.

Um eine zusdtzliche Uberpriifung des Gliltigkeitsanspruches eines Sy-
stem-Dynamics-Modells zu erhalten, liegt es daher nahe, diese mit
Hilfe .bestimmter Implikationenaufdeckungen durchzufihren. Im folgen=-
den wird die Anwendbarkeit und die technische Durchfihrung der Sen-
sitivitdts- und Retrodiktionsanalyse von System-Dynamics-Modellen
beschrieben, deren grundsdtzliche Bedeutung flir die Modellliberpriifung
bereits im ersten Kapitel dargelegt wurde.

Wéhrend die Sensitivitdtsanalyse sowohl filir Testantwortmodelle als
auch fir geschliossene Prognosemodelle erdrtert wird, werden die Me-

3 Vgl. Seite 139ff.
b vgl. Seite 134f.
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thoden der Retrodiktionsanalyse nur an Prognosemodellen aufgezeigt.

3.3.1. Sensitivitdtsanalyse von System-Dynamics-
Modelien

Die Durchfiihrung von Sensitivitdtsanalysen ist flr System-~Dynamics-
Modelle von eminenter Bedeutung, denn wie wir sehen werden, stellen
Sensitivitdtsanalysen einen wesentlichen Priifstein zur empirischen
Akzeptierbarkeit dieser Modelle dar.

Die Parameter eines System-Dynamics-Modells sollen nach FORRESTERs
Auffassung durch subjektive Expertenschdtzungen géwonnen werden. In

diesem Sinne bemerkt er:

"Wir werten auf bestmdgliche Weise das weite Feld der Erfahrung und
der beschreibenden Information aus, welches wahrscheinlich 98 Pro-
zent der wichtigsten Informationen bezliglich des Entscheidungsver-
haltens umfaBt. Die anderen zwei Prozent stammen von den formalen,
statistischen und numerischen Daten.''([52,5.56], Ubersetzung des Ver-

fassers)

Bei der Beurteilung der Zul&ssigkeit eines solchen Modellgewinnungs-
verfahrens liegt der Einwand nahe, daB3 ein Experte wohl kaum eine
Punktschdtzung vornehmen kann, sondern zumeist nur in der Lage ist,
einen Bereich anzugeben, in dem sich der zu schdtzende Parameter
'wahrscheinlich' befinden wird.

Diesem Einwand stellt FORRESTER eine These entgegen, die als die For-

restersche Insensitivitdtshypothese sozialer Systeme bezeichnet wer-

den soll. Sie lautet: Soziale Systeme sind (weitgehend) insensitiv
gegeniiber Parameterdnderungen. Diese Hypothese taucht mehr oder min-

der explizit in vielen AuBerungen FORRESTERs auf. So behauptét er:

""Complex Systems are remarkably inéensitiye to changes in many of the
systems parameters (constants in the equations)' [56,5.110], oder er

bemerkt:

''When structure and theory are handled properly the design of an im-
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proved system becomes surprisingly insensitive to the numerical va-

lues of parameters.' [54,5.508]

Selbst wenn FORRESTER die Existenz einer solchen Insensitivitdtshy-
pothese ablehnen wilirde, miuBte sie doch gelten, um die generelle An-
wendung seiner Konzeption zu rechtfertigen.

Denn wiirde sich herausstellen, daB in einem System-Dynamics-Modell
ein geschdtzter Parameter existiert, dessen geringfligige Anderung

zu einem v6l1lig anderen Systemverhalten flihrt, dann wdre die Akzep-
tierbarkeit dieses Modells auch als ein subjektives Entscheidermo-
dell &duBerst fragwlirdig. Wenn ein System-Dynamics-Modell vorliegt,

so ist die 'Bewdhrung' dieses subjektiven Modells daran zu messen,

ob es trotz groBer Miihen nicht gelingt, plausible Parameterkombina-
tionen zu finden, die einen grundsdtzlich anderen Zeitverlauf der Mo-
dellvariablen bewirken. Das hfer zu Tage tretende Uberpriifungsverfah-
~ren dhnelt POPPERs Vorgehen zur Uberpriifung genereller empirischer
Hypothesen: Gelingt es einem Wissenschaftler trotz ernsthaften Beml-
hens nicht, eine generelle empirische Hypothese zu falsifizieren,
dann wdchst die Bewdhrung dieser Hypothese. Analog gilt: Gelingt es
einem Wissenschaftlier nicht, die Sensitivitdt der subjektiv geschdtz-
ten, unkontrollierten Parameter eines Modells aufzuzeigen, so erhdht

sich die Anwendbarkeitsberechtigung dieses Modells.

A. SensitivitdtsmaBe und ihre Anwendung in System-Dynamics-Modellen

in Ubereinstimmung mit den in der Regelungstheorie verwendeten Sensi-
tivitdtskenngréBen wird auch bei System-Dynamics-Modellen zwischen
den Begriffen der absoluten und relativen Sensitivitdt unterschieden.

Die Levelgleichung eines System-Dynamics-Ansatzes wird in allgemei-

ner Form durch

L.(t) = Li(t-1) + (DT)Fi[L1(t-1),L2(t-1),...,Ln(t-T)]
beschrieben.

Die Umformung

Ly {ed=L, (x=1)
5T = Fi[Ll(t'1)’L2(t'1)""’Ln(t—])]
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fiihrt mit DT-+0 zu der Differentialgleichung

dLi(t)

—Tt-— == FI[L‘] (t)aLz(t)’-"!Ln(t)]

Da Forrester, wie wir spdter sehen werden, tatsdchlich davon ausgeht,
DT sei als infinitesimal klein anzusetzen, sollen die auf seinen An-
satz anzuwendenden SensitivitdtsmaBe vorerst auch unter dieser Annah-
me (Infinitesimalprémisse) formuliert werden.

Als absolute Sensitivitdt der Variablen Li gegeniiber dem Parameter A
wird die Ableitung von Li nach A bezeichnet, d.h.

. dLi(t)
S_(t) = =495 (33.1)

a

Unterstellen wir als einfaches Beispiel ein System-Dynamics-Modell,

welches aus einer linearen Levelgleichung besteht, d.h.
L(t) = L(t-1) + DTIpxL(t-1)] p$0

so ftihrt dies bei Annahme des Infinitesimalfalles zu der Form

Die L&sung dieser Differentialglieichung flihrt zu
L(t). = cePt

Die absolute Sensitivitat Sa(t) wird in diesem Fall durch
s_(t) = cteP®

ausgedriickt.

Die relative Sensitivitdt berlicksichtigt: nicht nur die Infinitesimal
kieine Anderungsrate dL gegeniiber dA, sondern beschreibt die Ande-
rungsraten in Abh3ngigkeit von den Ausgangswerten L(t) und A. Die re-
lative Sensitivitdt zwischen dem Parameter A und dem Level Li ist de-

finiert mit:
dL‘(t) A
t

Sr(t) = ——iT—Y-' 35 " Sa(t) : 1o (33.2)

Auf das oben angeflihrte Beispiel angewendet ergibt sich eine relati-
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ve Sensitvitdt von
s_(t) = ctePt . —ilg = tp
ceP
Die entwickelten Sensitivitdtsbegriffe lassen sich als eine Art Mar-

ginalsensitivitdt interpretieren, da sie die Anderung einer endoge-

nen Variablen im Hinblick auf eine infinitesimal kleine Parameterdn-
derung zum Ausdruck bringen.

Die relative Sensitivitdt entspricht in ihrem Aufbau dem in den Wirt-
schaftswissenschaften oft verwendeten Begriff der Elastizitdt, eine
MaBeinheit, die die relative Ursachendnderung von A mit der durch
sie bewirkten relativen Wirkungsdnderung von L in Verhdltnis setzt.

Geht man von einem allgemeinen System-Dynamics~Modell

dLi(t)
—g— = Fi[Ll(t),Lz(t),...,Ln(t),PPPZ,...,Pr] (33.3)

aus, so verlangt die Ermittlung der absoluten oder relativen Sensi-
tivitdten der Li(t) beziiglich der Parameter Pj die Ldsung von (33.3)

sowie die Ableitung gemdB (33.1)

_9Li(t)

iy an

Die Gesamtheit der Sensitivitdtskoeffizienten Sij(t) bildet die

S

(nxr)-Sensitivititsmatrix S.

Verschiedene Autoren haben Programme zur Gewinnung derartiger Sensi-
tivitdtsmatrizen eines Modells entwickelt [28].

So beschreibt STUBEL eiﬁén etwa 1000 FORTRAN-Instruktionen umfassen-
den ‘Sensitivitétsmodé]lgenerator‘, welcher es .gestattet, eine Sen-
sitivitdtsmatrix der absoluten Sensitivitdten zu berechnen.[194,5.1189]
Da System-Dynamics-Modelle allerdings vorwiegend nichtlinear sind,

ist es in der Regel nicht ohne weiteres méglich, die Differentialquo-
tienten BLi(t)/an, d.h. die absolute Sensitivitdt, durch Differen-
tiation zu bestimmen. lhre Ermittlung setzt voraus, daB die zur Dis-
kussion stehenden System-Dynamics-Modelle der Form (33.3) differen-

zierbar sind, und der Differentialquotient durch einen Formelaus-
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druck beschrieben werden kann.
Diese Voraussetzung ist in System-Dynamics-Modellen aber nicht gege-
ben, wenn diese Stepeingdnge oder auch CLIP-, SWITCH- und Tabellen-

funktionen besitzen.

Dem bisher beschriebenen Verfahren der Ermittlung von Sensitivitdts-
maBen liegt die bereits erwdhnte Infinitesimalprdmisse zugrunde,
d.h. man geht von der Existenz von Differentialgleichungsmodellen
aus. Beachfen wir jedoch, daB es sich bei den vorliegenden Modellen
tatsdchlich um Differenzengleichungsmodelle handelt, dann wird die
Bestimmung der re]ativen und absoluten Sensitivitdten zu einem recht
einfachen Problem, welches ohne Schwierigkeiten von jedem DYNAMO-An-
wender geldst werden kann.

Man definiert zwei DYNAMO-Programme desselben Modells, die sich nur
hinsichtlich des zur Diskussion stehenden Parameters unterscheiden.
Bezeichnet man den Level des urspriinglichen Ansatzes mit L und den
sich bei einer Anderung des Parameters P auf P(1+AR) mit AR>0 erge-
benden Level mit AL, dann bestimmt sich die absoclute Sensitivitdt SA
analog (33.1) | 4

SA.K=(AL.K-L.K)/(P#AR)

und im Falle der relativen Sensitivitdt durch
AL.K-L.K P
i

SR.K = K *P*AR

oder
SR.K=(AL.K-L.K)/(L.K#*AR)

Die Anwendung dieses Verfahrens soll anhand des bereits mehrfach an-

5 Es soll die Sensi-

gefihrten Fertigungsmodells demonstriert werden.
tivitdt des Fertiglagerbestandes FLB bezliglich des Parameters RF er-
mittelt werden. Das hierflir notwendige Programm ist im folgenden an-

gefihrt.

5 Vgl. Seite 421
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UNTERSUCBUNG DER SENSITIVITAET IM FERTIGUNGSMODELL
GRUNDMODELL

BMR.EL=PFLA .E+RF*(SLB.E~FLBR.K)
FZU.EL=DELAY3(BMR.JE,DVZ)
FLB.K=FLB.J+DT*(F2U.JK-FLA.JK)
PFLA .K=SMOOTH(FLA .JK ,APF)
SIB.K=MF*PFLA .E+500

FLA .KL=FAK .X*FLB.K

FAK .K=TABHL (TAFA,FLB.K,8,1000,100)
FLB=450

AENDERUNGSMODELL
ABMR.KL=APFLA.K+ARF.K*(ASLB.X-AFLB.K)
AFZU .EL=DELAY3(ABMR.JK,DVZ)
AFLB.K=AFLB.J+DT*(AF¥2U.JK-AFLA,.JK)
APFIA .K=SMOOTH(AFLA, JX ,APF)
ASLB.K=MF*APFLA .X+500

AFLA .KL=AFAK .K*AFLB.K
AFAK.K=TABHL(TAFPA ,AFLB.K,0,1000,100)
AFLB=450

GEMEINSAME PARAMETER
DVZ=10/APF=2/MF=.25 _
TAFA=0.02/€.05/0.87/8.11/8.18/0.25/6.29/8.32/6.32/86.32/8.32

PARAMETERAENDERUNGEN
RF=0.3

ARF .K=RF*(1+4AR)

AR=8.1 AENDERUNGSRATE DES PARAMETERS

SENSITIVITAETSMASSE
SR.K=(AFLB.K~FLB.K)/(FLB.K*AR) RELATIVE SENSITIVITAET
SA.K=(AFLB.E~FLB.E)/(RF*AR) ABSOLUTE SENSITIVITAET

¥ HHEOPPOF HHEOQ F HZ WS O I 3

SPEC DT=1,LENGTﬁ=50,PLTPER=1.PRTPER=1
PLOT SR=R/SA=A
RUN

Abbildung 33.1 zeigt die absolute und relative Sensitivitit des Pa-
rameters RF bezliglich des Levels FLB bei einer Kndefungsrate des Pa-
rameters von AR=0.1. Man erkennt, daB die Sensitivitdt in der zwan-
zigsten Periode den hBchsten Wert annimmt.

Die relative Anderung des Parameters RF um zehn Prozent flihrt in
Periode 20 zu einer relativen Anderung von FLB um neun Prozent.

Eine Parameterschwankung von RF diirfte sich daher besonders in dem

hochsensitiven Zeitbereich der zwanzigsten Periode auswirken.
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Abb. 33.1 Relative (R) und absolute Sensitivitdt (A) des Levels FLB
bezliglich des Parameters RF in einem Fertigungsmodel]

Besitzt ein Modell n Level und r Parameter, so erhdlt man, wie er-
wdhnt, eine (nxr) groBe Sensitivitdtsmatrix, in der jedes Element die
zeitliche Entwicklung der Sensitivitdt zum Ausdruck bringt. Zur Er-
mittlung dieser Werte sind dabei r Simulationsl&ufe erforderlich.

Die Aufgabe der Infinitesimalpridmisse und die weitere Annahme einer
nichtinfinitesimalen Parameterdnderung fiihrte im dargestellten Bei-
spiel zur Wahl eines Anderungsfaktors von AR=0,1. Dieser Parameter,
welcher im Infinitesimalfall gegen Null konvergiert, darf nicht zu
groB gewdhlt werden. Denn mit wachsendem AR besteht die’Gefahr, daB

AL einen von L soverschiedenen Zeitpfad beschreibt, daB die vor je-
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der Variation unterstellte Gleichsetzung von L mit AL nicht mehr ak-
zeptabel ist. Da man bei einer noch so kieinen Wahl von AR nie weiB,
ob diese Gefahr behoben ist, empfiehlt sich der folgende Weg: Das An-
derungsmodell wird so gestaltet, daB seine Levelvariablen auf die Le-
velwerte des Grundmodelles riickgesetzt werden, wenn die vorgenommene
Parameterdnderung sich zum ersten Male auf die betrachtete Variable
auswirkt.

Zur Durchflihrung der Ricksetzung erhalten die jeweiligen Levelglei-

6

chungen im Anderungsfall die folgende Gestalt.

L AL.K=(AL1J+DT*(AZ.JK°AA.JK)*(1-S.K)+S.K*(L.J+DT*(Z.JK—A.JK))

Flr SMOOTH und DELAY3-Makroinstruktionen kdnnen entsprechende Riick-

setzungsmakros entwickelt werden, deren Aufbau aus dem nachfolgenden
Beispiel zu ersehen ist. Bezeichnen wir die in die Sensitivitdtsana-
lyse eingehende Variable mit VAR,‘so wird der Riicksetzungsschalter S

durch
A S.K=SWITCH(G.1,VAR.K-AVAR.K)

bestimmt. Wenn nach einer Riicksetzung die Variablenwerte miteinander
Ubereinstimmen, dann nimmt es, in Abhdngigkeit von den in der Aus-
wirkungskette liegenden Leveln, unterschiedliche Zeit in Anspruch,
bis die betrachtete Variable wiederum eine Abweichung aufweist. Wah-

rend dieses Auswirkungszeitraumes wird durch

A SRZ.X=(VAR.K-AVAR.K)/VAR.K*AR
A SR.K=SU(SRZ.K-SWITCH(®,1,SRZ.K)*VE1(SR.K))

der vorher ermittelte Wert flir SR ausgedruckt.
Im Anhang ist auf den Seiten 580f. ein Programm des Fertigungsmodells -

zur Sensitivitdtsanalyse mit Ricksetzung angefihrt.

& Im Falle der Verwendung des DYNAMO 11_ und 111 Compilers ist es
nicht zuldssig (was aus dem DYNAMO-Handbuch nicht klar hervorgeht),
daB andere Levelvariablen auf der rechten Seite einer Levelglei-
chung stehen, weil sie unter Umstdnden dann den Zeitindex K besit-
zen. Aus diesem Grunde ist in diesem Fall der Ansatz

L AL.K=(AL.J+DT#(AZ.JK-AA. JK)#(1-S.K)+S. K (LZ.J+DT*(Z.JK-A.JIK))
A LZ.K=L.K

zu wahlen.
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Abbildung 33.2 zeigt den Verlauf der relativen Sensitivitdt des Le-

vels FLB bezliglich RF in beiden Fallen.
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Abb. 33.2 Relative Sensitivitdt des Levels FLB bezliglich RF ohne Riick-
setzung (0) und mit Riicksetzung (1) [Einheit A: 10731

Man erkennt, daB zwischen den relativen Sensitivitdten mit und ohne

Riicksetzung zumindest in den Anfangsperioden Unterschiede im relati-

ven Verlauf auftreten. Eine Riicksetzung diirfte vor allem bei der Un-

tersuchung komplexer nichtlinearer Modelle von Bedeutung sein.

Als Beispiel sei das Weltmodell von MEADOWS angefihrt.

In Abbildung

33.3 ist der zeitliche Verlauf der relativen Sensitivitdt der Bevdl-

kerungshthe POP bezliglich der durchschnittlichen Nutzungsdauer des
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Industriekapitals (ALIC) dargestellt. Man erkennt einen deutlichen
Unterschied im relativen Verlauf der ermittelten SensitivitdtsmaBe.

Der starke Sprung im Jahre 2015 ist auf die Tabellenfunktion von FIE:
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Abb. 33.3 Relative Sensitivitdt der Levelvariablen Bev&lkerung POP
beziiglich des Parameters ALIC im Weltmodell von MEADOWS
mit Riicksetzung (1) und ohne Riicksetzung (0) [Einheit A: 1073]

Die bisherigen Betrachtungen basierten auf dem Konzept der Marginal-
sensitivitdt. Es fragt sich jedoch, ob dieses in der Regelungstheo-
rie Ubliche SensitivitdtsmaB den von FORRESTER angesprochenen Begriff

der Sensitivitdt voll erfaBt.

7 Siehe zum Aufbau des Modells [135]
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FORRESTERs erwdhnte Insensitivitdtshypothese diirfte nur so zu ver-
stehen sein, daB ein System dann als insensitiv zu bezeichnen ist,
wenn zwischen dem durch eine ‘geringfligige’ Parameterdnderung bewirk-
ten Zeitverlauf und dem urspriinglichen Zeitverlauf einer endogenen
Variablen keine groBen Abweichungen auftreten. Bezeichnen wir den
Zeitverlauf eines Levels bei Vorliegen des Parameterwertes P mit L(t)
und im Falle der Parameter3nderung P(1+AR) mit AL(t), so soll als MaB
der durch die Parameterdnderung bewirkten Zeitverldufe wdhrend des
Betrachtungszeitraumes T der Ausdruck

-
tEOIL(t)-AL(t)I

verwendet werden. Ein derartiges MaB soll als Integralsensitivitdt

bezeichnet werden, weil in ihm der Gesamteffekt einer Parameterdnde-
rung beschrieben wird. Zwischen der Integral- und Marginalsensitivi-
tdt eines dynamischen Modells besteht kein zwingendes Abhdngigkeits-~
verhdltnis. '

So ist es beispielsweise denkbar, daB zwei Modelle in einem bestimm-
ten Zeitintervall dieselben Marginalsensitivitdten besitzen, ihre In-
tegralsensitivitdten aber stark voneinander abweichen.

Wenn die Integralsensitivitdten unter der Vorgabe der gleichen Ande-
rungsrate fir yerschiedéne Parameter liberpriift werden sollen, dann
bietet es sich an, als Sensitivitdts- bzw. AbweichungsmaB den Theil-

schen Ungleichheitskoeffizienten zu verwenden.

Nach der Beschreibung der SensitivitdtsmaBe stellt sich die Frage,

in welcher Form ihre Ermittlung zur Stlitzung oder Erhdrtung von FOR-
RESTERs Insensitivitdtshypothese und damit zur GUltigkeitspriifung ei-
nes vorliegenden Modells beitrdgt.

Weist ein Modell beziiglich eines Parameters eine hohe Marginalsensi-
tivitdt auf und zeigt sich, daB dies auch eine hohe Integralsensiti-
vitdt zur Folge hat, dann ist der Gliltigkeitsanspruch des Modells er-
schiittert. |
Zeigt ein Modell kein sensitives Verhalten, so kann man jedoch nicht
den SchluB ziehen, daB das vorliegende Modell im Sinne FORRESTERs als
B Vgl. Seite 9hf.
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insensitiv zu bezeichnen ist.

FORRESTERs Insensitivitdtsbehauptung gilt ndmlich auch flir den Fall,
daBB mehrere Parameter kombiniert ge&ndert werden. Ein System kann im
Sinne seines Insensitivitdsbegriffs nur dann als insensitiv bezeich-
net werden, wenn die isolierte und auch die kombinierte 'geringfligi-
ge' Anderung der Modellparameter keine entscheidenden Ver&dnderungen

des Modellverlaufes zur Folge hat.

Die Integralsensitivitdt eines Modells ist daher prinzipiell fir al-
le mSglichen Kombinationen der um AR*Pi gednderten Parameter zu Uber-
prﬁfen.VWenn diese Kombinationen durchgepriift werden und sich heraus-
stellt, daB das Modell bezliglich aller Variationen insensitiv rea-
giert, dann kann man erst sagen, daB der Gliltigkeitsanspruch des Mo-
dells gestlitzt wird. Im Falle der-Kombination der drei Parameteraus-
pragungen 'positive Anderung', 'negative Anderung' sowie 'unverin-
derte Parameter' erh3lt man bei n Parametern (ohne Beriicksichtigung
des Grundlaufes) 3"-1 mdgliche Kombinationen.
Im bisher behandelten Fall der Integralsensitvitdt wurde von der iso-
lierten Anderung eines Parameters ausgegangen. Die Zahl der isolier-
ten Anderungen umfaBt im Unterschied zur kombinierten Parameterunter-
suchung nur n F&lle. An dem folgenden Beispiel soll nunmehr demon-
"striert werden, daB die Sensitivitdtsbestimmung aufgrund einer iso-
lierten Anderung der Parameter eines Modells keine zwingenden Rlick-
schllisse auf die Sensitivitdten im Falle einer kombinierten Anderung
zul&Bt.

Betrachten wir das einfache Model]l

L L.K=L.J+DT*(2Z.,JK-4.JK)
N 1L=100 '

R Z.KL=A*(L.K-52)

R A.KL=B*(L.E-57)

C A=1/B=1.21

Es besitzt die Parameter A=1 und B=1,21. Unterstellen wir nun eine
positive bzw. negative Anderungsrate von AR=t0,1, so sind folgende

Kombinationen zu {iberprifen:



1) A=(1+AR)#*1 B=1,21
Isolierte 2) A=(1-AR)#1 B=1,21
Anderungen 3) B=(1+AR)#1,21 A=1
L L) B=(1-AR)%1,21 A=1
(" 5) A=(1+AR)*1 B=(1+AR)#1,21
Kombinierte 6) A=(1-AR)#*1 B=(1+AR)#*1,21
Anderungen < 7) A=(1-AR)#*1 B=(1-AR)%1,21
- 8) A=(1+AR)*1 B=(1~AR)#*1,21

Als MaB der Integralsensitivitdt wurden sowohl die aufsummierten ab-
soluten Differenzen zwischen den Zeitverldufen von L als auch der

Theilsche Koeffizient flir einen Zeitraum von 30 Perioden gewdhilt.

Tabelle 33.1 zeigt das Ergebnis der Simulationen:

Isolierte Parameterdnderungen {| Kombinierte Parameterdnderungen
MaB fir Inte- ]
gralsensiti- 1 2 3 4 5 6 7 8
vitat '
st | s 0,062 {0,033 {0,037 |0,08% 0,008 {0,057 | 0,009 | 0,319
Koeffizient ’ ’ ; ? ’ ’ :
'tgolAL(t)—L(t)l 204,34 | 76,6 | 86,9 |292,6 _ 21,5 (121,91 26,2 | 1597

Tab. 33.1 Integralsensitivitdten eines einfachen System-Dynamics-Mo-
dells im Falle isolierter und kombinierter Parametervaria-
tionen (AR=0,1)

Man erkennt, daB im Falle der isolierten und kombinierten Parameter-
anderungen 1 bis 7 nur relativ geringe Abweichungen auftreten, wih-

rend die kombinierte Anderung 8 zu einer hohen Abweichung fiihrt. Die
hier notwendige Uberpriifung der prinzipiell mdglichen Parameterkom-

binationen nimmt im Falle wachsender Parameterzahlen schnell astro-

nomische Dimensionen an. Dieser Umstand erschwert eine entsprechen-

de Untersuchung eines System-Dypamics-Mode]ls in hohem -MaBe.

Wir kdnnen feststellen, daB die oft im Rahmen vthSystem-Dynamics:
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Modellen praktizierte isolierte Bestimmung von Marginalsensitivitéd-
ten zur Glltigkeitsprifung der Modelle wenig beizutragen vermag.

Als geeignetes MaB bieten sich hier die Integralsensitivitdten iso-
lierter und kombinierter Parameter&nderungen an.

Da eine Untersuchung aller mdglichen Parameterkombinationen bei gros=<
sen Modellen kaum durchfilihrbar ist, liegt es nahe, heuristische Such-
verfahren zu entwickeln, mit deren Hilfe man versucht, mdglichst sen-
sitive Parameterkombinationen zu ermitteln. .

Das wohl einfachste Beispiel einer solchen allerdings nie zwingenden
Suchstrategie besteht darin, die Integralsensitivitdten eines Modells
bei isolierter Parameterdnderung zu bestimmen und die Parameter, wel-
che hohe Sensitivitdten aufweisen, in ihren kombinierten Wirkungen
weiter zu untersuchen.

Tabelle 33.2 zeigt die Integralsensitivitdt in Form des Theilschen
Koeffizienten bezliglich der endogenen Variablen Bev&lkerung (POP)

bei verschiedenen isolierten Parametervariationen im Weltmodell von

MEADOWS flir einen Betrachtungszeitraum von 13900 bis 2100.

Nr.| Parameter- {£0,1| Theil. || Nr. | Parameter-| £0,1| Theil.

name Koeff. name - Koeff.
1 RLT - 10,13908{ 9 FIOAC - [0,10232
2 ICOR + [0,13044( 12 | SFPC + [0,02945
3 RLT + 10,12926 | 17 SCOR - 10,02420
4 DCFSN - 10,12635]| 20 LYF + 10,02270
5 F10AC + 10,11391 || 22 ALIC - |0,02106
6 ICOR - 10,11357 || 28 |EAT - 10,00934
Nr.|Parameter- |+0,1 |Theil, || Nr.| Parameter-| *0,1{ Theil.

name Koeff, name Koeff.
31 | PPOL70 - 10,00582|f 54 IMEF - 10,00192
35 SAD + 10,00368]| 60 ALAI - 10,00076
38 LPD + 10,00335]| 62 ALLN - ,00022
k1 HSID + |0,003021 67 LUFDT - [0,00005
46 FIPM + [0,002401f 70 uiLoT + 0,00004
51 PPID - l0,00203|| 72 1070 - p,00000

Tab. 33.2 Integralsensitivitdten des Weltmodells von MEADOWS im Fal-
le isolierter Parametervariationen (AR:0,1)



458

Es zeigen sich extreme Unterschiede in der Sensitivitdt des Modells
bezliglich verschiedener Parameter. Als sehr sensitiv erweist sich
das Modell u.a. bezliglich der Parameter des Investitionsbereiches
FI0AC {5) und ICOR (2). Wie spiter im einzelnen dargestellt werden
wird, fﬁhft die kombinierte Anderung dieser Parameter zusammen mit

dem Parameter ALIC (22) zu einem extremen Mode]lverhalten.9

B. Sensitivitdtsanalysen bei einer Parametrisierung von Tabellenfunktionen

Bisher wurden Sensitivitdtsanalysen ausschlieBlich auf Parameter an-
gewendet, die in Form von Konstantengleichungen definiert waren. Die
sogenannten Tabellenfunktionen enthalten jedoch dariliber hinaus Pa-
rameter, welche in starkem Umfang das dynamische Verhalten eines Sy-
stem-Dynamics-Model s bestimmen. Es fragt sich daher, auf welche Wei-
se derartige Tabellenfunktionen einer parametrischen Sensitivitdts=-
analyse zugdnglich sind.

Die stiickweise linearen Verldufe einer Tabellenfunktion lassen sich
im einzelnen durch eine lineare Funktion parametrisch beschreiben.
Die drei Ordinatenstlitzpunkte enthaltende Tabellenfunktion in Abbil-

dung 33.4 wird beispielsweise durch die Parameter Al, A2, tga und

ouT

I r
L

Abb. 33.4 Parameter einer Tabellenfunktion

IN

9 Vgl. Seite 479fF.
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tgB beschrieben.

Enthdlt eine Tabellenfunktion n Ordinatenstiitzpunkte, so kann sie
durch 2n-2 Parameter gekennzeichnet werden. Durch die Hinzunahme para-
metrisch erfaBter Tabellenfunktionen wird der Parameterraum eines Mo-
dells wesentlich erweitert. Das Weltmodell von FORRESTER enthdlt bei-
spielsweise neben 24 Parametern in Form von Konstantengleichungen 21
Tabellenfunktionen. Die Ermittlung kombinierter Parametersensitivi-
téteﬁ wiirde damit wesentlich aufwendiger. Zur Verminderung des Para-
meterraumes liegt es nahe, vorgegebene nichtlineare Funktionsverldu-

fe nicht durch Polygonziige, sondern durch Polynome zu approximieren.

Die in DYNAMO verfligbare Tabellenfunktion TABPL (statt TABLE) fiihrt
zu der Entwicklung eines Polynoms, welches durch alle vorgegebenen
Ordinatenstlitzpunkte flihrt. Bei n Ordinatenstlitzpunkten ist im all-
gemeinen. jedoch ein Polynom der Form

n=1t

2
Y = a, + a,X + a X +...+ anx

1 2 3
erforderlich, d.h. die Tabellenfunktion wird durch n Parameter ars
Bpseerd beschrieben. Auch in diesem Fall wird eine Sensitivitdts-
untersuchung durch die hohe Zahl der Parameter erschwert.

Nach Angaben von DAY [36,5.268] ist die Funktion
Y = K(x-a,)B1(a,-x)B2

in der Lage, eine Fllle von typischerweise in System-Dynamics-Model~
len verwendeten nichtlinearen Verldufen zu beschreiben. Als Beispiel
sei die Approximation der nichtlinearen Funktion in Abbildung 33.5

angeflihrt [36,5.269], welche mit a1=0 und K=1 durch die Funktion

¥ = x2189(5.xy2,032

beschrieben wird.

Durch die Einfiihrung derartiger Funktionen besteht die Moglichkeit,

den Parameterraum des Modells zu reduzieren, um damit die Vorausset-
zungen fir eine wirtschaftlich noch vertretbare Sensitivitdtsanaly-

se zu schaffen.
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Abb. 33.5 Approximation eines Polygonzuges durch einen geschlosse-
nen Funktionsausdruck

C. Parameterstochastisierung und Sensitivitat

In System-Dynamics-Modellen geht man von deterministischen Parame-
tern aus. Diese Annahme ist nicht ganz realistisch, denn tatsdchlich
werden diese Parameter zum grdBten Teil anhand von Sphétzungen er-
mittelt. Der eingesetzte Parameterwert kann daher allenfalls im Sin-
ne eines wahrscheinlichsten Wertes gedeutet werden. Zeigt eine Sen-
sitivitétsanq]yse nunmehr, daB die geringfligige Variation der Modell-
parameter zu nur unbeachtlichen Auswirkungen fiihrt, so bezeichnet man
das Modell als insensitiv. Ist ein Modell insensitiv, so folgt daraus,
daB geringfligige Parameterschwankungen die Vér1§ufe der endogenen Va-
riablen nur wenig beeinflussen. Aus dieser Konsequenz kann man wie-
derum den SchluB ziehen, daB das Modell empirisch zutreffend sei.

Die GlUltigkeit dieses Schlusses basiert auf der Voraussetzung, daB
aufgrund der festgestellten Insensitivitdt der nur geringfligig ab-
weichende 'richtige' Parameterwert zu einem dhnlichen Zeitverlauf

fuhrt.

Zur empirischen Uberpriifung eines Modells kann man also auch von ei-
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ner etwas anders gelagerten Argumentation ausgehen. Man sagt: Die Pa-
rameter des Modells sind Schdtzwerte, die prinzipiell durch eine be-
stimmte subjektive Wahrscheinlichkeitsverteilung des Modellentwick-
lers beschrieben werden k&nnen. Setzt man diese oder auch statistisch
geschdtzte Wahrscheinlichkeitsverteilungen statt der Parameter in das
Modell ein, so erhdlt man ein stochastisches Modell, dessen Simula-
tion zur Gewinnung des zeitlichen Verlaufes einer Wahrscheinlich-
keitsverteilung der interessierenden endogenen Variablen fihrt.
Hinsichtlich der empirischen Relevanz des entwickelten Modells kann
man die Behauptung aufstellen: je geringer die Streuung der ermittel-
ten Wahrscheinlichkeitsverteilungen ist, um so hdher ist die Gewdhr
der empirischen Model laddquanz des entsprechenden deterministischen
Modeils.

Zur lllustration dieser Uberlegungen betrachten wir das schon mehr-
fach angefiihrte Fertigungs- und Lagerhaltungsmodell. Die Parameter
RF, MF sind kontrollierbar, wdhrend das fiir die Parameter DVZ und
APF nicht der Fall ist. Von ihnen wird angenommen, daB ihre subjek-
tiven Schdtzwerte im Intervall DVZ+SF#DVZ bzw. APF:SF#*APF einer
Gleichverteilung unterliegen. Die urspringlichen Parameter werden

daher durch folgende Hilfsvariabien ersetzt:

A ZDVZ.K=STF(SF)*DVZ
A ZAPF.K=STF(SF )*APF

Die Makrofunktion STF(SF) dient zur Auswahl der Zufallszahlen und

ist durch
MACRO STF(SF)
A STF.K=SAMPLE(@,102,1+2*SF*NOISE())
MENT

definiert.

Die Stochastisierung der Parameterwerte der Konstantengleichungen
188t die in die Tabellenfunktionen eingehenden Parameter auBer acht.

Sie sollte daher auch auf die Tabellenfunktionen ausgedehnt werden.
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Dies erreicht man durch die folgende Verknlipfung des STF-Makros mit

einer Tabellenfunktion:

A Y.XK=STF(SF)*TABEL(YTAB,X.X,XL,XH,XINCR)

in den beiden folgenden Abbildungen ist der aus flinfzig Simulationen
geschdtzte Verlauf des Erwartungswertes und der obersten und unter-
sten Extremwerte der Realisationen des auf Seite 421 beschriebenen

Modells eines Fertigungs- und Lagerhaltungssystems dargestellt.

Abb. 33.6 Erwartungswert (E) sowie minimaler (U) und maximaler (0)
Wert der Realisationen der Levelvariablen FLB des Ferti-
gungsmodells bei einer Parameterstreuung von * 10 Prozent
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Abb. 33.7 Erwartungswert (E) sowie minimaler (U) und maximaler Wert (0)
der Realisation der Levelvariablen FLB der Fertigungsmodells
bei einer Parameterstreuung von t 20 Prozent

Die Frage, bei welchem Wert von SF die Streuspanne der Verldufe von
FLB noch akzeptiert werden kann, hdngt von den Anforderungen ab, die
der Modellentwickler an die Genauigkeit der von dem Modell zu prog-

nostizierenden Variablenverldufe stellt. Das beschriebene Verfahren

bietet dem Modellentwicklier die Grundlage, von den vorgegebenen .Un-

sicherheiten der Parameter auf die Unsicherheiten der Prognose zu

schlieBen.

D. Sensitivitdtsuntersuchungen am Beispiel des Weltmodelis von Meadows

Die vorgetragenen Methoden sollen nunmehr am Beispiel des von MEADOWS

entwickelten Weltmodells demonstriert werden.



Zuerst wird die Anwendung der kombinierten Verdnderungen bestimmter
‘Parameter in ihren Auswirkungen auf die Verldufe der endogenen Varia-
blen aufgezeigt. Dieser Untersuchung schlieBt sich eine Parametersto-
chastisierung des MEADOWS-Modells an.

Abbildung 33.8 beschreibt den sogenannten Standardlauf des Weltmo-
dells
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Abb. 33.8 Grundversion des Prognosemodells der Weltentwicklung von
MEADOWS. Symbolbedeutung: P: BevSlkerung, D: Todesrate,
B: Geburtenrate, F: Nahrungsmittel [Einheit B: Milliarden]

Wie bereits erwdhnt, wies die Variable POP in bezug auf die Parame-

0

ter FIOAC und ICOR eine hohe Integralsensitivitdt auf.1 Beide Para-

10 Siehe Seite 458
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meter stammen aus dem lnvestitionsbereich. Als weiterer Parameter
des Investitionsbereichs wird ALIC mit in die Betrachtung einbezo-
gen. ALIC repradsentiert die durchschnittliche Nutzungsdauer des in-
dustriekapitals und wurde von MEADOWS mit 14 Jahren angesetzt. ICOR
beschreibt den Kapitalkoeffizienten und wurde mit 3 bestimmt, wah-
rend die Konsumquote FIOAC von MEADOWS mit 0,43 angenommén wurde.
in Abbildung 33.9 ist der Verlauf derselben Graﬁen im Falle einer

Anderung der drei erwdhnten Parameter um 10 Prozent dargestellt.
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Abb. 33.9 Grundversion des Weltmodells von MEADOWS bei einer Ande-
rung der Parameter ALIC, ICOR und FIOAC um 10 Prozent.
Symbolbedeutung: P: BevSlkerung, D: Todesrate, B: Gebur-
tenrate, F: Nahrungsmittel [Einheit B: Milliarden]



L6

Genauer gesagt: FIOAC und 1COR wurden um 10 Prozent erhdht, ALIC in
gleichem AusmaB erniedrigt. Das Ergebnis ist liberraschend. Die Be-
v8lkerung wichst nur geringfligig von 2 Milliarden im Jahr 1900 auf
unter 4 Milliarden im Jahre 2100. Ein Zusammenbruch findet filir die
Zukunft nicht statt, und die bisherige Entwicklung wird von dieser
Modellversion nicht reproduziert. Wenn dieses Ergebnis aber allein
schon durch eine zehnprozentige Anderung von drei Parametern erreicht

wird, dann ist damit der Nachweis erbracht, daB das Weltmodell hoch
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Abb. 33.10 Erwartungswert (E) sowie die Extremwerte (U) und (0) des
Bevblkerungslevels POP in MEADOWS' Weltmodell im Falle
einer Parameterstreuung von fiinf Prozent
[Einheit B: Milliarden]
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empfindlich reagiert und damit seine Akzeptierbarkeit fraglich wird.

MEADOWS stellt in seiner Untersuchung fest: '"... we have come to the

conclusion that the standard behaviour mode of overshoot and decline

exhibited by the model is remarkably insensitive to variations in

the estimates of most system parameters.' [134,5.509]

MEADOWS' SchluB wiirde zu einer Bestdtigung der FORRESTERschen Insen-

sitivitdtshypothese flihren. Doch angesichts der vorgetragenen Befun-

de diirfte es fraglich sein, ob dieser SchluB zu akzeptieren ist.
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Abb. 33.11 Erwartungswert (E) sowie Extremwertrealisationen (U) und

(0) des BevBlkerungslevels in MEADOWS' Weltmodell im Fal-
le einer Parameterstreuung von zehn Prozent
[Einheit B: Milliarden]
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Wenden wir uns nunmehr der Stochastisierung der Parameter des Welt-
modells von MEADOWS entsprechend dem eingangs beschriebenen Verfah-
ren zu. In den Abbildungen 33.10 und 33.11 ist der Verlauf der Er-
wartungswerte sowie der Extremrealisationen der Levelvariablen 'Be-
vﬁlkerung' des Modells bei einem Streufaktor von 0,05 und 0,1 auf

der Basis von 50 Simulationsldufen dargestellt.

Es zeigt sich, daB selbst im Falle einer Parameterstreuung von nur
flinf Prozent die Zeitpfade der Bevdlkerungsentwicklung einen so
unterschiedlichen Verlauf aufweisen, da das von MEADOWs apostro-
phierte Overshoot~and-Collapse-Verhalten nicht generell zum Aus-
druck kommt. Mit zunehmender Zeit wird zudem die Streuung der prog-
nostizierten Werte der Bevdlkerungsentwicklung so hoch, daB eine
praktische Verwertbarkeit dieser Ergebnisse kaum mehr mdglich er-
scheint.

Geht man davon aus, déB das beschriebene Verfahren einer Parameter-
‘stochastisierung als ein Test der FORRESTERschen Insensitivitdts-
hypothese anzusehen ist, dann wilirde seine These auch in diesem Fall
widerlégt.

Angesiéhts dieéer Ergebnisse fragt es sich; ob FORRESTERs lInsensiti-
vitatshypothese noch zu halten ist.

lhre Ablehnung wlirde dazu fiihren, daB FORRESTER'éeinen Standpunkt
gegeniiber der ‘GUiltigkeitspriifung von System-Dynamics-Modellen zu
revidieren hdtte. Auf diesen Problemkomplex werden wir spdter zu-
rickkommen.

Die vorstehenden Untersuchungen machen deutlich, daB es im Rahmen
der Analyse eines System-Dynamics-Modelles stets empfehienswert ist,
zur Beurteilung seines Modellverhaltens die Integralsensitivitdten

zu untersuchen und eine Parameterstochastisierung durchzufiihren.
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3.3.2. Retrodiktionsanalyse von System-Dynamics-
Modelien

A. Grundlagen der Retrodiktion eines System-Dynamics-Modelis

Es liegt die Frage nahe, ob es im Rahmen geschlossener System-Dyna-
mics-Model le méglich ist, eine Retrodiktion durchzuflihren. Wie be-
reits im einzelnen erdrtert, dient die Retrodiktion eines Modells
der Aufdeckung falsifizierbarer Implikationen und damit.einer Ableh-

nung oder Modifizierung des vorliegenden Ansatzes.

Die Durchfiihrung einer Retrodiktion wirft eine Reihe technischer Pro-
bleme auf, mit denen wir uns im folgenden befassen wollen. Geschlos-
sene System-Dynamics-Mode]le'wie die Weltmodelle von FORRESTER und
MEADOWS oder das Stadtentwicklungsmodell von FORRESTER zeichnen sich
stets durch Niveaustabilitdt aus.

Es ist einleuchtend, daB von einem im Gleichgewicht befindlichen Sy-
stem keine Retrodiktion vorgenommen werden kann.

Das gleichgewichtige Einlevelimodell

L LEV.E=LEV.J+DT*(ZUF.JK-ABF.JK)
A ZUF.JK=90

A ABF.JK=0.3*LEV.K

N LEV=300

besitzt béispielsweise einen konstanten Levelwert LEV=300, und es ist
nicht méglich, zu ermitteln, welche 'Vergangenheit' zu diesem Gleich-
gewicht geflihrt hat. Im Prinzip kommen vielmehr unendlich viele Zeit-
pfade in Frage. Betrachten wir beispielsweise den Gleichgewichtspfad
des Einlevelmodells LEV=300 und die Zeitpfade der Levelwerte, welche
von Periode 0 zu diesem Gleichgewichtspfad hinflihren, dann zeigt sich
folgendes Problem: Simuliert man von Levelwert A](O) den Zeitpfad des
Systems bis zu einem Zeitpunkt i und erhdlt den Levelwert Al(i) und
fihrt von A1(i) ausgehend eine Retrodiktion bis zur Periode 0 durch,
dann ist es moglich, daB wegen des Auftretens von Rundungsfehlern

der Wert A1(O) nicht mehr reproduziert werden kann. Mit wachsendem i

und daher groBerer Anndherung an den Gleichgewichtspfad steigt die
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Wahrscheinlichkeit einer Abweichung gegenliber dem urspriinglichen Wert.
Denn die Zeitpfade 'dréngen' sich damit immer stdrker um den Gleich-

gewichtspfad, so daB schon geringe Rundungsfehler die Riickrechnung auf

LEV ‘

300

A1(o>

£ S
=

? 2
0 5 10 ; TIME

Abb. 33.12 Zeitpfade des Einlevelmodells bei unterschiedlichen An-
fangswerten von LEV(0)

einen anderen Zeitpfad flihren, dessen Levelanfangswert sich wesent-
lich von Al(O) unterscheidet mit der Folge, daB eine Retrodiktion
sinnlos wird.

Dieser Einwand ist grunds&tzlich richtig; entscheidend ist jedoch,
von welchem Grad der Anndherung an einen Gleichgewichtspfad die Re-

trodiktion zu inakzeptablen Ergebnissen fiihrt.

Bevor dieser Frage nachgegangen wird, sollen anhand von Abbildung

33.13 einige Begriffe erldutert werden:

Mit der Anfangsprognose wird eine Variable bis zum Zeitpunkt TIMA+AAP
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Abb. 33.13 Darstelliung einiger Begriffe zur Anwendung von Retrodik-
tionen

simuliert. Unter Anwendung einer Retrodiktion wird die Variable dann

(auch tiber TIMA hinaus) zurlickverfolgt. Eine sich anschlieBende Kon-

trollprognose Uberpriift, ob der Ausgangswert im Zeitpunkt TIMA und
die sich aﬁschlieBenden Werte der Anfangsprognose wieder reproduziert
wérden.

Es soll ein Verfahren aufgezeigt werden, mit dem man in vielen Fdllen
Retrodiktionen von System-Dynamics-Modellen durchfiihren kann.

Un die Probleme einer Retrodiktion zu verstehen, gehen wir gedanklich
von einem Ansatz aus, in dem durch sukzessives Einsetzen von Raten
und Leveln ein System-Dynamics-Modell bis auf die Gleichungen seiner

LevelgrdBen reduziert wird.
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Substituiert man s&mtliche in einem geschlossenen System-Dynamics-
Modell auftretenden Hilfsvariablen in den Ratengleichungen, so er-

hd1t man Ratengleichungen der Form
R.KL = FILT.K,L2.K,...,LN.K]
oder bei der zeitlichen Verztgerung um eine Periode
R.JK = F[L1.J,L2.,...,LN.J] | (33.4)

d.h. die Raten lassen sich als eine Funktion der um eine Periode ver-
zd8gerten Levelwerte beschreiben. Setzt man die durch (33.4) gewonne-
nen Ratengleichungen in die Levelgleichungen ein, so reduziert sich

das System auf die Form:

L1.K = L1.J + DT(G1[L1.J,L2.J,...,LN.J])
L2.K = L2.J + DT(G2[L1.J,L2.J,..:,LN.J]) (33.5)
LN.K = LN.J + DT(GN[L1.J,L2.J,...,LN.J])

wobei Gi[ ] eine beliebige funktionale AbhZngigkeit zum Ausdruck
bringt. Ist eine Retrodiktion vorzunehmen, so sind die Levelwerte

Lo Ko b Ky on s LR K gegeben ghd-die Werte L1 . L2y ensyLlild zu-er=
mitteln. Da die Funktionen Gil ] fast immer nichtlinear sind, ist

zur Bestimmung der Levelwerte ein nichtlineares s{mulfanes Gleichungs-
system zu 18sen, bei einer Retrodiktion von AR Perioden also damit
AR/DT-mal. A

Die Losung simultaner nichtlinearer Gleichungssysteme mit Hilfe der
GauB-Seidel-Methode wurde bereits er’drtert.H Wie geschildert, hdngt
-die Konvergenz des Verfahrens unter anderem davon ab, welche der Va-
riablen L1.J,L2.J,...,LN.J in jeder Gleichung als unabh&ngige Variab-
len gewdhlt werden. Aus rechentechnischen Griinden wdre es sehr er-
strebenswert, daB eine lteration schon dann konvergiert, wenn man in
Gleichung (33.5) den jeweils ersten Levelwert auf der rechten Sei-

te als unabh&ngige Variable wdhlt, d.h. von folgendem lterationsan-

satz ausgehen kdnnte:

11 Vgl. Seite 343f.
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L1.J = L1.K = DT(G1[L1.J,L2.J,...,LN.J])
L2.J = L2.K - DT(G2[L1.J,L2.J,...,LN.J])

(33.6)
LN.J = LN.K = DT(GN[L1.J,L2.J,...,LN.J])

Flir diesen Fall wurde vom Verfasser ein Programm entwickelt, wel-
ches es geétattet, bei einer geringfligigen Anderung der Levelglei-
chung von einem System eine Vorwdrtsprognose, Retrodiktion und Kon-
trollprognose durchzufiihren. Das im Anhang auf Seite 582f. angefiihrte
Programm stellt den sogenannten Retrodiktionsvorspann dér. Er ist
stets dem Arbeitsprogramm voranzustellen, d.h. dem Programm, welches
das zu retrodizierende Modell beschreibt.

Die im Retrodiktionsvorspann definierte Variable TIM beschreibt die
Perioden wdhrend der einzelnen Phasen. TIM 13uft vom Anfangswert von
TIME, genannt TIMA, bis zum Ende der Anfangsprognose TIMA+AAP und

von hier bis zum Ende der Retrodiktion TIMA+AAP-AR sowie wdhrend der
Kontrollprognose bis TIMA+AAP-AR+AKP. DT kann beliebig gewdhlt wer-
den, doch ist zu empfehlen, DT=1/2"(n=1,2,...) zu setzen.]z Mit der
Konstanten IG wird die Zahl der lterationen in einem Rétroschritt
festgelegt, nach der das Verfahren abgebrochen werden soll, weil of-
fenbar keine Konvergenz des Prozesses zur Bestimmung einer Ldsung von
(33.6) vorliegt. Falls die Iterationsgrenze 1G in einem Retroschritt
Uberschritten wird, kann man sich mit der Konstantenspezifizierung
ANl die nachfolgenden ANI-Werte ausdrucken lassen, um zu beurteilen,
ob die Variablenwerte noch konvergieren, was im positiven Fall dazu
fihrt, daB IG grdBer zu wdhlen ist. Wird IG lberschritten und ist
ANI+0 gewdhlt, so z&hlt TIM wieder von 1 an bis ANI. Die Genauigkeits~
grenze der lteration hdngt von der Genauigkeit ab, mft der man die
Ausgangswerte reproduzieren will. Die lteration bricht ab, wenn AQ

flir alle Level i=1,...,n die Bedingung

12 Dies gilt allgemein flir Simulationen mit DYNAMO, siehe DYNAMO News-
letter, PRAG/1, S.4, Pugh Roberts Associates Inc. 1973. Nur in die-
sen Fdllen ist DT bindr voll darstellbar. Bei einer anderen Wahl
von DT ist TIME bei langen Simulationen wegen starker Rundungsfeh-
ler nicht mehr ganzzahlig, was zu Ungenauigkeiten fihrt.



Li (v)-—Li (v=-1)
LI<V)

AQ Zl

erflillt, wobei mit v der v-te lterationsschritt gekennzeichnet wird.
Die Verschdrfung von AQ wird durch die Anzahl] der Stellen begrenzt,
mit der die Variablen auf der betreffenden Rechenanlage beschrieben
werden. Je niedriger man AQ wdhlt, um so mehr erhtht sich die Anzahl
der lterationen pro Retroschritt. Die Anzahl der Iterationen wdhrend
eines Schrittes JK kann durch (TIME.K-TIME.J)/DT berechnet werden.
Die GrdBe AA wird als Briickenvariable bezeichnet, weil sie die Ver-
knlipfung zu dem eigentlich zu retrodizierenden Modell beschreibt.
Die Variablen AL1,...,ALN korrespondieren jeweils mit einem Level
L1,...,LN des programmierten Modells, in welchem allein die Level-

gleichungen geringfligig gedndert werden. Eine Levelgleichung der Form

L L.K=L.J+DT*(ZUF.JK-ABF.JK)

wird durch

A L.K=L.J+DT*S.J*(ZUF.JK~ABF.JK)+RL.J
A RL.E=RE(L.X,AQ,AL.K,R.K,52.K)

ersetzt. RE( ) ist eine Makrofunktion, die im Retrodiktionsvorspann
definiert ist. Alle Variablen und Konstanten, die hier neu auftreten,

stammen bis auf AL und L auch aus dem Retrodiktionsvorspann.

L ist eine Eingangsgr&Be des Retrodiktionsmakros RE( ) und ist mit
dem entsprechenden Level identisch, in dessen Definitionsgleichung

RE ( )‘Uber RL eingeht. AL ist eine AusgangsgrdBe des Retrodiktions-
makros und zweckm&Bigerweise so zu benennen, daB dem entsprechenden
Levelnamen ein A vorangestellt wird. Die auf diese Weise durch die
Retrodiktiohsmakros fiir jeden Level des Arbeitsprogrammes definier-
ten Variablen AL1,...,ALN gehen in die erwdhnte Briickengleichung ein.

Die GroBe LENGTH wdhlt man zweckmdBigerweise nach dem Richtwert:
LENGTH=T IMA+AAP+AR* | G+AKP

Dieser Wert bildet die obere Grenze der Simulationsl3nge, da die

htchste lterationszahl in einem Retrodiktionsschritt in der Regel



475

nicht bendtigt wird. Bei der Retrodiktion des Weltmodells .von FORRE-
STER betrug die durchschnittliche Zahl der lterationen pro Retrodik-
tionsschritt beispielsweise 13. |

Als Beispiel sei das erdrterte nichtlineare System-Dynamics-Modell
eines Fertigungs- und Lagerhaltungssystems angefiihrt. Die DELAY3-
und SMOOTH-Makrofunktionen sind durch entsprechende Retrodiktions-
makros ersetzt, die im Retrodiktionsvorspann definiert sind. Die er-
sten beiden Argumente entsprechen den Formalparametern der Ublichen
DELAY3- und SMOOTH-Funktionen, wdhrend die nachfolgenden Argumente

Variablen enthalten, die aus dem Retrodiktionsvorspann stammen.

* RETRODIKTIONSMODELL
} SIEHE ZU DIESEM MODELLTEIL SEITE 582f.

BRUECKENINSTRUKTIONEN
AA K=AALEV.K*AFLB.K*ASM.K

FERTIGUNGS- UND LAGERHALTUNGSSYSTEM
BMR.KL=PFLA.K+RF*(SLB.K-FLB.K)
FZU.KL=DELY3R(BMR.JK,DVZ,AALEV.X,R.K,S2.K,S5.K,AQ)
FLB.K=FLB.J+DT*S .J*(FZU.JK-FLA.JK)+RFLB.J
RFLB.K=RE(FLB.K,AQ,AFLB.K,R.K,S2.K)
PFLA.K=SMOTHR(F¥LA.JK,APF,ASM.K,R.K,S2.K,5.K,AQ)
SLB.K=MF*PFLA.K+500

FLB=450

RF=2.3/DVI=19/APF=2

FLA.KL=FAK.K*FLB.K

FAK .K=TABHL(TAFA,FLRB.X,0,1000,100)

TAFA=0.02/0.65/6.67/0.11/0.18/8.29/6.32/0.32/0.32/8.32/0 .32
MF=0.25

W OO b b i %

UN

Wie bei DYNAMO-Simulationen Ublich, wird von.einer unverdnderlichen
Grundversion ausgegangen, und die Parameterverdnderungen werden im
Rerun eingegeben. Wir wdhien abweichend von den Parameterfestlegun-
gen des Retrodiktionsvorspannes die Werte:

AAP=5, AR=8, AKP=6, DT=1, 1G=50, LENGTH=300

und erhalten den folgenden Ausdruck:
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TIME TIM PFLA BMR FZU ‘FLB

E+G0 E+Q20 E+00 E+206 E+20 E+p@

N7 0230 Q.75 119.€1 119.61 459,080

Anfangs-. i. 1.0000 96.75 112.33 1198.81 472.26

prog- 2. 2.000¢ 1€2.82 115.82 118.61 482,37

— 3. 3.0000 108.73 120.86 119.01 486.74

AAP=5 4, 4.0000 112.95 124.85 118.83 488.58

5., 5.@000 115.59 127.51 118.54 489.17

32. 4.0000 112.95 124.85 118.83 488,58

Re- '61. 3.0000 108.73 12¢.86 119.61 486.74

tro- g4, 2.0000 102.82 115.82 119.@1 482.37

dik- 129. 1.2000 06.74 112.32 119.81 472,26

tion 167, .00080 96.73 118.89 119.01 450 .91

AR=8 204, -1.0000 116.56 152.15 116.41 410 .50

240. -2.0000 174.34 226.45 99.41 369.88

284, -3.0000 270.86 317.45 35.28 412.41

Rt 285, -2.00P0 174.34 226.45 998.41 360,88

e 286, -1.0000 116.56 152.15 116.41 410.50

prog- 287 . 0009 g6.73 118.89 119.91 450 .01

_— 288. 1.0000 96.74 112.32 119.91 472.26

AKP=6 288. 206@0@ 182 .82 115.82 1190@1 482037
29¢0. 3.909@¢ 1¢8.73 120.86 119.91

486.74

Es zeigt sich, daB mit der Kontrollprognose die Levelwerte von TIM=3

in der Anfangsperiode voll reproduziert werden. Das Verfahren hat

sich also in diesem Beispiel bewdhrt. Zu einer ausgewogenen Wirdi-

gung muB man sich allerdings vor

Augen fltihren, daB es nicht zwingend

zu einer Retrodiktion flihrt. Die Retrodiktion erfolgt durch eine suk-
zessive L8sung des nichtlinearen simultanen Gleichungssystems (33.6).
Es ist durchaus modglich, daB ein derartiges System mehrere L&sungen
besitzt, so daB auch ein anderer Zeitpfad mdglich wdre. Ahnliche Pro-
bleme gelten flir die L&sungen nichtlinearer interdependenter Modelle,
die, wie erwdhnt, in der Okonometrie in groBem Umfang verwendet wer-
den. Hier wie dort kann man jedoch davon ausgehen, daB bei nicht zu
starken zeitlichen Anderungen der Levelwerte in der Realitdt der al-
lein relevante Zeitpfad ermittelt wird.

Es zeigt sich, daB im obigen Fall die Retrodiktion zur Reproduktion
des Zeitpfades fihrt. Auch fir graBere‘Perioden und DT<1 ist das Ver-
fahren anwendbar.

Wahlt man DT=0.25, AAP=10, AR=10, AKP=10, PFA=2, PFR=2, PFK=2, [G=50
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und LENGTH=100, so ergibt sich

TIME TIM  PFLA BMR FIU FLB
E+00  E+0@  E+@6  E+@0  E+00 E+00
.0 L0008 96.75 119.81 119.81 450 .00

2. 2.000 103.61 117.28 118.98 478.18

4, 4.900 111.02 123.43 118.77 486.39

6. 6.000 115.44 127.53 118.78 488.56

8. B8.000 117.48 129.41 119.48 489.62
16, 10.008 118.67 130.20 120.86 491.24
21. 8.000 117.48 129.41 119.47 489.61
33, 6.080 115.45 127.54 118.78 488.56
45. 4.000 111.94 123.45 118.76 486, 40
58.25 2.000 1¢3.02 117.25 118.91 478.33
74.25  .000 96.31 118.23 118.79 450 .99
76.25 2.006 1€3.02 117.25 118.91 478.33
78.25 4.00¢ 111.94 123,45 118.76 486.39
80.25 6.800 115.45 127.54 118.78 488.55
82.25 B8.000 117.48 129.41 119.47 489,61
B4.25 10.000 118.67 130.20 120.85 451 .24

d.h. die gesamten Werte der Kontrollprognose werden wieder rekonstru-
iert. Dies geschieht Uber die L8sung von vierzig, sukzessiv unterein-
ander gekoppelten, simultanen Gleichungssystemen.

Das geschilderte Retrodiktionsverfahren hat zur Folge, daB wdhrend
jedes Zeitschrittes DT ein zumeist nichtlineares Gleichungssystem ge-
16st wird. Dies ist immer dann notwendig, wenn von einem Differenzen-
gleichungsansatz ausgegangen wird. Da FORRESTER jedoch von der Auf-
fassung ausgeht, im (durch eine digitale Simulation nicht realisier=-
baren) ldealzustand miiBte DT gegen Null gehen, d.h. ein Differential-
gleichungssystem vorliegen, wollen wir den Fall einer Retrodiktion

unter dieser Bedingung analysieren. Man kann von einem Gleichungssy~

stem

dLi

rral B S T R PRI 5 & IR ¢ £ 6 TS (33.7)
ausgehen. Will man den Wert von Li bei einem infinitesimalen positi-

ven Zuwachs dt ermitteln, so gilt die Beziehung

Li(t+dt) = Li(t) - dt(dLi/dt)
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und mit (33.7)
L (tedt) = Lo () + dt(Fi[L1(t),LZ(t),---,Ln(t)]) (33.8)

Wird das infinitesimal kleine dt durch das endlithe Zeitinkrement DT

ersetzt, so erhdlt man die teilweise mit DYNAMO korrespondierende

Schreibweise
oK=L+ DT(Fi[L1.J,L2.J,...;LN.J]) (33.9)

Wihlen wir in Gleichung (33.8) dés Zeitinkrement dt negativ, so er-

halten wir analog
Li(e=dt) = L. (t) - da(F [L, (t),L,(t),...,L (£)])
und unter Verwendung einer DYNAMO-3hnlichen Schreibweise
Li.K=1L..J - DT(Fi{Ll.J,LZ.J,...,LN.J})

Dieses Ergebnis legt den SchluB nahe, man brauche in einer Levelglei=-
chung nur +DT durch -DT auszutauschen mit dem Ergebnis, daB der si-
mulierte Wert von Li einen Zeitpfad beschreibt, der vom Anfangszeit-
punkt in die Vergangenheit flihrt. Dieser SchliuB ist aber nur dann
richtig, wenn DT infinitesimal klein ist. Da dies aber in praktischen
Simulationen nicht der Fall ist, wird man bei Anwendung dieses Ver-
fahrens die Ausgangswerte bei einer anschlieBenden Kontrollprognose
nur anndherungsweise reproduzieren kdnnen. Je kleiner jedoch DT ge-
wdhlt wird, um so besser wird die Anndherung an den Ausgangswert. Da
das Verfahren von der Annahme eines infinitesimal kleinen Zeitinkre-

mentes DT ausgeht, soll es alsDifferentialrlickrechnung bezeichnet

werden. Im Gegensatz dazu soll das oben beschriebene Verfahren Diffe-

renzenriickrechnung genannt werden. Vergleicht man die beiden Verfah-

ren, so erkennt man, daB sie miteinander Ubereinstimmen, wenn man
die LBsung des simultanen Gleichungssystems im Rahmen der Differen-
zenrlckrechnung nach der ersten [teration abbrechen wilirde. Zum Ver-
gleich beider Verfahren kann durch die Wahl des Parameters US=0 im
Retrodiktionsvorspann die lterationszahl auf 1 beschré&nkt und damit
eine Differentia]rﬂékrechnung durchgefiihrt werden.

Wegen der (durch AQ steuerbaren) hBheren Genauigkeit der Differenzen-
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rickrechnung, welche durch eine stdrkere Anndherung an die Levelan-
fangswerte im Rahmen der Kontrollprognose zum Ausdruck kommt, ist

die Differenzenrilickrechnung der Differentialrilickrechnung vorzuziehen.
Zeigt sich bei dem Versuch, ein Modell mit Hilfe der Differenzenriick-
rechnung zu retrodizieren, daB der lterationsprozeB zur L3sung des si-

multanen Gleichungssystems nicht konvergiert, dann bietet es sich an,

eine Differentialrlickrechnung durchzufiihren.

B. Durchfithrung einer Retrodiktion am Beispiel des Weltmodelis

von Forrester

Das Verfahren soll nunmehr an einem komplexen System-Dynamics-Model]l

demonstriert werden und zwar an dem von FORRESTER entwickelten Welt-

modell. Dieses Modell setzt sich aus 5 Level-, 31 Hilfs~- und 9 Raten-

gleichungen zusammen. 21 Tabellenfunktionen mit insgesamt 151 Parame-

tern verleihen dem Modell einen hohen Grad an Nichtlinearit8t.

Die

finf Levelvariablen des Weltmodells werden durch POL, CIAF, NR,

P und C! beschrieben. Die Briickenvariable bestimmt sich nach

Die

den

A AAX=AP.K*ACIAF .K*ANR.K*APOL.K*ACI.K

Retrodiktion bis 1880 und die Kontrollprognose bis 1900 ergibt
folgenden Ausdruck (DT=0.25, AR=20, AKP=20, PFR=2, PFK=2, LENGTH=2250)

TIM P DR DRMM MSL BR DHPM DRFM DRCM

TIME
E+00 E+20 E+86 E+@6 E+20 E+09 E+26 E+20 E+20 E+2¢2
190¢. 196¢.0 1€5¢.% 89.76 2.,3351 L27706 82.989 .92211 «I537 .9461
1932.2 1898.0 1673.9 96.17 2.4019 .240823 B81.418 ,.920200 .9807 .9468
1863.8 1B96.8 1711.9 104.88 2.4686 .22143 81.974 .9200@0 1.0165 .9479
1988.5 1894.80 1770.4 117.86 2.5354 .19358 82.443 .020280 1.0662 9405
2p27. 1892.8 1B56.0 133.2¢ 2.6020 .16582 83.428 .9200¢ 1.1248 .9519
2¢058.8 1899.8 1977.3 154.95 2.6679 .13836 84.989 .9200% 1.1936 .9553
2090.2 1888.0 2147.0 185.92 2.7325 .11146 87.126 .92800 1.2752 .9608
2121.8 1886.2 2385.9 228.24 2.7948 .28546 89.666 .92000 1.3745 .2667
2153.3 1884.9 2739.3 386.25 2.8549 26645 91.8972 .92008 1.5567 .97686
21853,2 1882.8 3327%.0 457.43 2.9123 .23655 91.212 ,92240 1.8499 .89828
2217, 1880.8 4338.3 736.82 2.9642 .01491 096.762 .92¢08 2.1335 1.2425
2218, 1882.2 3320.0 457.43 2.9123 23655 ©§1.212 .922¢¢ 1.848°9 .3928
2221. 1884.9 2739.3 306.24 2.8549 .06045 §1,972 .9200€ 1.5566 .9766
2223, 18B8E€.2 2385.9 228.24 2.7949 .PB546 LQO.666 .9208¢ 1.3745 G667
2225. 1888.0 2147.0 185.82 2.7325 .11146 87.126 .9280¢ 1.2752 .0600
2227. 18%82.8 1977.3 154.95 2.6679 .13836 84.989 .9z2¢@¢e¢ 1.1936 .95583
2228, 1B92.2 18%6.¢ 133.20 2.6020 .16582 B83.428 .5202¢ 1.1248 .951¢
2231. 1894.2 1770.4 117.86 2.5354 .1G359 8Z.443 .S2002 1.0662 .9495
2233. 1896.0 1711.9 184.88 2.4686 - .22143 81.972 .92002 1.021€% .8479
2235, 1898.8 1673.9 86.17 2.4¢19 .24923 B81.419 .9200€ . 9807 .9468
2237. 1908.0 16508.0 80 .76 2.3351 L2775 80.988 .82211 . 9527 0461
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Die Auswahl der ausgedruckten Variabien erfolgte schon im Hinblick

auf die bereits zur Retrodiktion dieses Modells vorgenommenen Betrach-
1:ungen.}3 Die Todesrate DR der WeltbevOlkerung ergibt sich als Pro-
dukt von vier Todesratenmultiplikatoren, die den EinfluB des Lebens-
standards (DRMM), der Umweltverschmutzung (DRPM), der Nahrungsmittel-
versorgung (DRFM) und der Uberbevdlkerung (DRCM) zum Ausdruck bringen.
Eine eingehendere Analyse zeigt, daB die hohe Todesrate DR im Retro-
diktionszeitraum vorwiegend durch den EinfluB des Lebensstandard-To-
desratenmultiplikators DRMM bewirkt wird. Dieser hdngt wiederum Uber

die Tabellenfunktion

A DRMM.K=TABHL(DRMMT,MSL.X,2,5,.5)
T DRMMT=3/1.8/1/.8/.7/.6/.53/.5/.5/.5/45

von dem Lebensstandard MSL ab. Modifiziert man den ersten Tabellen-
wert dieser Tabellenfunktion von 3 auf 1.8, d.h. geht man davon aus,
daB ein weniger starker EinfluB zwischen Lebensstandard und Todesra-
tenmultiplikator vorliegt, dann erh&lt man im Falle einer Kontroll-
prognose den in Abbildung 17.12 beschriebenen Verlauf der Bev@lkerung
sowie der Geburten- und Todesfdlle. Es zeigt sich, daB die vorgenom-
mene Hypothesenmodifizierung zu einer besseren Anngherung an die tat-

sdchlichen Verldufe der beschriebenen Variablen flihrt.

3.4. Die FOLR-Modellierung als Alternative zum
System-Dynamics-Konzept

In diesem Abschnitt werden bestimmte konzeptionelle Elemente des Sy-
stem-Dynamics-Ansatzes kritisch analysiert und durch eine alternati-
ve Konzeption ersetzt. Diese schrittweise entwickelte Konzeption wird

als FOLR-Modellierung (Eeedbackorientierte gffene Egvel-ﬁaten-Model-

lierung) bezeichnet. lhre Entwicklung vollzieht sich in vier Stufen.
in der ersten Stufe wird die dem System-Dynamics-Konzept immanente
Infinitesimalpré@misse durch eine Diskretzeitpramisse ersetzt. Die
zweite Stufe fihrt zur Verwerfung des im System-Dynamics-Konzept ge-

13 Vgl. Seite 140f.
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Ubten Prinzips, daB informationelle Beziehungen stets von Informa-
tionsleveln stammen. Im Rahmen der dritten Stufe wird das von der Sy-
stem=-Dynamics-Konzeption geforderte Geschlossenheitsprinzip durch

© ein umfassendes Offenheitsprinzip abgeldst. Danach wird in der vier-
ten Stufe gezeigt, daB die von FORRESTER postulierte 'statistische
Sonderstellung' der System-Dynamics-Konzeption aufzugeben ist.
AbschlieBend erfolgt eihe Wiirdigung der FOLR-Modellierung.

3.4.1. Die Infinitesimalpramisse des System-Dynamics-
Konzeptes und ihre Ablosung durch die Diskretzeit-
pramisse

'A. Infinitesimal- und Diskretzeitprémiése als alternative Elemente eines
Modellierungsansatzes

Im Verlauf der Darstellung des System-Dynamics-Konzeptes wurde die
(als vorl3ufig bezeichnete) Annahme getroffen, daB die in den Level-
gleichungen auftretenden Zeitinkremente DT immer gleich eins zu wah-
len seien. Mit dieser Annahme wurde zugleich unterstellt, daB die
Zeiteinheit zwischen den beiden Ereigniszeitpunkten J und K, welche
als JK bezeichnet werden kann, mit der Zeiteinheit TIME identisch
st

Mit dieser Pr@missensetzung wurde, ohne damit das Verst&ndnis der
tibrigen Elemente der Modellkonzeption zu beeintrdchtigen, von einem
wesentlichen Charakteristikum der System-Dynamics-Konzeption abstra-

hiert, welches als seine Infinitesimalprdmisse bezeichnet werden soll.

Im System~Dynamics~Konzept wird, entgegen der bisherigen Annahme, da-
von ausgegangen, daB sich die Zeiteinheiten JK und TIME voneinander
unterscheiden. Das Verhdltnis zwischen beiden Einheiten kann durch
den Umrechnungsfaktor DT beschrieben werden. Es gilt hierbei die Be-

ziehung
DT(1 Zeiteinheit 'TIME') = {(Zeiteinheit 'JK')

Da in einem System-Dynamics-Modell somit zwei Zeiteinheiten auftre-
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ten, ist es wichtig, ihre inhaltliche Verwendung voneinander abzu-
grenzen. Die Zeiteinheit TIME wird verwendet, um in exponentiellen
Verweilzeithypothesen den Wert der durchschnittlichen Verz8gerung zu
bestimmen. Des weiteren wird der Parameter LENGTH, der die Ldnge des
Simulationslaufes bestimmt, stets in der Einheit TIME angegeben.
Durch JK dagegen wird der Zeitabschnitt gekennzeichnet, auf den sich

die Ratenhypothesen beziehen.

Die Infinitesimalpr@misse FORRESTERs kann als eine empirische Behaup-
tung angesehen werden, welche besagt: In einem die Realitdt moglichst
weitgehend beschreibenden System-Dynamics-Modell muB DT-+0 streben,
d.h. infinitesimal klein sein. Konsequenterweise fordert FORRESTER
deshalb, in einem konkreten System-Dynamics-Modell DT so klein wie
moéglich zu wdhlen, um damit der addquaten Systemmodellierung weit-
gehend zu entsprechen.1
Um deutlicher zu machen, wie eine derartige 'Infinitesimalisierung’
von DT empirisch zu deuten ist, wollen wir uns vorstellen, wir hdtten
ein Modell im Rahmen der bisherigen Annahme von DT=1 und der damit ver-
verbundenen Modellinterpretation entwickelt und wiirden nunmehr DT ver-
kleinern. Wahlen wir DT=1/7 und wurde fir TIME die Zeiteinheit 'Woche'
gewdhlt, so bedeutet diese Khderung, daB sich die durch die Ratenhy-
pothesen erkldrten Levelzu- und -abfllisse nur noch auf ein Zeitinter-
vall von einer siebtel Woche, d.h. einen Tag,’beziehen. Wahr bis-
her die Werte der Variablen in einem wdchentlichen Abstand berechnet
wurden, werden sie nunmehr, weil die Ratenhypothesen die t&glichen
Ver&nderungen beschreiben, tdglich berechnet. Eine inhaltliche Ver-
dnderung der urspriinglichen Ratenhypothesen kommt zum einen dadurch
zustande, daB sie sich auf einen kiirzeren Zeitraum beziehen oder an-
ders ausgedrilickt, daB die Verzdgerung zwischen ihren Wenn- und Dann-
Komponenten von einer Woche auf eine siebtel Woche vermindert wurde.
Weiter werden die Ratenhypothesen auch dadurch inhaltlich ver&ndert,
daB in den typischen Levelgleichungen der Art
T FORRESTER legt folgende Maxime fest: Das L®sungsintervall muB so
kiein sein, daB sein Wert die Berechnungsergebnisse nicht ernsthaft

beeintrdchtigt. Es sollte so groB wie mdglich gewdhlt werden, um un-
ndtige Rechenzeit zu vermeiden. [53,5.79]
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L LEV.K=LEV.J+DT*(ZUR.JK-ABR.JK)

die Dann-Komponenten der urspriinglichen Ratenhypothesen mit DT mul-
tipliziert werden.

Diese formale Darstellung und inhaltliche Interpretation des Uber-
gangs zum Infinitesimalfall wirkt hdchst befremdend, weil eine ein-
leuchtende empirische lnterpretétion von Verhaltensgleichungen, de-
ren Dann-Komponenten von Wenn-Komponenten bestimmt werden, die eine
nur infinitesimal kleine Verzdgerung aufweisen, kaum mdglich ist.

Um die empirische Gliltigkeit von FORRESTERs Infinitesimalprémisse
kritisch zu diskutieren, soll folgender Weg eingeschlagen werden: Es
wird anhand eines typischen Beispiels die Behauptung veranschaulicht,
daB der Entwickler eines System-Dynamics-Modells in vielen Fdllen im-
plizit von einem zeitdiskreten Primdransatz ausgeht, d.h. einem An-
satz seiner Modellhypothesen, in welchem implizit ein DT=1 zugrunde
gelegt wird. Von diesem Tatbestand ausgehend, wird anhand eines Bei-
spiels gezeigt, daB die 'nachtrdgliche' Verkleinerung von DT eine

unzuldssige und abwegige Hypothesenverdnderung bewirkt.

Die Behauptung, daB die meisten Entwickler von System-Dynamics-Model-
len beim Formulieren ihrer Hypothesen einen zeitdiskreten Primdran-
satz unterstellen, bedeutet anders ausgedriickt: Sie gehen von der
Vorstellung aus, daB die Zeitindizes J und K bestimmte feste Perio-
denpunkte symbolisieren.

Betrachten wir zur Verdeutlichung dieser Behauptung das einfache Mo-
dell dgs Bestellwesens eines Handelsbetriebes. Die Levelgleichung des

Lagerbestandes kann durch
L LBS.K=LBS.J+DT*(LBR.JK-LAG.JK)

LBS: Lagerbestand [Mengeneinh.]
LBR: Lagerbestellimenge [Mengeneinh./Woche]
LAG: Lagerbestandsabgang. [Mengeneinh./Woche]

beschrieben werden.
In diesem Betrieb wird wchentlich eine Bestellung LBR vorgenommen,
die noch in derselben Woche geliefert wird. Die H8he der Lagerabgange

wird ebenfalls nur wdchentlich festgestellt. In diesem Fall wird ein
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Model lentwickler intuitiv K und J als die Periodenzeitpunkte einer
nach Wocheneinheiten differenzierten festen diskreten Zeitskala an-
sehen.

Diese Sichtweise findet ihre Fortsetzung bei der Bestimmung der wo-
chentlichen Bestellrate LBR. Sie wird aufgrund einer im Unternehmen
praktizierten Entscheidungsvorschrift bestimmt. lhre HShe resultiert
aus zwei Komponenten: Die erste Komponente beriicksichtigt die wdchent-
lich festgestellte Differenz zwischen dem Soll- und Istlagerbestand

und wird beschrieben durch:

A K1.K=(SLB.K-LBS.K)*APF
SLB: Sollagerbestand [Mengeneinh.]
LBS: Istlagerbestand [Mengeneinh.]

APF: Anpassungsfaktor [dimensionslos]

Die zweite Komponente K2 wird aus einer Prognose der wdchentlich an-
fallenden Lagerabrufe LAG mit Hilfe einer exponentiellen Gl&ttung er-

mittelt.
A XK2.KE=SMOOTH(LAG.JX,GLF)

LAG: Lagerbestandsabgang [Mengeneinh. ]

GLF: Faktor der exponentiellen Glattung [dimensions]os]

Kaum ein Modellformulierer wird in dieser Situation LBR.JK anders
auffassen als .die Menge der Lagerzugdnge zwischen den Periodenzeit-
punkten J und K. Diese Annahme hat jedoch zur Folge (was den meisten

Modellentwicklern nicht bewuBt sein diirfte), daB DT=1 sein muB.

Ahnlich wie in diesem Beispiel dlirfte ein GroBtéil der Entwickler

von System-Dynamics-Modellen, bedingt durch die beobachteten zeit-
diskreten Anderungen der Realitdt oder den nur zeitdiskreten Daten-
anfall, ihre Modelle so formulieren, als sei JK ein festes (und nicht
infinitesimal kleines) Zeitintervall. Die meisten Primdransitze von
System-Dynamics-Modelien sind daher als Differenzengleichungsansdtze
intendiert. lhrem Systemverstd&ndnis nach gehen die meisten Modellent-

wickler daher implizit von einer Diskretzeitprdmisse aus. Der eigent-

lich verfolgte Primdransatz wird in der sich anschlieBenden Simula-



485

tion dann in ein Differentialgleichungsmodell Uberfihrt, indem die
Modellanwender (ohne kritische Reflektion?) allein FORRESTERs Forde-
rung gehorchend, DT so klein wie m&glich wdhlen und damit in unzulds-

siger Weise die Modellhypothesen verdndern.

Die empirischen Konsequenzen einer DT-Variation sollen am Beispiel
des gerade beschriebenen Modells verfolgt werden. Dazu sind noch ei-

nige Angaben zur vollstdndigen Kennzeichnung des Modells notwendig.

Da es sich um ein singuldr offenes Modell handelt, so]ien die Betrach-
tungen auf der Grundlage eines im Gleichgewicht befindlichen Systems
vorgenommen werden. Das (mit N LBS=SLB) gleichgewichtige System soll
einen konstanten Lagerbestandsabgang von LAG=100 [Einh./Wochel auf-
weisen. Dem System wird nunmehr in Periode 1 ein Impuls der Hahé 1000
als zusdtzlicher Lagerbestandsabgang aufgeprdgt. Wir erhalten damit
das DYNAMO-Programm |

LAGERDISPOSITIONSMODELL

LBS.KE=LBS.J+DT*(LBR.JE~LAG.JK) LAGERBESTAND
LBS=SL3B

LBR.KL=(SLB-LBS .K)*APF+SMOOTH(LAG.JK,GLF) LAGERBESTELLRATE
LAG.KL=102+PYLSE(1000,1,100) LAGERABGANGSRATE
LLZM.K=DT*LBR.JK LAGERBESTELLMENGE
APF=0.7/SLB=120€¢/GLF=3 :

- SPEC DT=1,LENGTH=15

PRINT LLZM

A PRTPER.K=DT

RUN

Q> X Z o3

Die Impulsantwort der Bestellungen LLZM ist fiir DT=1 und DT=0,5 aus
Abbildung 34.1 zu ersehen.

Wie ist nunmehr in diesem Modell eine Verdnderung von DT=1 auf DT=0,5
empirisch zu interpretieren? Der einwirkende lhpuls in HBhe von

1000 Einheiten/Woche muB bei einer Differenzierung der Wochenein-
heit in zwei halbe Wochen offensichtlich in eine Folge von zwei Im-
pulsen von je 500 Einheiten zergliedert werden. Unter Verwendung die-
ser Impulsfolge ergibt sich ein neuer Verlauf entsprechend Abbildung
34,1
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“Abb. 34.1 Impulsantwort eines Lagerhaltungsmodells bei variierendem
Zeitinkrement DT

Die einzig plausible empirische Interpretation des Zeitverlaufes der
Lagereingdnge bei DT=0,5 wdre, daB die berechneten Werte von LLZM die
wihrend einer halben Woche eingehenden Bestellungen darstellen. Wenn
nun zum Beispiel in einer bestimmten Woche im Primdransatz 100 Bestel-
lungen eingehen, und es ergibt sich bei DT=0,5 flir die erste Wochen-
hdlfte ein Abgang von 60 und fiir die ndchste halbe Woche ein Abgang
von 40 Bestellungen, so muB man sich darlber im k]areﬁ sein, daB durch
diese Differenzierung nachtrdglich neue empirische Hypothesen 'einge-
schmuggelt' werden. Da im primdren Ansatz nur eine wdchentlich prak-

tizierte Bestellregel befolgt wurde, die zu einer Bestellmenge von
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100 Einheiten flihrte, ist es nicht m6glich, aus diesem Ansatz logisch
zwingend einen Eingang von 60 Auftrdgen in der ersten und 40 in der
zweiten Halbwoche abzuleiten. Vielmehr sind alle Kombinationen denk-
bar, die sich zu 100 ergdnzen. Denn aus dem Primdransatz weiB man
nur, daB am Ende der Woche 100 Einheiten eintrafen. Durch jede Va-
riation des im Primdransatz zugrunde gelegten DT wird aber eine sol-
che 'Hypotheseneinschmuggelung' betrieben. '

Diese neu eingeflihrten Hypothesen stellen auch keine - wie auch im-
mer zu motivierende - Verschdrfung des Primdransatzes dar, sondern
fiihren zu einem logischen Widerspruch. Widerspruchsfreiheit zwischen
dem Primdransatz und einem durch DT-Variation modifizierten Modell
liegt immer dann vor, wenn bei einer Bestellmenge LZG(t+1) im Primér-
ansatz die sich bei einer Zergliederung der Periode t in n Teilperio-
den t,t+DT,t+2DT,...,t+(n~-1)DT ergebenden Besteilmengen Lza(t),

LZG (t+DT),...,LZG(t+(n-1)DT) zu LZG(t+1) addieren, d.h. die Beziehung

n-1
Z LZG(t+iDT) = LZG(t+1) [Mengeneinh.]

t=

erfillt wird.

Eine derartige Konsistenz der primdren mit den 'eingeschmuggelten'
Hypothesen ist jedoch im allgemeinen nicht gegeben. Tabelle 34.1
zeigt in der ersten Zeile die Impulsantwort der Bestellmenge LLZM
des Primdransatzes. Aus den nachfolgenden Zeilen kann man die bei
Wah1 unterschiedlicher DT=1/n (Wochen) summierten Bestel lungen w&h-
rend einer Woche erkennen.

Der Impuls des Primdransatzes in HBhe von 1000 Einheiten wurde bei
der Zergliederung der O-ten Periode in eine Impulskette 1(0),!1(DT),
1{2DT),..., 1 ([n-1]DT) der HShe 1000/n aufgeldst.

In Periode 4 beispig]sWeise werden bei einem Zeitinkrement von DT=]
insgesémt 86 Giitereinheiten vom Lager bestellt. Verdndert man (nach-
traglich) DT auf 1/20, dann werden in der vierten Periode im Rahmen
von zwanzig Einzelbestellungen 157 Glitereinheiten angefordert. Die
auftretenden Abweichungen lassen erkennen, daB keine strenge Kon-

sistenz vorliegt.
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DT Teil- 0 1 2 3 4 5 6 7
perioden
1 1 100 | 100 {1133} 299| 86 46 | 51 | 63
1/2 2 100 | 358 | 7551 307}140 83 | 70 | 71
1/h 4 100 | 438 ] 650 | 297151 95 | 78 | 75
1/8 8 100 | 471 | 608 292|155 | 100 | 81 | 77
1710 10 100 | 477 | 600 | 291{156 | 101 | 82 | 78
1/20f 20 100 | 489 | 586 | 289]157 | 103 | 83 | 79
DT | Teil- |8 | 9 [10] 11| 12| 13] 14 | Summe
perioden{
1 1 741 83 1 88 92| 95 97| 98 | 2505
1/2 /] 771 82 | 87| 91| 94| 95| 97 | 2507
1/4 4 791 83 | 871 911 93} 95| 96 | 2508
1/8 8 80 | 83 | 87 ] 904 931 95 | 96 | 2508
1/10 10 |80 83| 871 91| 93| 95 96 | 2510
1/20 20 80 | 83 | 87 | 91 93 | 95 | 96 | 251t

Tab. 34.1 Bestellmengen wihrend einer Woche bei Variation des Zeit-
inkrementes DT in einem System-Dynamics-Modell

Der Ubergang zu einem kleineren DT ist nicht nur eine unzuldssige Hy-
potheseneinschmuggelung in Bezug auf den Prim&ransatz, sondern filihrt
auch dazu, daB die entstandenen 'neuen' Hypothesen reichlich absurd
sind. W8hlt man beispielsweise DT=1/20 Woche, so bedeutet dfes, daB
ein Lagerverwalter alle 24.7/20=8,4 Stunden einen Soll-lIst-Vergleich
vornimmt und eine.Bestellung aufgibt. Im konzeptionellen Idealfall
eines infinitesimal kleinen DT erreicht die Schwierigkeit einer em-
pirischen Deutung ihren HBhepunkt. Die Kalamitdten einer sinnvollen
Deutung der auftretenden Hypothesen zeigen sich auch an anderen Mo-

dellen. So modellierte FORRESTER in seinem Modell der Sprague-Electric-
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Company bestimmte Entscheidungsregein zur Bestellung von Materialien
wie sie oben beschrieben wurden und verwendet ein DT von 1/20 Woche
[53]. iIn einem System-Dynamics-Unternehmensmodell w&hlte STUBEL fir
einen Simulationszeitraum von drei Jahren ein DT von ca. zwei Stun-
den. Das bedeutet streng genommen: Alle zwei Stunden miiBten nach die-
sem Ansatz bestimmte Entscheidungsregeln wie die Bestellung von Ma-
terial in dem Unternehmen durchgefiihrt werden [193,5.221].

‘Es soll hier nicht behaubtet werden, soziale Zusammenhdnge seien nur
mit Differenzengleichungen in addquater Weise zu beschreiben; doch
diirfte es relativ selten der Fall sein, daB Differentialgleichungs-
ansdtze einem Differenzengleichungsansatz vorzuziehen sind. Denn
selbst in demographiséhen Model len, in denen eine zeitkontinuierliche
Bestandsverdnderung noch am wahrscheinlichsten ist, stehen zumeist
nur Jahresbeobachtungswerte zur Verfligung, so daB es sich anbietet,
selbst derartige Prozesse als zeitdiskret aufzufassen und entspre-
chend zu modellieren.

FORRESTERs Infinitesimalprédmisse erscheint mir aus den genannten
Griinden als ein kategorisches Postulat nicht akzeptabel zu sein. In
den meisten Féllen einer Modellentwicklung diirfte vielmehr eine an-
gemessene Realitdtsbeschreibung erst durch die Annahme. eines diskre-
ten dquidistanten Zeitsystems mdglich werden. Die damit zum Ausdruck

kommende Diskretzeitprdmisse wird daher als ein tragendes Element

der im folgenden sukzessiv entwickelten FOLR-Modellierung angesehen.

B. Exponentielle Verweilzeithypothesen im Falle der Infinitesimal- und
Diskretzeitpréamisse

Exponentielle Verweilzeithypothesen spielen im System-Dynamics-Kon-
zept eine entscheidende Rolle als 'ProzeBmacher', weil sie die fir
dynamische Systeme typischen verz8gernden Einfllisse besonders zum
Ausdruck bringen. Ihre Anwendung und Anwendbarkeit soll daher im fol-
genden sowohl unter Zugrundelegung der lnfiﬁitesimal— als auch der

Diskretzeitprémisse erdrtert werden.
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a) Zur Definition der durchschnittlichen Verzégerung exponentieller
Verzbdgerungen dritter Ordnung

Exponentielle Verweilzeithypothesen werden im System-Dynamics-Konzept
durch die Angabe des Grades der Verzdgerung und des Betrages ihrer
durchschnittlichen Verz&gerung DVZ bestimmt. Auch wenn wir von der
Annahme ausgehen, daB die durchschnittliche Verzdgerung im Infinite-
simalfall, d.h. im Grenzfall DT»0, ihrer befinition nachkommt, so

ist dies flr den Fall DT+D bisher nicht nathgewiesen.2 Da System-Dy-
namics-Modelle mit einem Zeitinkrement DT#+0 simuliert werden, sollte
eine, mit einem bestimmten DVZ simulierte, exponentielle Verweilzeit-
hypothese keine von diesem Wert abweichende tatsdchliche durchschnitt-
liche Verzdgerung aufweisen.

Zur Verdeut]ichung dieser Forderung betrachten wir eine exponentie]-’
le Verweilzeithypothese erster Ordnung mit einer durchschnittlichen
Verzdgerung von DVZ=10 Wochen. Es sollen zwei F&lle unterschieden
werden: Im ersten Fall sei das Zeitintervall JKE{ Woche gewdhlt, d.h.
DVZ1=1O [Wochen] und DT =1. Im zweiten Fall dagegen sei JK=1/2 Woche,
d.h. DVZZ=20 [Halbwochen] und DT2=O,5. Die Impulsantworten der sich
durch differierende Zeiteinheiten JK auszeichnenden exponentiellen
Verweilzeithypothesen unter Annahme einer ImpulshBhe von 100 zeigt
Abbildung 34.2.

Eine Invarianz von DVZ gegeniiber DT 1&dge vor, wenn beide Impulsant-
worten dieselbe durchschnittliche Verzdgerung DVZ aufweisen wiirden.
Diese Frage, ob so]éhe Invarianzen bei variierendem DT auftreten

oder nicht, interessiert uns insbesondere, weil im Falle der Unter-
stellung der Diskretzeitprémisse (und damit der Wahl von DT=1) die

im System-Dynamics-Konzept eine groBe Rolle spielende Familie der
exponentiellen Verweilzeithypothesen nur dann Anwendung finden dlrf-
te, wenn das gewdhlte DVZ auch tats&chlich der auftretenden durch-

schnittlichen Verzdgerung entspricht.

2 Zur Berechnung von DVZ im Infinitesimalfall siehe [55,5.10-8ff]
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Abb. 34.2 Impulsantwort einer exponentiellen VerzBgerung erster Ord-
nung bei verschiedenen Zeiteinheiten JK

Da die Diskretzeitprdmisse ein grundliegendes Element der als Alterna-
tive zum System-Dynamics-Konzept entwickelten FOLR-Modellierung bil-
det, soll im folgenden der umfangreiche Beweis einer DVZ-DT-Invarianz

geflihrt werden.

Der Beweis gliedert sich in drei Schritte: Im ersten Schritt wird

die Operatorenilibergangsfunktion einer exponentiellen Verweilzeithy-
pothese n-ter Ordnung entwickelt. Diese dient der im zweiten Schritt
vorgenommenen Gewinnung der sequentiellen Form der Ubergangsfunktion
und damit auch der Ermittiung der Gewichtsfunktion einer exponentiel-
len Verweilzeithypothese. Anhand der Gewichtsfunktion wird dann im

dritten Schritt die durchschnittliche Verzdgerung DVZ bei unbestimm-
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tem DT ermittelt und bezliglich ihrer invarianz gegeniiber DT unter-

sucht.

Die zeitliche Indizierung von System-Dynamics-Modellen soll als er-
stes in die Ubliche Formulierweise von Differenzengleichungen Uber-
flihrt werden. Die ZufluB- und AbfluBmengen (DT)ZUF.JK und (DT)ABF.JK,
die die Zu- und Abfllisse eines Levels wéhrend.des Zeitintervalls JK
beschreiben, stelTen Aggregate Uber das Zeitintervall JK dar, deren
Werte zum Zeitpunkt K bekannt sind. Daher kBnnen sie auch durch den
Zeitindex K gekennzeichnet werden, d.h. s(DT)ZUF.K und (DT)ABF.K.
Setzt man L=t, K=t-1 und J=t-2, so folgt flir eine exponentielle Ver-

weilzeithypothese erster Ordnung

LEV(t-1) = LEV(t-2) + DT[ZUF(t-1)-ABF(t-1)] (34.1)
ABF(t) = LEV(t-1)/DVZ (34.2)

Aus (34.2) folgt

LEV(t-2)
LEV(t-1)

(DVZ)ABF (t-1) (34.3)
(DVZ)ABF (t) : (34.4)

Mit (34.1), (34.3) und (34.4) ergibt sich die Ubergangsfunktion ei-

nes exponentieTlen VerzSgerungslevels erster Ordnung

ABF(t) "= ABF(t-1)[1--§G%] +-E§%%ZUF(tf1) (34.5)

Setzt man T]=DVZ/DT, dann folgt aus (34.5)

11~% 1
ABF(t) = (——)ABF(t-1) + =

1 1

ZUF (t-1) (34.6)

Eine exponentielle Verweilzeith?pothese h-ter Ordnung ergibt sich
aus der n-fachen Kaskadierung einer exponentiellen Verweilzeithypo-
these erster Ordnung, was durch eine kaskadierende Verknlipfung ihrer
Ubergangsfunktion der Form (34.6) beschrieben werden kann.

Man erhd&lt damit das Gleichungssystem

T -1
ABFi (t) = ? ABFi (t-1) + TL ZUFi(t-1)  i=1,2,...,n (34.7)
n n
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. _ (ABFi-1(t) i=2,3,...,n
ZUFi(t) = {7061 (¢) > (34.8)
und
T = DvZ/n(DT) (34.9)

Mit der Einfthrung des Operators
K'x (t) = x(t-n) | (34.10)
folgt aus (34.7) und (34.10)

K(T.-1)

ABFi (t) [1- —"—1 = %1 ZUFi (t) (34.11)
n n

Aus (34.11) folgt

’ T -
ABFi (t) = [1-K(—§LJJ] ‘ %i ZUFi (t) (34.12)
n n

Definiert man das Operatorpolynom der Ubergangsfunktion mit
=1
G = [1—K((T_-1)/Tn)] (K/7) (34.13)

dann implizieren (34.12) und (34.13)
ABFi.(t) = G-ZUFi (t) (34.14)

Die exponentielle Verwe}lzeithypothese n-ter Ordnung wird durch eine
Kette kaskadierender Glieder mit demselben Operatorenpolynom G be-
schrieben. Die Operatoreniibergangsfunktion zwischen dem Eingang ZUF1
und dem Ausgang ABFn ergibt sich nach der Reduktionsvorschrift kas-
kadierender Glieder aus (3&.1#):3

ABFn(t) = G ZUF1(t) ‘ (34.15)

Unter Anwendung der vereinfachenden Schreibweise

]

ABF (t) " (3h.i6)

ZUF (t) (34.17)

ABFn(t)
ZUF1 (t)

folgt aus (34.15) bis (34.17)

ABF (t) = [1-K((Tn—1)/Tn)]_n(Kn/Tg)ZUF(t) (34.18)

3 Siehe Seite 228f.
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Mit (34.18) ist die Ubergangsfunktion einer exponentiellen Verweil-
zeithypothese n-ter Ordnung bestimmt.
In einem zweiten Schritt soll die Gewichtsfunktion von (34.18) er-

mittelt werden. Aufgrund des Binominallehrsatzes gilt:g

[1-K(-0—)1"" = n§0(”+2")(AK)” (34.19)
n - 4
Tn“1
mit A = = (34.20)
£ n

Aus (34.18) bis (34.20) folgt die sequentielle Darstellung einer ex-

ponentiellen Verweilzeithypothese n-ter Ordnung

R g o T n .
ABF(t) = [Tg ]nio( N )(’T;‘) ZUF (t-n-n) (34.21)
Es gilt
b 1 .n Tn—1 n
b=l = [1-1+:r-] = [1- T ] (34.22)
Tn n n

CMit (34.21) ‘und (34.22) folgt

Tn_1 n < ;n+n-1 U n
03" 5 (M) (D) 20k (e-nen) (34.23)

. ABF(t) = [1-
n n=0 n

Die Einheitsimpulsantwort oder Gewichtsfunktion ergibt sich aus (34.21)

0 ' : flir t=0,1,..-,n=]
w(t) = { T -1 o To=1 o (34.24)
(1- $n )" t )(—%;—)t - fir t=n,n+l,...

1
-n

in einem System~-Dynamics-Modell wird die durchschnittliche Verztge-

rung DVZ in der Zeiteinheit TIME festgelegt. Wird nunmehr im Rahmen

L Dieser Satz gilt nur fiir 0<x<1 und damit
B{Ty~1) /T %1

Diese Bedingung wird immer dann erflillt, wenn T <1, was wegen (34.9)
immer dann der Fall ist, wenn

(DVZ/n)>DT (%)
FORRESTER dagegen stellt die Forderung auf, daB fiir die Wahl von DT
die folgende Relation einzuhalten ist: DT<DVZ/2n [59,5.79]. Bei Nicht-
beachtung von (%) weist die exponentielle Verweilzeithypothese keine
endliche Impulsantwort auf.
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der DT-Variation ein DT bestimmt, so ist es notwendig, daB nach ei-
ner Umrechnung der durchschnittlichen Verztgerung von der Zeitein-
heit JK in die Zeiteinheit TIME stets die Verzdgerung DVZ [TIME] auf-
tritt. Bezeichnen wir daher D als die durchschnittliche Verzdgerung

in einer Zeiteinheit JK, so kann gemdB

D = D-DT [TIME] (34.25)

5} als die durchschnittliche Verzdgerung in der Zeiteinheit TIME an-
gesehen werden. Um die Invarianz von DVZ gegenliber einer Variation
von DTezu zeigen, ist daher zu beweisen, daB stets 5}=DVZ flir alle
DT<DVZ/n gilt.

Die durchschnittliche Verzdgerung fiir D, d.h. bei beliebigem DT in

der Zeiteinheit [JK], bestimmt sich mit

D= Z w(t)t

=0
- =] o
5= 2wlelt + 2 wltht (34.26)
t=0 t=n
Da
n-1
Zwlt)t =0
t=0

folgt mit (34.26)
D= T w(t)t
t=n

und bei Berlicksichtigung von (34.24) folgt

© T "1 T '1
- t-1 n n, n t-n
RNCANRIGE i

t ' ‘ (34.27)

Filhren wir einen neuen Summenindex n ein, der von n ab 18uft, d.h.

n=t-n, dann folgt

- <”+”'1><1—T”—]>” (T”%)”( +n) (n=0,1,2,...)  (34.28)
T op=0" 7 T T nEh M=t wtigs ¢ 2 *
Definieren wir
vin) = <”*”")<1-T”q >“(T”-1>” (34.29)
nEL g T T | '
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dann ist
o

DV(n)n + nﬂEOV(n) (34.30)

D=

Il 48

n

Der Ausdruck v(n) entspricht einer Pascalverteilung n-ter Ordpung,
deren Erwartungswert der ersten unendlichen Summe in (34.30) ent-

spricht und durch

g v(nn = —= = n (T -1) (34.31)

bgstimmt wird. [50,5.202] Die zweite unendliche Summe in (34.30) ent-
spricht den aufsummierten Wahrscheinlichkeiten einer Pascalvertei-

lung n-ter Ordnung und ist

Z v(n) =1 (34.32)

Mit (34.9) folgt
. D = pvz/DT [JK] = [TIME/(TIME/JK)]

Die Umrechnung der in der Zeiteinheit JK beschriebenen durchschnitt-

lichen Verztgerung D auf die Zeiteinheit TIME ergibt nach (34.25)

B& = DVZ [TIME]

womit die DT-DVZ-Invarianz bewiesen ist.

b) Die Bestimmung der Parameter exponentieller Verweilzeithypothesen
bei Akzeptierung der Infinitesimal- und Diskretzeitpramisse

ba) Parameferbestimmungen im Falle der Akzeptierung der Infinitesimalpréamisse

FORRESTER geht offenbar davon aus, daB die Beschreibung der Zu- und
Abfllsse von Leveln unter Verwendung primédrer Verweilzeithypothesen

erschdpfend durch exponentielle Verweilzeithypothesen vorgenommen
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werden kann. Dies erkennt man daran, dafB s3mtliche bisher von ihm
und seinen Schiilern zur Modellierung konkreter Systeme verwendeten
primdren Verweilzeithypothesen ausschlieBlich der Familie der expo-
nentiellen Verweilzeithypothesen entstammen. Neben der gelegentli-
chen Verwendung exponentieller Verweilzeithypothesen ersten Grades
benutzt FORRESTER in seinen Systemmodellierungen fast nur die be-

rei ts beschriebenen exponentiellen Verweilzeithypothesen dritten Gra-
des. Exponentielle Verweilzeithypothesen k&nnen aufgrund von zwei
Merkmalen eindeutig festgelegt werden: anhand der durchschnittlichen.

Verz8gerung DVZ und des Verz&gerungsgrades.

ABF(t)-DVZ X
_ /unendllcher Ordnung
1,0 R G [ T L S 1 7
0,2 - e _~dritter Ordnung ~
0,6 L ‘:::::::::: < — zweiter Ordnung 7
0,4 |- sechster » —erster Ordnung]
0,2 Ordnung h§\‘““‘-—¢L-____ .
0 l L 1 1 1 F S, 1 o 1 |4LJ__
0 0,5 158 1o 2,0
t-DT/DVZ

Abb. 34,3 Verzdgerungscharakteristiken exponentieller Verweilzeit-
hypothesen verschiedener Ordnung bei Aufprédgung einer Im-
pulsfunktion [53,5.92]

Der Verzdgerungsgrad ist von dem Modellentwickler mit Hilfe der in
Abbildung 34.3 dargestellten Kennlinie zu bestimmen, in welcher
ABF(t) die Einheitsimpulsantwort des Verzdgerungslevels ist.

Um zu beurteilen, ob der Zu- und Abgang eines bestimmten Levels an-
hand dieser Kennlinien durch eine exponentielle Verweilzeithypothe-
se beschrieben und damit modelliert werden kann, ist es notwendig,
die Gewichtsfunktion der Verweilzeithypothese zu kennen. Denn kennt
man die tatsdchlich zum Tragen kommende Gewichtsfunktion, dann ist
es mdglich, mit Hilfe der in Abbildung 34.3 dargestellten Transfor-

mationen des Koordinatensystems eine spezifische Kennlinie dieser
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Verweilzeithypothese zu berechnen und den zu wdhlenden Verzdgerungs-
grad aus dem Vergleich dieser Kennlinie mit den in Abbildung 34.3 an-
geflihrten Kennlinien zu bestimmen. Die Gewichtsfunktion zwischen dem
Zu- und AbfluB eines Levels ist in der Realitdt aber nur dann als
zeitlicher Verlauf des Levelabflusses direkt beobachtbar, wenn dem

im Gleichgewicht befindlichen System ein Einheitsimpuls aufgepréagt
wird. Da eine solche Situation in sozialen Systemen fast nie vorliegt,
kann die Gewichtsfunktion eines Systems prinzipiell nur mit Hilfe sta-
tfstischer Methoden aus den beobachteten Verldufen der Zu- und Abflls-
se ermi ttelt werden. Da FORRESTER solche statistischen Verfahren ab-
lehnt, ist der Modellentwickler darauf angewiesen, aus seiner 'System-
kenntnis' heraus, den Verzdgerungsgrad subjektiv zu schdtzen.
Ahnliche Schwierigkeiten ergeben sich bei der Bestimmung des zweiten
Parameters: der durchschnittlichen Verzdgerung. Sie beschreibt die
durchschnittiiche Aufenthaltsdauer eines in den Level eintretenden
Elementes. Auch ihre Bestimmung ist nicht an ein formelles statisti-
sches Ermittlungsverfahren gebunden, sondern soll anhand einer sub-
jektiven Schdtzung erfolgen. Ein solches Vorgehen ist grundsdtzlich
nicht zu kritisieren, denn es ist im Prinzip unmaBgeblich, auf wel-
che Weise Hypothesen bestimmt werden, entscheidend ist allein, daB
sie sich empirisch bewdhren. Man muB sich allerdings fragen, ob vie-
le Entscheider bei der subjektiven Festlegung dieser Parameter nicht
etwas lberfordert sind, denn streng genommen miBten sie in der Lage
sein, die vorhandenen statistischen Verfahren zur Schdtzung dieser
Parameter intuitiv korrekt nachzuvollziehen. Dies gilt auch, wenn
diese Modelle als Entscheidermodelle konzipiert werden, denn ein Ent-
scheidermodel 1 spiegelt zwar nur das subjektive Situationsbild eines
Entscheiders wider, und die von ihm geschatzten Parameter sind ein
Teil dieses Bildes; aber, welcher rationale Entscheider wdre nicht
bereit, sein subjektives Situationsbild zu revidieren, wenn er er-
fahrt, daB die Ex-post-Prognose bei einer anderen Parameterwahl zu
einer besseren Ubereinstimmung der Beobachtungsvariablen mit den ent-

sprechenden Modellvariablen flhrt?
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Aus diesem Grund ist die Ablehnung statistischer Parameterschdtz-
verfahren auch im Rahmen FORRESTERs Auffassung, ein System-Dynamics-

Modell als ein Entscheidermodell anzusehen, nicht zu verstehen.

Die in DYNAMO definierten Makrofunktionen exponentieller Verweil-
zeithypothesen werden in der Literatur sowohl flir geschlossene als
auch fiir singulsr offene Modelle verwendet. Eine Anwendung dieser
Makros im Rahmen geschlossener, der Prognose dienender Modelle ist
jedoch aus folgenden Griinden problematisch:

In den auf Seite 435 angefiihrten Definitionen eines DELAY3-Makros
sind die Anfangswerte der drei Level LV1, LV2 und LV3 mit IN®DEL/3
bestimmt. Es wurde bereits festgestellt, daB ein DELAY3-Makro gera-
de diese Anfangswertbedingungen besitzen muB, um ein Systemgleichge-
wicht zu gewdhrleisten. Anders ausgedriickt: Wenn sich ein dynamisches
Modell in einem Gleichgewicht befindet, dann besitzen die Level LV1,
LV2 und 'LV3 den Gleichgewichtswert IN#DEL/3, und der Anfangsbestand
des gesamten Levels betrdgt damit IN¥DEL. Da in einem geschlossenen
Prognosemodell aber vor dem Anfangszeitpunkt der Prognose kein Gleich-
gewicht herrscht, ist es unzuldssig, eine VerzGgerung zu verwenden,
die von einer derartigen Gleichgewichtsannahme ausgeht. Der Anfangs-
bestand des Verzdgerungslevels diirfte kauh den Wert IN.O1*#DEL besit-
zen, sondern ist eine GrdBe, die die individuelle Vergangenheit des
Systems zum Ausdruck bringt. Erstaunlicherweise finden die auf Gleich-
gewichtsannahmen ausgerichteten DYNAMO-Verzdgerungsmakros dennoch

in Prognosequellen wie beispielsweise dem Weltmodell von MEADOWS

Verwendung. Zur Berlicksichtigung der tatsdchlich vorhandenen Anfangs-

MACRO DEI3A(IN,DVZ,VIA)
DEL3A.K=$LVZ K*3/DVZ
$LVZ.R=4LV3.J+DT*(SRT2.JK-DEL2A.J)
$1V3=VLA/3
$RT2.KL=$LV2.K*3/DVZ
STV2.X=$1V2.J+DT*($RT1.JK~$RT2.JK)
$LV2=VLA/3
$RT1.KL=8LV1.K*2/DVZ
$IV1.K=$LV1.J+DT*(IN.JK-5RT1.JK)
$LV1=VLA/Z
END

ZTZHOZEHDZ >
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werte kann im Falle von Prognosemodellen die Makrofunktion DEL3A
verwendet werden.

Neben dem Zugang IN und der durchschnittlichen Verz8gerung DVZ ist
als weiteres Argument der Anfangsbestand des Verzdgerungslevels VLA
angegeben. Es wird dabei die A-priori-Hypothese unterstellt, daB sich
der gesamte Levelinhalt VLA gleichmdBig auf die drei im Makro dgfi-
nierten Level LV1, LV2 und LV3 verteilt. Diese Annahme diirfte ange-
sichts der generellen Forderung FORRESTERs einer subjektiven Schat-
zung der Parameter eines Modells insofern angemessen sein, da sie im
Sinne des Laplace-Prinzips von einer Gleichverteilung im Falle von
UngewiBheit ausgeht. Eine solche Situation diirfte in diesem Fall wohl
vorliegen, da dié kaskadierenden Level ja Fiktionen sind, denen kein
empirisches Aquivalent gegeniibersteht. Eine nicht gleichverteilte
Gewichtung ihrer Anfangswerte 13Bt daher keinen empirischen Ansatz-
punkt erkennen, an dem sich eine subjektive Schdtzung dieser Gewich-

te ausrichten kdnnte.

bb) Parameterbestimmung im Falle der Akzeptierung der Diskretzeitpramisse

Eine Ubertragung des von FORRESTER zur Bestimmung des Verzdgerungs-
grades exponentieller Verweilzeithypothesen in Abbildung 34.3 ange?
fihrten Kennliniendiagrammes auf den Diskretzeitfall fiihrt im Falle
einer DELAY3-Verzdgerung zu Abbildung 34.4. Es diirfte nahezu unmdg-
lich sein, daB ein Modellanwender anhand der dort angefiihrten Kenn-
linien sowie der beobachteten Zu- und AbfluBwerte eine VerzSgerung
zu identifizieren vermag und damit zu einem Urteil der Art kommt:
die vorliegende VerzSgerung kann durch eine exponentielle Verweil-
zeithypothese dritter Ordnung mit einer durchschnittlichen Verzdge-
rung des Betrages x beschrieben werden.

Wenn liberhaupt eine soiche ldentifizierung m3glich sein sollte; so
miBten dem Systembeurteiler zumindest die Impulsantworten der fiir

eine Beschreibung in Frage kommenden Verweilzeithypothesen zur Ver-
fligung stehen.
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Abb. 34.4 Standardisierte Impulsantworten exponentieller Verweil-
zeithypothesen dritter Ordnung bei variierender durch-
schnittlicher Verz6gerung DVZ und DT=1

Da FORRESTER fast nur exponentielle Verweilzeithypothesen dritter
Ordnung verwendet, wollen wir uns im folgenden nur auf diesen Typ
konzentrieren. Abbildung 34.5 zeigt eine Zusammenstellung ihrer Ein-
heitsimpulsantworteh mit unterschiedlich durchschnittlicher Verzdge-
rung. Man erkennt, daB sdmtliche Verweilzeithypothesen dieses Typs
eine Totzeit von drei Perioden besitzen. Es liegt auf der Hand, den
Anwendungsspielraum der Modellierung zu erhShen, indem man die ex-
ponentiellen Verweilzeithypothesen so erweitert, daB auch die Tot-
zeit variiert werden kann. Betrachtet man die in (34.24) definierte
Gewichtsfunktion fiir den Fall einer exponentiellen Verweilzeithypo-

these dritter Ordnung, d.h. n=3, so wird mit (34.9) T3=D/3. Es zeigt
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sich, daB diese Teilklasse mit der Klasse der Gewichtsfunktionen
(23.62) fiir T=3 iibereinstimmt.

Strebt man eine Variationsmdglichkeit der Totzeit T zur Modellierung
von primdren Verweilzeithypothesen an, dann kann dies durch Verwen-

dung der Gewichtsfunktionsklasse (23.62) erreicht werden.
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Abb. 34.5 Einheitsimpulsantworten exponentieller Verweilzeithypothe-
sen dritter Ordnung mit variierenden durchschnittlichen
Verz8gerungen DVZ

Auch im Hinblick auf dieses erweiterte Repertoire exponentieller

Verweilzeithypothesen dritter Ordnung mit Totzeit stellt sich die

Frage, ob eine in der Realitdt beobachtbare Verzdgerung durch eine

parametrisch-singuldre Verweilzeithypothese dieser Hypothesenklasse

in addquater Weise beschrieben werden kann.
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Die Bestimmung einer parametrisch-singuldren Verweilzeithypothese
mit Hilfe einer von FORRESTER geforderten subjektiven Schdtzung dirf-
te kaum zu einem befriedigenden Ergebnis filhren, wenn man den Erfolg
einer Ex-post-Prognose als Beurteilungskriterium mit heranzieht.

Es soll daher ein Verfahren beschrieben werden, mit welchem die Pa-
rameter der durch (23.56) gekennzeichneten Klasse von Verweilzeit-
hypothesen im Lichte der Beobachtungswerte der Zu- und Abgdnge sowie
des Levelanfangsbestandes geschdtzt werden.

Es wird von der Zielfunktion

7=

M =

] 0[A(t)-AB(r)]2 > Min (34.33)

ausgegangen. Sie besagt, daB wdhrend eines Betrachtungszeitraumes
von N Perioden die quadratische Abweichung zwischen den beobachte-
ten Abgangen AB und den vom Modell errechneten Abgdngen A zu mini-
mieren ist. Die Aktionsvariablen der Minimierung, welche den Verlauf
von A beeinflussen, sind nicht nur DVZ und T. Die Tatsache, daB der
Levelanfangswert L(0) ebenfalls als Beobachtungswert LB(0) zur Ver-
fligung steht, fllhrt zu zwei weiteren Aktionsvariablen.

Um dies zu zeigen, wandeln wir (23.56) unter Verwendung von (23.61)

in die folgende Kaskadenform um.

Li(t) = Li(t-l) + Zi(t) - Ai(t) i=1,2,3

Ai(t) = 3Li(t-1)/(DVZ—T+3) (34.34)
Z1(t) = E(t-T)

A(t) = A3(t)

Dieser Ansatz (welcher wegen des unverzdgerten Zuflusses Zi(t) nicht
mit den 'kaskadierenden' Levelgleichungen einer DELAY3-Verz&gerung
identisch ist) 13Bt eine Bestandsinterpretation der Anfangswerte
L(0) zu.

Fir die exponentielle Verweilzeithypothese (23.56) gilt die Bedin-
gung

- y 4.
tEOA(t) L(0) (34.35)
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Definiert man
L.(0) = a.L(0) (34.36)

Z a =l Ofaifl (34.37)

dann ist Bedingung (34.35) erfiillt; denn die als BestandsgrBen zu in-
terpretierenden Li entleeren sich geometrisch abnehmend und flieBen
dem nachfolgenden Bestand zu bis sie tiber A(t) das System verlassen.

Ebenfalls erflillt ist auch die Bedingung
A(t) 20 fir t=0,1,2,3,... ' (34.38)

Da namlich alle Li(O) und Z](t) positiv sind, kdnnen auch alle A, (t)
wegen DVZ>T nur positive Werte annehmen.

Die Parameter as welche durch (34.37) zugelassen sind, bewirken un-
ter Einhaltung von (34.35) und (34.38) unterschiedliche Verl3ufe von
A(t). lhre Ausprédgungen beschreiben daher verschiedene 'Entstehungs-
geschichten' der Levelfﬁllung iber E(t-T).

Da wegen (34.37)

a3 =1 -a1 -a,

bringen die Parameter a3, im Rahmen der Bedingung

&£ <
O-a‘,az_l

< <
0 < a]+a2 =1

diese 'Entstehungsgeschichte' zum Ausdruck.

Die Zielfunktion (34.33) hingt somit von den Parametern DVZ, T so-
wie ay und a, ab. Das im Anhang angefiihrte FORTRAN-Programm bestimmt
bei vorgegebenem T die Parameter DVZ, a, und a, mit Hilfe eines Such-
verfahrens.

Fiir die durchschnittliche Verzdgerung DVZ wird der Bereich
3+T<DVZ<20+T

angenommen.
Das Programm ist mit verschiedenen Totzeiten zu starten und der be-
ste Zielfunktionswert ZIEL ist auszuwdhlen. Das verwendete Suchver-

fahren garantiert nicht, daB das gefundene (relative) Minimum auch
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Im Rahmen von Tests mit verschiedenen 'idealen' Beobachtungsrei-
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hen konnte jedoch immer das absolute Minimum realisiert werden. Ne-

ben der Totzeit T wird mit N die Anzahl der

in der Zielfunktion zu

berlicksichtigenden Perioden festgelegt. Entsprechend miissen N+1 Be-

obachtungswerte des Abflusses AB und N+1+T Beobachtungswerte des Zu-

flusses Z eingelesen werden. Die Zeitindizierung (TIME) 1&uft von

TIME=T,T-1,...,-1,0,1,2,...,N.

Die (anhand der unten angefiihrten Ausgabe ersichtliche) Eingabe der

Beobachtungswerte von AB und Z filihrt mit N=20, T=2 und L@=1670 zu

folgendem Ergebnis:

DVZ: ©.45 Al: 0.405 A2: 0.370 ZIEL: 8.1742F 23

ANFANGSBESTAND: 167¢.¢¢ TOTZEIT: 2

TIME AB A Z LEV LEV B
=2 187.7¢
=1 213.35

4 18¢.89 179.6¢ 226,98 1670 .20 1670.00

1 196.69 198.93 203.99 1688.10 1686.81

2 210.92 211.84 186.19 1792 .52 1704.87

3 218.24 219 .66 227.95 1717.€6 1720.13

4 224.79 223.27 221.78 1702.00 1765.88

5 227,55 224,76 228.43 1664 .91 1667.28

€ 225.2 225.1¢ 247.74 1668.11 1667.68

7 229.256 225.04 156.30 1664.79 1664.15

a 222.9%7 225.38 246.68 1668.18 1663.32

S 218.48 224.17 180.13 1690 .54 1688.09

10 227.11 223.16 160.84 1622.67 1625.91

11 222.85 221.42 2£4.93 1646.19 1645.48

12 219.28 218.32 16@.3€ 1604 .90 16@3.56

13 219.87 215.02 186.96 1547.42 1245.02

14 213.89 211.24 176.43 1537.32 1539.08

12 209.11 287 .02 232.87 1486.64 1485.55

1€ 204,29 283.07 186.83 1466 .59 1463.49

17 221,47 202.62 165.22 1429.95 1435.44

18 200.82 198.88 241.24 1471.48 1466.04

18 192.12 196.85 168,59 1459.35 1452.85

29 192.04 196.38 213.95 1427 .63 1425.18

Zur Simulation der Verweilzeithypothese, deren Parameter auf diese

Weise ermittelt wurden, dient die im Anhang angefiihrte Makrofunktion

DELATO

DELATO(Z,DVZ,T,L8,A1,A2,Z 1,2 2,2 4,2 5,7 6)

Es sind Z: ZufluBrate, DVZ: durchschnittliche Verz8gerung, T: Tot-

zeit, LO: Anfangsbestand des VerzSgerungslevels im Zeitpunkt 0, Al

und A2: Parameter, die die 'Entstehungsgeschichte’ von L@ zum Aus-
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druck bringen, Z 1 bis Z 6 sind die Beobachtungswerte des Zuflusses
Z, wihrend der Perioden -1 bis -6. Die ZufluBrate Z muB vom Zeit-
punkt‘0 im Rahmen eines Modells endogen erkldrt werden oder als exo-
gene Variable zur Verfiigung stehen. Bei einer Totzeit von T sind nur
Z1,...,2_T (T<6) Beobachtungswerte fiir die ZufluBrate aniugeben.
Die Werte fiir Z T-1 bis Z 6 kdnnen in DELATO beliebig gewdhlt wer-
den, weil sie keinen EinfluB auf A(0),A(1),... ausiiben und daher un-

berlicksichtigt bleiben.

3.4.2. Die Verwerfung der generellen Informationslevel-
pramisse und ihre Konsequenzen

Mancher Leser wird sich anfangs gefragt haben, warum das bisher kon~
sequent zur |llustration bestimmter Modellformen verwendete MA-Modell
nicht auch als Anwendungsbeispiel einer System-Dynamics-Modellierung
diente. Mit der Erkenntnis, daB ein System-Dynamics-Modell in die Ka-
tegorie der zeitkontinuierlichen Modelle fdllt, wird jedoch zugleich
auch deutlich, daB es grundsdtzlich unmdglich ist, ohne zusdtzliche
Informationen aus- einem systemaddquaten zeitdiskreten MA-Modell, ein
dieses System ebenfalls in addquater Weise beschreibendes zeitkonti-
nuierliches Modell eineindeutig abzuleiten.

Denn sd@mtliche Variablen eines MA-Modells sind liber eine Periode ag-
gregierte StromgrdBen, und diese Aggregate erlauben keine eineindeu-
tigen Rickschliisse auf ihre infinitesimalen Anderungen wdhrend die-
ser Periode. Ersetzt man die Infinitesimalprémisse durch die Diskret-
zeitprdmisse, so lassen sich keine offenkundig berechtigten Einwdnde
anfiihren, daB die durch diesen Austausch entstandene modifizierte Sy-
stem-Dynamics-Konzeption nicht mehr zu verwenden sei. Daher wollen
wir im folgenden der Frage nachgehen, ob unter Annahme der Diskret-
zeitprdmisse und unter Anwendung der verbleibenden Elemente der Sy-
stem-Dynamics-Konzeption das uns bekannte MA-Modell mit dieser modi-
fizierten Modellierungkonzeption zum Ausdruck gebracht werden kann.
Eine unter dieser Fragestellung im folgenden durchgeflihrte Untersu-

chung fiihrt, wie sich zeigen wird, zu einer sukzessiven Verwerfung
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und Ersetzung bestimmter Modellierungselemente des System-Dynamics-
Ansatzes und damit zur Entwickliung des FOLR-Modellierungskonzeptes.
Unter der Annahme einer durch die Diskretzeitprdmisse modifizierten
System-Dynamics-Konzeption greifen wir nunmehr die Frage auf, wie
sich ein MA-Modell in dieser Konzeption darstellen und interpretie-
ren 138B8t. Der Konsum C kann als AbfluB eines im MA-Modell nicht ex-
plizierten Levels 'Geldbestand' angesehen werden, wdhrend |i und Ia
als Zufliisse eines ebenfalls nicht aufgeflhrten Levels 'Investitionen'
aufzufassen sind. Da Y weder eine Bestandsdeutung zuldBt, noch als der
Zugang zu einem Bestand interpretiert werden kann, ist es als eine
Hilfsvariable anzusehen. Machen wir uns klar, daB der Wert der Raten-
variablen mit dem Zeitindex JK erst am Beginn der Periode K bekannt
ist, so kann man einer Ratenvariablen auch den Zeitindex K zuordnen.
Verwenden wir die in MZA-Modellen libliche Schreibweise des laufenden
Zeitargumentes, d.h. den Buchstaben t, so ergibt sich die Korrespon-
denz zwischen den Indizes K und t bzw. J und t-1. Die allgemeine Form
einer Ratengleichung wird unter dieser Festlegung durch die folgende

Beziehung beschrieben:

R(t) = F[Li(t-1),Aj(t-1)} = e mashi (34.39)
d=1 250w yM

wobei Li eine Level- und Aj eine Hilfsvariable symbolisieren. Man er-
kennt, daB zwischen einer Ratenvariablen und den sie erkldrenden Va-
riablen stets eine Verzdgerung von nur einer Periode auftreten darf.
Fihren wir uns angesichts dieser Feststellung die Gleichung der als

Ratenvariablen angesehenen induzierten Investition
I(t) = 2[c(e)-C(t-1)] (34.40)

vor Augen, dann ist diese im Rahmen von (34.39) nicht formulierbar,
weil auf der rechten Seite einer Ratengleichung keine unverzdgerte
Variable stehen darf.

Auch die modifizierte Investitionshypothese

Ii(t) = 2[c{t~1)~C{r-2)1 (34.41)
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kann nicht im Rahmen von System Dynamics formuliert werden, weil ei-
ne der erklirenden Variablen um zwei Perioden verzSgert ist, sdmtli-
che erkldrenden Variablen aber nur um eine Periode verzdgert sein
diirfen.

Dariiberhinaus ware noch gegen die Verwendung von C anzufiihren, daB

es ebenfalls eine Ratenvariable ist, und eine Ratenvariable nie in
eine Ratengleichung als erkl3rende Variable eingehen darf. [55,S.4-9]
Nach der System-Dynamics-Konzeption h3ngen alle Raten direkt oder in-
direkt allein von den Vorperiodenwerten bestimmter Levelgr&Ben ab,
d.hs

R(t) = F[L](t-l),Lz(t-1),...,Ln(t-1)] (34.42)

Da die Ratengleichungen jedoch die empirischen Hypothesen eines Sy-
stem-Dynamics-Modells reprdsentieren, wird die Einschrdnkung der Mo-
dellierungsmdglichkeiten deutlich, denn die als Norm aufzufassende

Beziehung (34.39) verbietet,

(1) daB eine Ratenvariable verzdgert oder unverzdgert von einer an-
deren Ratenvariablen abhdngt und
(2) daB eine Ratenvariable von einer Levelvariablen abh3ngt, deren

Verzdgerung mehr als eine Periode betrdgt.

Heben wir rein formal diese Restriktionen auf, so gelangen wir zu

der folgenden Klasse von Hypothesengleichungen
R(t) = F[Li(t-v),Aj(t-u),Rk(t—c)] (34.43)
mit i,j,k,v,u,c €N

Mit FORRESTERs Festlegung werden implizit sdmtliche durch (34.43) er-
laubten, aber durch (34.39) nicht zugelassenen Hypothesen verboten.
Ein solches Verbot ist als eine (uniiberpriifte) A-priori-Hypothese
aufzufassen, welche besagt, daB die verbotenen Hypothesen keine ad-
dquate Systemmodellierung zulassen. FORRESTERs Vorgehen verstdBt da-
her gegen das Prinzip der uneingeschrankten Hypothesenformulierung,
welches fordert, daB jede (in einer bestimmten Sprache formulierba-
re) Wenn-Dann-Aussage, soweit sie nicht zu bestimmten logischen und
definitorischen Widerspriichen fiihrt, grundsdtzlich als Hypothese zu-

gelassen ist und Uber ihre Akzeptierbarkeit nur anhand einer empiri-
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5,6

schen Uberpriifung entschieden werden kann.
Betrachten wir unter FORRESTERs Einschrdnkung die angefihrten Inve-
stitionshypothesen (34.40) und (34.41) eines MA-Modells, dann erken-
nen wir, daB sie durch (34.39) verboten, ‘durch (34.43) jedoch zuge-
lassen sind.

An diesem Punkt ist es angemessen zu fragen, warum FORRESTER eine so
einschrédnkende Verwendung von Hypothesen vorschreibt. Der Leser wird
sich erinnern, daB im Rahmen der System-Dynamics-Diagramme die Schif-
te der EinfluBpfeile von den Symbolen der Level- und HilfsgrdBen zu
den Ratenvariablen durch unterbrochene Linien gekennzeichnet wurden.
Diese als informationelle Verknlipfungen bezeichneten Einfliisse be-
stimmen die Ratenvariablen. FORRESTER unterstellt, daB3 bei diesem
ProzeB alle aus der Vergangenheit auf die Entscheidung einwirkenden
Informationen in Gestalt von Informationsbestdnden zur Verfligung ste-
hen, falls sie nicht direkt auf den Vorperiodenwert eines materiel -
len Bestands zuriickgeflhrt werden k&nnen.

Die allgemeine Form der von FORRESTER postulierten Ratengleichungen

(34.42) 158t sich daher in folgender Weise differenzieren:
R{t) = FIM, (t=1),.. )M (e-1), 1, (e=1),...,1_(e=1)] (34.44)

Die Gr&Ben M1,M2,... umfassen Level wie Lager-, Auftrags- und Geldbe-
stdnde, die sich jederzeit durch direkte oder indirekte Beobachtun-
gen empirisch aufweisen lassen. Die GrdBen l1’|2"" sind dagegen
Informationslevel, die sich nur als Nichtbeobachtungsvariablen deu-

ten lassen und deren Charakteristikum darin besteht, daf3 sie alle
Informationen, die aus der Vergangenheit einen EinfluB auf R(t) aus-
iben, in sich 'mitschleppen' und R(t) 'mitteilen'. Dieses Vorgehen
ist eine konsequente Praktizierung der Level-Raten-lInterpretation,
nach welcher alle die (n3chste) Zukunft beeinflussenden Variablen
durch taufende Bestandsgr&Ben ausgedriickt werden.

5 Zu den Formen logischer und definitorischer Widerspriiche von Hypo-
thesen siehe Seite 126f.

6 Das Prinzip gilt auch fiir unterschiedliche Sprachen, also auch fir
zeitdiskrete und zeitkontinuierliche Modellsprachen. Aus diesem
Grunde wurde hier auch nicht die Infinitesimalprémisse abgelehnt,
sondern es wurde nur behauptet, dall die meisten sozialen Systeme
durch zeitdiskrete Modelle wirklichkeitsnah abzubilden seien.
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Um FORRESTERs Ansatz mit der allgemeinen Hypothesengleichung (34.43)
zu vereinbaren, miiBte sich zeigen lassen, daB alle in ihr auftreten-
den Ratenvariablen sowie alle Levelvariablen mit einem hdheren Ver-
zdgerungsgrad als 1 als Zu- und Abfliisse bestimmter Informationslevel
gedeutet werden kdnnen. Als Folge davon miiBte (34.43) mit einem
Gleichungssystem 3quivalent sein, welches durch (34.44) und ein Sy-
stem von Informationslevelgleichungen gebildet wird. Eine solche In-
formationsbestandsinterpretation von Hypothesen mit verzdgerten er-
klidrenden Variablen ist aber in den meisten F&llen nicht mdglich.

Betrachten wir beispielsweise die Investitionshypothese
1 (t) = 2[c(e-1)-C(t-2)] (34.45)

Sie miBte, um im Sinne von FORRESTER durch einen Informationsbestand
ausgedriickt zu werden, auf die folgende, der Hypothese (34.45) &qui-

valente Form transformiert werden kdnnen

o
—
-+
~
1

|b(t-1) + C(t-1) - Ii(t-1)
= F[Ib(t-l)] (3L4.46)

—~

+

~—
|

Ib widre damit ein Informationsbestand mit dem Zugang C und dem Ab-
gang |;. Gegen diese Interpretationsweise ist jedoch einzuwenden, daB
die Beziehungen (34.46) aus (34.45) nicht abgeleitet werden kdnnen.
Bei linearen Modellen ist die Umwandlung eines sequentiellen Mpdells
wie (34.45) in eine Bestandsfortschreibungsgleichung sowie eine Er-
kldrung der Bestandsabgangsvariablen in Form einer Differenzenglei-~
chung ersten Grades nur in Ausnahmefdllen mbglich.

Als Einwand gegen diese Behauptung wird man vorbringen, daB FORRESTER
bestimmte Beispiele von Informationsleveln anwendet und diese Beispie-
le offenbar doch in der Lage sein miissen, mehrperiodisch verzdgerte
Einfliisse Uber bestimmte Informationslevel zum Ausdruck zu bringen.
Diesem Einwand ist entgegenzuhalten, daB FORRESTER nur eine einzige
Klasse von Informationsleveln verwendet, welche eine exponentielle
Gldttungsverzdgerung beliebiger Ordnung ausdriicken. ‘
Erinnern wir uns an den sogenannten SMOOTH-Makro, mit welchem anhand

der als exponentielle Gl&dttung bezeichneten Prognosemethode die Vor-
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hersage einer als Beobachtungswert aufzufassenden GrdBe IN vorgenom-
men wird. Bezeichnen wir die zu prognostizierende Variable als SMOOTH,

so kann dieses Prognoseverfahren durch die Levelgleichung
L éMOOTH.K=SMOOTH.J+DT*(IN.JK-SMOOTH.J)/GLF (34.47)

ausgedriickt werden. SMOOTH ist nach FORRESTER eine Levelvariable, die
einen Informationslevel zum Ausdruck bringt.

Dieser Informationslevel wird von FORRESTER fast ausschlieBlich in
seinen Modellen verwendet. Er r3umt jedoch auch die MSglichkeit ein,
Prognosen mit Hilfe einer exponentiellen Gl&ttung hdherer Ordnung
durchzufiihren. Diese auch in der Okonometrie verwendete Prognoseme-
thode 13Bt sich dadurch ausdriicken, daB im Falle einer Prognose n-ter
Ordnung n Gl&dttungen erster Ordnung mit einem Gldattungsfaktor GLF/n
miteinander kaskadiert werden. Die letzte dieser zu kaskadierenden
Levelvariablen entspricht dem zu ermittelnden Prognosewert und kann
offenbar nach FORRESTERs Auffassung auch als Informationsbestand auf-
gefaBt werden.

FORRESTERs Anwendung eines Informationsbestandes beschrdnkt sich auf
die Deutung, daB die mit Hilfe einer exponentiellen Prognose laufend
ermittelten Werte eine fortzuschreibende BestandsgrdBe darstellen.
Aber selbst die Deutung dieser (pridziser als Prognoselevel zu be-
zeichnenden) GrdBen als Variablen, durch welche eine Informations-
bestandsfortschreibung vorgenommen wird, ist 3uBerst problematisch.
Betrachten wir als Beispiel den einfachen und fast nur verwendeten
SMOOTH-Makro, dann ist die EingangsgréBe dieses Levels IN.JK/GLF.

Im Sinne der Bestandsdeutung dlirfte es nur [N.JK sein. Die verzdger-
ten 'Informationselemente', welche als AbfluBvariablen den Level ver-
lassen, bilden mit SMOOTH.J/GLF eine empirisch nicht zu interpretie-
rende GrdBe.

Es zeigt sich also, daB selbst die von FORRESTER verwendeten Infor-
mationslevel keine sinnvolle Deutung als Bestandsgr&Ben mit Zu- und
Abfllissen zulassen. ,
Beriicksichtigt man jedoch, daB der liberwiegende Teil aller sequen-

tiellen Hypothesen keine Interpretation als Informationslevel erlau-
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ben, dann flhrt FORRESTERs Festhalten an einer konsequenten Level-
Rateninterpretation von Systemen dazu, daB viele reale Systeme sich
einer Modellierung entziehen.

Fiir das zu entwickelnde FOLR-Modellierungskonzept wird daher die Giil-
tigkeit der generellen Informationslevelinterpretation abgelehnt.
Es soll vielmehr mdglich sein, beliebige Ratenhypothesen im Rahmen
der durch (34.43) aufgezeigten MSglichkeiten der Differenzenglei-
chungssprache zu formulieren. Da Hilfsvariablen als die Folge der
(vertikalen und horizontalen) Differenzierungen einer Ratenhypothe-
se anzusehen sind, wird auch die Modellierung von Hilfsgleichungen
nur durch den Rahmen (34.43) begrenzt.

Da das Zeitinkrement DT voraussetzungsgemdB stets 1 gewdhlt werden
soll, kann eine Levelvariable durch den folgenden DYNAMO-Ansatz be-

schrieben werden.
A LEV.K=V1(LEV.K,LEV_1)+ZUF.K-ABF.K

Vl(LEV.K,LEV_]) ist eine Makrofunktion; in welcher LEV 1 den An-
fangswert des Levels beschreibt. Die Definition einer eigenen An-
fangswertgleichung eriibrigt sich damit. Die Raten ZUF und ABF wer-
den nur mit dem Zeitindex K versehen.

Sie unterscheiden sich nicht mehr in der Form, sondern allein in der
inhaltlichen Bedeutung von den Hilfsvariablen, ndmlich dadurch, daB
sie sich als BestandverdnderungsgrdBen deuten lassen.

Da Raten- und Hilfsvariablen durch verzdgerte Variablen beliebigen
Grades erkldrt werden k8nnen, sind bestimmte Makrofunktionen zu
definieren, die die zuldssigen Verzdgerungen beschreiben. Fir Ver-
z8gerungen ersten bis dritten Grades kdnnen beispielsweise die fol-

genden Verzdgerungsmakros definiert werden:

V1(E,E_1)
v2(E,E_1,E 2)
V3(E,E_1,E 2,E 3)

lhre Definitionen, die dem eigentlichen DYNAMO-Programm voranzustel-

len sind, lauten:
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MACRO V1(E,E_1)

L V1.E=V1.J+DT*($H.J-V1.J)
A $H.K=E.K

N V1=E_1

MENT

-3

MACRO V2(E,E_1,E_2)

A V2.K=V1(V1{E,E_1),E_2)
MEND

%*

MACRO V3(E,E_1,E_2,E_3)
A VE3.K=V1(V1(V1(W,E_ 1),

E_2),E_3)
MEND

Die GréBen E 1,E 2,E 3 sind die Anfangswerte der verzdgerten Variab-
len E. Beginnt die Berechnung der endogenen Variablen mit TIME=0, so
reprasentiert E 1 den Wert der verzbgerten Variablen im Zeitpunkt
TIME=-1; E 2 und E 3 sind in entsprechender Weise die Werte fiir E

im Zeitpunkt TIME=-2 bzw. -3.

Das am Anfang beschriebene MA-Modell kann im Rahmen der vorgetrage-

nen Konzeption durch den Ansatz

A Y.E=C.K+IA.K+II.K
A C.K=0.5%*V1(Y.K,Y 1)
A II.K=2%(C.K-V1(CTK,C_1)

dargestellt werden. Im Falle der in (34.41) beschriebenen Hypothesen-
modifikation flir die induzierten Investitionen ergibt sich die Glei-
chung:

A II.K=2%(V1(C.K,C_1)-V2(C.X,C_1,C_2))

Der Umstand, daB nunmehr beliebige sequentielle Modellhypothesen ver-
wendet werden k&nnen, flihrt dazu, daB die im System-Dynamics-Konzept
ausschlieBlich verfiigharen exponentiellen Verweilzeithypothesen nicht
nur durch Verweilzeithypothesen mit beliebigen primdren Gewichtsfunk-
tionen ersetzt werden kdnnen, sondern sich auch diese Verwéilzeithy-
pothesen als ein Spezialfall eines Modellierungsrepertoires sequen-

tieller Hypothesen der Form (23.10) einordnen lassen.
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Eine beliebige sequentielle Hypothese £23.8) .- d.h.
Y(t) = goE(t)+g]E(t-1)+...+gSE(t-S)

kann nunmehr unter den getroffenden Voraussetzungen durch die Makro-
funktion SEHS (SEquentielle Hypothese S-ten Grades) beschrieben wer-
den.

MACRO SEHS(G?,G1,.0.00905,E 1,E 2,.0..,E_S,E.X)

A SEHS .K=GO*$Z0.K+G1*5721 .K+G2%$Z2.K+.css++GS*¥$ZS.K

A $70.K=E.K

A $71.K=V1($22.K,E_1)
A $22.X=V1($2Z1.K,E_2)

-

A $2S.K=V1($2S_1.K,E_S)
MEND

Diese Makrofunktion deckt aber zugleich auch den Spezialfall einer
finiten Verweilzeithypothese ab.

Werden beispielsweise die Beziehungen zwischen der Entstehung von
Geldforderungen G und dem Zahlungseingang dieser Forderungen Z an-

hand der Verweilzeithypothese
Z(t) = 0,2G(t) + 0,6G(t-1) + 0,2G(t-2)

beschrieben, dann ist die Gewichtsfunktion nicht durch die mit (23.54)

beschriebene Familie darzustellen, kann aber durch den Ansatz
A Z.K=SEH2(@.2,®.6,G.2,G_l,G_Z,G.K)

unter Vorgabe einer entsprechenden Makrofunktion definiert werden.

Die Gewichtskoeffizienten 955 9qs---5 9g der zu modellierenden se-
quentiellen Hypothese kdnnen mit Hilfe statistischer Verfahren be-
stimmt werden (s.[37]) oder im Rahmen von Entscheidermodellen auch
durch subjektive Schdtzungen.

E 1,E 2,...,E_S beschreiben die Werte der Eingangsvariablen E fir

t= =-1,-2,...,-S. Sie sind numerisch vorzugeben.
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3.4.3. Die Verwerfung des Geschlossenheitsprinzips und
ihre Konsequenzen

FORRESTERs Ziel ist das Studium geschlossener Systeme. [55,S.4-2]

Als wesentlich fiir ein geschlossenes System sieht er die Existenz
einer ""boundary across which nothing flows (except perhaps a dis-
turbance for exiting the system so we can observe its reaction)'
[55,5.4-2]. Diese ‘'disturbance' zum Studium der Systemreaktion ist
nichts anderes als ein Testeingang. Da Testeingdnge aber sinnvoller-
weise nur im Rahmen von Testantwortmodellen anwendbar sind, zeigt sich,
daB nach FORRESTER nur Testantwortmodelle (und nicht Prégnosemodelle)
eine exogene ZufluBrate enthalten dliirfen. Es fragt sich aber, ob der-
artige Testantwortmodelle mehr als eine exogene ZufluBrate besitzen
kﬁnnen. FORRESTER verneint dies nicht ausdriicklich, bemerkt aber:

""As a practical matter we usually are limited to one exogenous non-
noise test input.' [53,5.141] Da die Testantwortmodelle FORRESTERs
und seiner Schiiler aber stets nur eine exogene ZufluBrate aufweisen,
kann man unterstellen, daB in der System-Dynamics-Konzeption fak-
tisch von singuldr offenen Modellen ausgegangen wird.

Als Prognosemodelle dagegen diirfen nur geschlossene Modelle verwen-
det werden. Die beschriebenen Einschrdnkungen beider Modellformen
kennzeichnen das Forrestersche Geschlossenheitsprinzip.

Im Falle von Testantwortmodellen filihrt das Geschlossenheitsprinzip
dazu, daBl fiir eine Modellierung die Systeme ausscheiden, in welchen
mehr als eine Variable nicht endogen erkldrt werden kann. Es l&ge
nahe, diese Einschrankung durch die Einfiihrung multipler offener
Testantwortmodelle aufzuheben. Diese Erweiterung scheitert aber dar-
an, daB es sehr schwer f8llt sich eine sinnvolle Auswertungsmethode
derartiger Modelle vorzustelilen. Man sollte sich damit abfinden, daé
Testantwortmodeile in ihrem Anwendungsbereich beschrdnkt sind.

Wir wenden uns daher dem Geschlossenheitsprinzip im Falle von Prog-
nosemodellen zu. FORRESTER wiirde sich weigern, ein MA-Modell als ein
System-Dynamics-Prognosemodell zu akzeptieren, da Ia eine exogene Va-

riable reprdsentiert und somit kein geschlossenes Modell vorliegt.
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Wollte man ein MA-Modell zu einer Prognose verwenden, so wire es
FORRESTERs Auffassung nach notwendig, eine Hypothese zu finden, wel-
che Iy als eine Funktion bestimmter endogener Modellvariablen er-
k1drt, d.h. endogenisiert.

FORRESTERs Forderung, keine offenen Modelle als Prognosemodelle zu
akzeptieren hat zur Folge, daB3 ein groBer Teil der heutigen sozio-
Skonomischen Systeme nicht durch System-Dynamics-Prognosemodelle ab-
gebildet werden kann, weil es nicht gelingt, bestimmte exogene Va-
riablen in befriedigender Weise zu endogenisieren.

Das Geschliossenheitsprinzip sollte daher aufgegeben und durch ein

Offenheitsprinzip ersetzt werden, welches die Verwendung exogener

Variablen in Prognosemodellen zul&Bt. Unter der Diskretzeitpramisse

ist die mit dem Offenheitsprinzip zugelassene model ImédBige Beschrei-
bung der exogenen Variablenverldufe ohne Schwierigkeiten durchfiihr-

bar.

Beispielsweise kann man annehmen, daB der Verlauf der autonomen In-

vestitionen (lIA) eines MA-Systems fiir acht Perioden durch die Zeit-

reihe {(in Milliarden)
15 2255 3Ty 2:8; 2.5+ 2:75 32

beschrieben wird. Der Verlauf wird in der DYNAMO-Sprache durch

A IA.K=TABLE(TABE,TIME.K,G,E,l)
T TABE=1E9/2.5E9/3.1E9/2.8%9/2.589/2.7E9/3.2E9

ausgedriickt.

3.4.4. Die Verwerfung der statistischen Sonderstellung
und ihre Konsequenzen

System-Dynamics-Modelle nehmen insofern eine statistische Sonder-
stellung ein als FORRESTER die zur Gewinnung und Uberpriifung konven-
tioneller dynamischer Modelle {iblichen statistischen Methoden strikt

ablehnt.

Betrachten wir als erstes seine Einwdnde gegen die Anwendung stati-
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stischer Verfahren zur Gewinnung von Hypothesengleichungen, d.h. die
Anwendung von Parameterschdtzverfahren. FORRESTER geht davon aus,
daB System-Dynamics-Modelle stets Entscheidermodelle sein sollen,
d.h. Modelle, welche - wie er sagt - das Mentalmodell (mental model)
eines Entscheiders zum Ausdruck bringen. Es ist daher nicht notwen-
dig, bestimmte Modellparameter durch statistische Schdtzungen zu ge-
winnen, sondern als Parameter sollen die numerischen Werte des Men-
talmodells verwendet werden. Denn ein System-Dynamics-Modell ist ja
nicht mehr als die formale Explikation des Mentalmodells eines Ent-
scheiders. Die Angreifbarkeit dieser Argumentation liegt in der An-
nahme FORRESTERs, ein Entscheider besdBe immer ein parametrisch=sin-
guldres Mentalmodell. Diese Annahme ist aber in vielen Fdllen sehr
unrealistisch. Betrachten wir beispielsweise die verteilte Verzdge-
rung zwischen den Bestellungen (B) und den eintreffenden Lieferungen
(L) in einem Unternehmen. Kaum ein Entscheider wird die nicht direkt
beobachtbare Gewichtsfunktion dieser Verzdgerung kennen. Vielmehr
diirfte diese Gewichtsfunktion erst mit Hilfe statistischer Methoden
ermittelt werden kdnnen. Ohne die Anwendung statistischer Methoden
wird der Entscheider einfach mitteilen mlissen, daB er kein parame-
trisch-singuldres Mentalmodell dieser Verzdgerung besitzt. Nehmen
wir jedoch den Fall an, der Entscheider glaubt (aus uns nicht bekann-
ten Griinden), die Beziehung zwischen B und L sei durch eine DELAY3-
Verzdgerung mit einer Durchschnittsverzdgerung von DVZ=3 Wochen be-
schrieben, dann besitzt sein Mentalmodell eine parametrisch-singul&-
re Verweilzeithypothese.

Selbst in diesem Fall diirfte sich ein rational handelnder Entschei-
der nicht einer Anderung seines Mentalmodells verweigern, wenn sich
zeigt, daB die Beobachtungswerte fiir B und L mit einem DVZ von 4 Wé-
chen wesentlich besser erkl&rt werden. Besteht der Entscheider aller-
dings auf seinem urspriinglich gewdhlten Parameter, so ist dieser in
das Modell aufzunehmen.

Zusammenfassend kann man feststellen, daB ein Entscheider in vielen
Fallen nur unter Verwendung von Parameterschdtzverfahren zu einem

parametrisch-singuldren Mentalmodell gelangt und in der Regel auch
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bereit sein diirfte, sein urspriingliches Mentalmodell im Lichte sta-

tistischer Schdtzungen zu revidieren. Hier zeigt sich die Nahtstelle
fiir die Anwendung statistischer Schitzungen in Entscheider- ader Men-
talmodellen. FORRESTERs strikte Ablehnung von Schdtzverfahren bleibt

daher unverstandlich.

Wenden wir uns dem zweiten Ansatzpunkt statistischer Verfahren, der
Modellvalidierung, zu. Fiir FORRESTER ist nur der Turingtesf als
VValidierungskriterium akzeptabel: das Modell wird akzeptiert, wenn
der Entscheider anhand eines Vergleichs zwischen Beobachtungswerten
und Modellvariablenverlauf zﬁ dem Urteil kommt, Modell und System
besdlen dasselbe qualitative Verhalten.
Es ist zu vermuten, daB viele Entscheider sich auBerstande sehen, an-
hand der zu vergleichenden Zeitreihen ein solches Validitdtsurteil
zu fallen, weil ihnen die Merkmale fiir den Begriff 'dasselbe qualita-
tive Verhalten' fehlen.
Bei deterministischen Modellen l3ge es nahe, ihre Validitdt nach
einer Ex-post- oder Ex-ante-Prognose zu beurteilen. Da FORRESTER
solche Verfahren aber ablehnt, muB man sich fragen, ob eine 'gute'
oder 'schlechte' Ex-post- oder Ex-ante-Prognose denn v3llig belang-
los im Hinblick auf das mit einem System-Dynamics-Modell angestreb-
te Ziel ist.
Damit stellt sich die Frage nach der mit der Entwicklung eines Sy-
stem-Dynamics-Modells verfolgten Zielsetzung. FORRESTER driickt sich
hiertiber nicht sehr prdzise aus. Er sagt, Ziel eines Modells sei es
“to understand the reality better' [55,5.3-5] oder ''to get a better
intuitive feeling for the time-varying behavior of industrial and
economic systems''. [54,5.28]
Weiter bemerkt er: ''some of the most useful insights to come from
industrial dynamics show which policies in a system have enough le-
verage so that by changing them one can hope to alter system's be-
havior'. [58,S.406]
Soll aber das Ziel einer Modellentwicklung darin liegen, ein System
zu verstehen und letztlich im Sinne bestimmter Vorstellungen zu ver-

andern, dann ist dieser Wunsch umso eher realisierbar, je starker
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Modellprognosen und Beobachtungswerteiﬂbereinstimmen. Die Ex-post-
Prognose ist daher durchaus ein Indikator fiir die Akzeptierbarkeit

eines System-Dynamics-Modells.

3.4.5. Zum Status der FOLR-Modellierung

Nach der Ersetzung der Infinitesimalprdmisse durch die Diskretzeit-
pramisse, der Aufgabe der generellen Informationslevelprdmisse und
des Geschlossenheitsprinzips sowie der Ablehnung einer statistischen
Sonderstel lung kann man sich fragen, welche konstitutiven Elemente
der System-Dynamics-Konzeption in der sich hiermit ergebenden kon-
zeptionellen Modifizierung noch verblieben sind. Nach Ansicht des
Verfassers bleiben gerade die Elemente erhalten, die man als einen
fruchtbaren Beitrag von System Dynamics zur Modellierung dynamischer
Systeme bezeichnen kdnnte: das revidierte Level-Raten-Konzept und
das Feedback-Konzept.

Beide Konzepte k&nnen schlagwortartig als unter Umstdnden fruchtba-
res heuristisches Verfahren der Hypothesengewinnung bezeichnet wer-
den. Diese Eihschétzung knlipft an die eingangs erhobene Behauptung
an, flir die Entwicklung dynamischer Modelle sei es oft glinstig, von
einem bestimmten Definitionssystem auszugehen, in welches man dann
die empirischen Hypothesen ‘einhdngen' kénnte. [Vgl. S. 52]
FORRESTERs Level-Raten-Interpretation geht einschrdnkend von einer
bestimmten Art von Definitionen aus, ndmlich den Definitionen, die
sich empirisch als Bestandsfortschreibungsgleichungen interpretie-
ren lassen. Mit dem durch die Level-Raten-Interpretation vorgeschrie-
benen Auftrag, in einem zu modellierenden System die Level- oder Be-
standsgroBen iu identifizieren, wird damit gleichzeitig deutlich,
daB diese Bestdnde Zu- und Abfllsse aufweisen, deren Erkldrung durch
eine empirische Hypothese zu erfolgen hat. Durch die ldentifizierung
der Level- und FluBraten sowie ihrer Repr&sentation in einem spezi-
ellen FluBdiagramm wird eine Art definitorischer Basis geschaffen,

von der aus es vielen Personen offenbar leichter erscheint, die in
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den Ratenvariablen zum Ausdruck kommenden Hypothesen zu entwickeln.
In diesem Sinne erweist sich die Level-Raten-Interpretation als ei-
ne fruchtbare Heuristik zur Hypothesengewinnung und damit zur System-
model lierung. Ahnliches gilt fliir die Feedbackdeutung eines Systems
und die mit ihr verbundene Entwicklung eines Feedback- und kompara-
tiven Kausaldiagrammes.

Offenbar scheint die teilweise nur latent vorhandene Systemkenntnis
von Modellentwicklern durch derartige Interpretationsweisen eines
Systems so ausgeschdpft zu werden, daB es mdglich wird, positive und
negative Feedbackkreise zwischen den als Leveln, Raten und Hilfsva-
riablen interpretierten SystemgrdBen zu erkennen und in einem FluB-
diagramm festzuhalten. Damit ist neben der Level- und Ratenidentifi-
zierung auch ein (noch relativ empirisch gehaltloses) Hypothesensy-
stem der Abh3dngigkeiten zwischen den Variablen aufgestellt. Die nu-
merische Konkretisierung der Hypothesen als der entscheidende Schritt,
von dem letztlich die empirische Relevanz des Modells abhdngt, steht
auf dieser Stufe allerdings noch aus. Das Konzept der Level-Raten-
Interpretation und die Feedbackheuristik als ein Verfahren zur Ge-
winnung komparativ kausaler Schaubildmodelle auf deren Grundlage man
durch eine Verschdrfung der Hypothesen zu einem parametrisch-singu-
l8ren Modell gelangt, ist nach Ansicht des Verfassers ein &duBerst
verdienstvoller Beitrag FORRESTERs zur Modellierung komplexer Syste-
me. Beide Prinzipien sind in der hier entwickelten modifizierten Ver-
sion enthalten, die als '‘Feedbackorientierte offene Level-Raten-Mo-

dellierung' oder abgekiirzt FOLR-Modellierung bezeichnet werden soll.

Mit der Ersetzung der Infinitesimalprdmisse durch die Diskretzeitpra-
misse wurde zu einer mathematischen Darstellungsform ilibergewechselt,
die in vielen Fdllen geeigneter ist, konkrete Systeme in addquater
Form zu reprdsentieren. In einem weiteren Schritt wurde auf die For-
derung FORRESTERs verzichtet, verzdgerte Einfllisse auf Ratenvariab-
len durch eine Informationslevelinterpretation erkldren zu wollen;
denn eine solche Bestandsinterpretation versagt fiir den GroBteil so-
genannter informationeller Verzdgerungen. Da das Beharren auf einer

strikten Level-Raten-Interpretation im Falle informationeller Verzd-



521

gerungen damit erkauft wird, daB ein GroBteil denkbarer sequentieller
Modellhypothesen im System-Dynamics-Konzept nicht verwendet werden
kann; erwies sich die Level-Raten-Interpretation von Informationsbe-
ziehungen als unhaltbar. Auch das von FORRESTER geforderte Geschlos-
senheitsprinzip wurde aus denselben Griinden durch das Offenheitsprin-
zip ersetzt, um auch Systeme modellieren zu kdnnen, in welchen sich
bestimmte Variablen nicht endogen erkdren lassen. Die FOLR-Modellie-
rung gestattet wegen der eindeutigen Periodenzuordnung des Zeitindi-
zes die Verwendung samtlicher einschldgiger Parameterschdtztechniken,
die fir rekursive Differenzengleichungsmodelle im Rahmen der Okono-
metrie entwickelt wurden.

Insgesamt erweist sich die FOLR-Modellierung als eine Konzeption,
durch welche (eventuell) fruchtbare Modellgewinnungs- und Interpre-
tationsprinzipien der System-Dynamics-Konzeption auf klassische MZA-
Modelle lbertragen werden, ohne daB damit das Modellierungspotential

dieser Modellformen eingeschrdnkt wird.





