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3. System Dynamics - ein Modellierungs­
konzept dynamischer Systeme

System Dynamics ist eine Model 1ierungskonzeption dynamischer Syste~e,

die von Jay·W. FORRESTER am Massachussets Institute of Technology in

Cambrigde (M. I.T.) entwickelt wurde.

Das System-Dynamics-Konzept geht von einer bestimmten Interpretations­

weise dynamischer Systeme aus. Hiernach können technische und soziale

Systeme stets durch bestimmte zeitveränderl iche Bestandsgrößen (Level)

und deren verzögert beeinflußte Zu- und Abgänge (Rates) beschrieben

werden.

Die ebenfalls am M. I.T. entwickelte Programmiersprache DYNAMO ist

dieser Interpretationsweise angepaßt und liefert die sprachlichen

Kategorien zu einer einfachen und computeradäquaten Formulierung von

System-Dynamics-Modellen. [163]

FÖRRESTER und seine Schüler haben unter Anwendung des System-Dynamics-
.. - --

Konzeptes eine Reihe von Modellen betrieblicher, städtebaulicher, bio-

logischer und mil itärischer Zusammenhänge entwickelt. [56],[78],[133]

[161],[196],[219J

Berichte überdie Entwicklung neuer Modelle und Verfahren erscheirien

in dem von FORRESTER jährlich herausgegebenen System-Dynamics News­

letter. [198]

Die Zeitschrift 'Qynamica, System Dynamics and Socio-Economic Systems'

ist ausschi ieBlich diesem Modeliierungskonzept gewidmet. [142]

Bekannt wurde das System-Dynamics-Konzept in jüngster Zeit durch die

von FORRESTER und MEADOWS entwickelten ökologischen Entwicklungsmodel­

le der Welt. Diese im System-Dynamics-Konzept formul ierten 'Weltmodel­

lei haben insbesondere außerhalb der Fachwelt wegen ihrer pessimisti­

schen Prognosen großes Aufsehen erregt. [57], [135]

Da System Dynamics heute in sehr starkem Umfang zur Modell ierung so-
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zio-ökonomischer Systeme verwendet wird, 5011 es im folgenden ausführ­

lich erörtert und auch kritisch analysiert werden.

Mit Hilfe eines sukzessiv erweiterten Modells werden die Grundelemen­

te einer System-Dynamics-Mode1l ierung eingeführt und unter Verwendung

der Simulationssprache DYNAMO simulierfähig formuliert. Dieser ersten

Präzisierung der Konzeption sch1 leBt sich die Erörterung bestimmter

konzeptioneller Forderungen sowohl zur Gewinnung und Interpretation

von System-Dynamics-Mode1 len als auch zur Bestimmung ihrer Modell­

grenzen an. Mit dem folgenden Abschnitt über die SensitiVitäts- und

Retrodiktionsanalyse von System-Dynamics-Model len werden die wich­

tigsten Methoden der Impl ikationenaufdeckung einschl ieBl ich ihrer

technischen Reai isierung eingehend erörtert.

Danach beginnt eine kritische Diskussion der konzeptionellen Prä­

.missen des System-Dynamics-Ansatzes, die zu dem Entwurf einer als

FOLR-Mode1l ierung bezeichneten alternativen Modell ierungskonzeption

führt.

3.1 . Aufbau und Wirkungsweise der Modellelemente

3.1 .1. Levelvariablen

Die zentralen Elemente eines im'System-Dynamics-Konzept entwickelten

Modells bilden die sogenannten Level. Prinzipiell kann jedes als Be­

standsgröße interpretierbare Phänomen.als Level angesehen werden,

wie zum Beispiel Auftrags- oder Kapitalbestände, Bestände an Wohnun­

gen oder Geldvermögen.

Jeder Level erfährt in gleichen Zeitabständen einen Zu- und AbfluB.

Die damit bewirkte zeitl iche Entwicklung wird durch die folgende~­

ve1g1eichungdargestellt:

L(t) = L(t -1) + Z(t -1 ,t) - A(t - 1, t) (31. 1)

Hierbei beschreibt Z(t-1 ,t) die dem Level während der t-1-ten Periode

zugeflossenen und A(t-1 ,t) die in derselben Periode den Level verlas­

~enden Mengeneinheiten. In Gleichung (31.1) wird eine Formulierung ver-
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wendet, die nicht genau der DYNAMO-Sprache entspricht. Dort werden

die laufenden Zeitindizes mit den Großbuchstaben J, Kund L bezeich­

net, wobei J=t-1, K=t und L=t+l zu setzen ist. Die Formul ierung der

Levelgleichung (31.1) in der von DYNAMO geforderten Schreibweise er­

gibt:

L L.K=L.J+DT*(Z.JK-A.JK) (31.2)

Der Buchstabe L vor der Levelgleichung dient der Identifizierung die­

ses Gleichungstypsdurch den DYNAMO-Compi ler. Befremdlicher wirkt die

Größe DT, mit der die Zu- und Abgänge Z.JK und A.JK zu multiplizieren

sind. Zur ersten Darstellung der Konzeption wollen wir vorläufig da­

von ausgehen, daß das sogenannte Zeitinkrement DT immer gleich Eins

sein 5011. Diese Einschränkung beeinflußt nicht das Verständnis der

Konzeption, abstrahiert jedoch vorläufig von einer schwer verständ­

lichen Eigenschaft dieser Konzeption. Die bisherige Beschreibung ei­

ner Levelgleichung läßt erkennen, daß es sich um einfache Definitions­

gleichungenvon Bestandsgrößen handelt.

Nach FORRESTER läßt sich jedes reale System als ein System von Le­

velninterpretieren, deren Zu- und Abflüsse von eben diesen Leveln

verzögert beeinflußt werden~ Folgende mechanistische Analogie dient

zur Veranschaul ichung dieser WeItsicht:

Man kann s ich vorstellen,. daß jeder Level durch ei nen Wasserbehäl ter

dargestel lt wird, der einen Zu- und Abfluß aufweist. Di~ sogenannte

Level höhe wird hierbei durch die Höhe des Wasserstandes in dem be­

treffenden Behä 1tergekennze i chnet. In cl i skreten Ze i tabständen er­

fährt der Wasserbehälter einen bestimmten Zu- und Abfluß, dessen Be­

trag durch die bereits in der Vergangenheit realisierten Wasserstands­

höhen (Level höhen) bestimmter Wasserbehälter (Level) bestimmt wird.

Der dynamische Effekt eines derartigen Systems resultiert damit aus

der Tatsache, daß ein bestimmter Level im Zeitpunkt t von den verzö­

gerten Levelhöhen seines eigenen und auch anderer Level beeinflußt

wird. Abbildung 31.1 zeigt eine graphische Darstellung des grundsätz­

lichen Aufbaus eines im System-Dynamics-Konzept beschriebenen Systems.
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Abb: 31.1 Zusammenhang zwischen Leveln und Flußraten in einem System­
Dynam i cs-Mode 11

In dieser von FORRESTER eingeführten Diagrammtechnik werden die Level

durch ein Rechteck und die F1ußraten durch ein Venti 1symbol repräsen­

tiert. Die Flußraten steuern die durch Pfeile gekennzeichneten mate­

riellen Zu- und Abflüsse der Level. Der Betrag einer Flußrate dage­

gen wird durch die Level bestimmt, von denen unterbrochene Einfluß­

pfeile zum Ratensymbol führen.

3.1.2. Flußraten und Hilfsvariablen

Mit der Spezifizierung der in die Levelgleichungen eingehenden Zu­

und Abflußraten durch sogenannte Ratengleichungen ist man in der La­

ge, ein einfaches System-Dynamics-Modell zu entwickeln. Die Raten-



403

gleichungen repräsentieren stets bestimmte empirische Hypothesen.

Denn es handelt sich um zeitinvariante Behauptungen, in welcher Wei­

se bestimmte Bestände eine Änderung erfahren.

Abbildung 31.2 zeigt das Diagramm eines System-Dynamics-Modells, wel­

ches au sei nem Leve 1 bes teh t.

_:0 A---
ZUF

/
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" \
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I,
ABF

........- ..I~......

B

Abb. 31.2 Diagrammm eines aus einem Level bestehenden System-Dynamics­
Modells

Das Diagramm bedarf einer kurzen Erläuterung. Der den Levelzufluß be­

schreibende Pfeil entspringt einem wolkenartigen Gebilde, welches man

als Quelle bezeichnet, während das gleiche Gebilde, in welches der Le­

velabfluß führt, Senke genannt wird. Durch diese Symbole wi rd zum Aus­

druck gebracht, daß die Weiterverfolgung der Zu- und Abflüsse nicht
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mehr Gegenstand der beabsichtigten Modell ierung sein soll. Die mit A

und B bezeichneten Symbole repräsentieren bestimmte Konstanten.

Als Beispiel sei ein einfaches System-Dynamics-Modell mit einer Zu­

flußrate ZUF und einer Abflußrate ABF angeführt.

Die Levelgleichung lautet:

L LEV.K=LEV.J+DT*(ZUF.JK-ABF.JK)

Es würde nahe 1iegen, die Flußraten ZUF und ABF mit den Zeitindizes JK

zu definieren, denn diese Zeitindizierung tritt auch in der rechten

Seite der Levelgleichung (31.3) auf. Die DYNAMO-Sprache verlangt je­

doch eine zeitl iche Verschiebung der zeitinvari~nten Ratengleichung

um eine Periode, wodurch der empirische Gehalt der Hypothese nicht

verändert wird. Die Ratengleichungen, die in der DYNAMO-Sprache durch

ein R gekennzeichnet werden, bestimmen sich damit durch:

R ZUF.KL=A*LEV.K
R ABF.KL=B*LEV.K

Die Konstanten A und B werden in einer speziellen, durch Bin lei cha­

rakterisierten Konstantengleichung

C A=0.94/B=0.975
definiert.

Es ist einsichtig, daß jeder Level als eine Bestandsgröße auch einen

Anfangswert besitzen muß, der den Bestand in der Anfangsperiode angibt.

Bei einem unterstellten Anfangswert von 100 Einheiten wird diese In­

formation durch die Anfangswertgleichung

N LEV=100

ausgedrückt. Das angeführte Model I ist damit vollständig beschrieben.

Für seine Simulation sind allein noch drei weitere Anweisungen erfor­

derlich.

SPEC DT=1/PLTPER=1/PRTPER=1/LENGTB=50
PLOT LEV=L(0,100}/ZUF=Z(0,200)/ABF=A(0,150)
PRINT LEV,ZUF,ABF
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Die Spezifikationsanweisung (SPEC) schreibt vor, daß (verabredungsge­

mäß) DT=1 gewählt werden soll. PLTPER=l fordert den Ausdruck eines Hi­

stogrammes für die in der Plot-Anweisung angeführten Variablen LEV,

ZUF und ABF; PRTPER=l entsprechend den Ausdruck der numerischen Werte

der in der Print-Anweisung angeführten Variablen im Simulationszeit­

raum. Mit LENGTH wird die Anzahl der zu simul ierenden Perioden be­

stimmt.

Die Schrägstriche in der Plot-Anweisung (PLOT) besagen, daß im Histo­

gramm der Variablenverläufe für LEV, ZUF und ABF verschiedene Ordina­

tenmaßstäbe definiert werden sollen. Das hinter einer Variablen in

Klammern angeführte Zahlenpaar legt den Ordinatenbereich fest. Unter­

läßt man diese Angabe, dann wählt das Programm entsprechend den Si­

mulationsergebnissen jeweils einen eigenen Maßstab. Der Zeitverlauf

der Variablen LEV soll im Histogramm durch den Buchstaben L beschrie­

ben werden, während die Verläufe von ZUF und ABF entsprechend durch

Z ~nd A zu kennzeichnen sind. Die Print-Anweisung (PRINT) schreibt vor,

daß LEV in der ersten, ZUF in der zweiten und ABF in der dritten Spal­

te ausgedruckt werden sollen. Die sogenannte Run-Anweisung schI ießt

jedes Programm ab.

Es ergibt sich das unmittelbar simul ierfähige Modell

* EIN-LEVEL-MODELL
*L LEV.I=LEV.J+DT*(ZUF.JI-ABF.JK)
N LEV=100
R ZUF.KL=A*LEV.K
R ABF.IL=B*LEV.K
C A=0.94/B=0.975
SPEe DT=1/LENGTH=50/PRTPER=1/PLTPERz l
PRINT LEV.ZUF,ABF
PLOT LEV=L(0.100)/ZUF=Z(0.200)/ABF=A(0.150)
RUN .

Dieses DYNAMO-Programm führt zur Berechnung des Zeitverlaufes der en­

dogenen Variablen LEV, ZUF und ABF. Aufgrund der Print-Anweisung

wird er in Form einer Zeitreihenl iste ausgegeben.

Die erste Zei le unter den Variablenbezeichnungen gibt über den ge­

wählten Maßstab der ausgedruckten Zeitreihen.Auskunft. Die Zahlen

hinter dem Symbol E kennzeichnen die Potenz der Zehnereinheit, mit



406

TIME LEV zur ABF
E+00 E+00 E+00 E+00

.0 100.00 94.000 97.500
1. 96.50 90.710 94.087
2. 93.12 87.535 90.794
3. 89.86 84.471 87.617
4. 86.72 81.515 84.550
5. 83.68 78.662 81.591
6. 80.75 75.909 78.735
7. 77.93 73.252 75.979·
8. 75.20 70.688 73.320
9. 72.57 68.214 70.754

10. 70.03 65.827 68.278

• •
• • •

•

der jedes GI ied der Zahlenreihe zu multipl izieren ist. Im vorliegen­

den Fall ist dieses Multiplikationsglied mit 10 0 =1. Die laufende Pe­

riodenbenennung in Form von TIME wird vom Programm ohne besondere

Anweisung erste] lt.

Durch die Plot-Anweisung wird das in Abbildung 31.3 angeführte Histo­

gramm erzeugt. In der ersten Zeile des Histogrammes erfolgt die An­

gabe, welche Plotsymbole mit welchen Variablen korrespondieren. Hin­

ter den Ordinatenmaßstäben sind die Plotsymbole der Variablen ange­

führt, auf welche sich die Maßstäbe beziehen. Die Levelvariable LEV,

gekennzeichnet durch das Plotsymbol L, wird daher durch den ersten

Ordinatenmaßstab mit dem Definitionsbereich 0 bis 100 beschrieben.

Zur ErhBhung der Uberslchtl ichkeit sind die ausgedruckten Symbolfol­

gen einer Variablen nachträgl ich durch Linien miteinander verbunden.

Neben den Leveln und Raten werden im System-Dynamics-Konzept noch so­

genannte Hi lfsvariablen verwendet. Sie werden als Zwischenglieder ein­

geführt, wenn die Verknüpfungen zwischen den Raten und Leveln eines

Modells zu komplex werden, oder wenn diese Zwischengl ieder für die

Beurteilung des Systemverhaltens von Bedeutung sind.

Gehen wir in dem entwickelten Beispiel von der Modifizierung aus, daß

die Abfluß- und die Zuflußrate von einem konstanten Vielfachen der
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Abb. 31.3 Histogramm des simul ierten Einlevelmodells.

Differenz zwischen einem Sol level SLEV und dem tatsächlichen Level­

wert LEV bestimmt wird, dann ergibt sich bei Änderung der Konstanten

A und B R ZUF.KL=A*{SLEV-LEV.I)
R J.JU·.•··KL=B*(SLIl-V-LEV,.Jf-)
C A=0.8/]=0.65/SLEV~450

Bezeichnet man die Differenz zwischen 5011- und Istlevelwert als SIDIF,

so kann man die oben beschriebenen Beziehungen auch so formul ieren:

R ZUF.KL=A*SIDIF.K
R A]F.KL=B*SIDIF.K
A SIDIF.I=SLEV-LEV.K
C A=0.8/B=0.65/SLEV=450

SIDIF ist eine Hilfsvariable, die durch eine Hilfsgleichung zum Aus-
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druck gebracht wird. Hilfsgleichungen werden durch den Buchstaben

lAI gekennzeichnet.
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Abb. 31.4 Histogramm des erweiterten Einlevelmodells

Das Histogramm dieser Modifizierung bei Wahl der Plot-Anweisung

PLOT LEV=L{0,:00),ZUF~Z(0,350),ABr=A(0,350)

zeigt Abbildung 31.4

3.1.3. Graphische Darstellung von System-Dynamics­
Modellen

Das erörterte Einlevelmodell wurde in Abbildung 31.1 und 31.2 anhand
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eines Diagrammes dargestellt. Während im vorliegenden Fal I die Dia­

grammdarstellung eines derartig einfachen Modells nur aus didaktischen

Gründen zu rechtfertigen ist, führt eine graphische Repräsentation

bei komplexen System-Dynamics-Model len oft zu einer wesentl ich besse­

ren Beurteilung der vorliegenden Zusammenhänge.

FORRESTER verwendet zur Darstellung einer im System-Dynamics-Konzept

interpretierten Welt besondere Diagrammsymbole und Darstellungskon­

ventionen, die anhand der Abbildungen des Einlevelmodells schon tei 1­

weise beschrieben wurden und nunmehr noch einmal systematisch erör­

tert werden sollen.

Ein Level wird durch ein Rechteck dargestellt.

Die einem Level zu- und abfließenden Ströme werden anhand von durch­

gehenden Pfei Jen beschrieben, die in den Level hinein bzw. aus dem

Level herausführen.

Die Beeinflussung dieses Levelzu- und -abflusses erfolgt, wie erwähnt,

durch die Zu- und Abflußraten, welche durch sogenannte Ventilsymbole

beschrieben werden. Unter Einbeziehung der Ventilsymbole ergibt sich.

das auf Seite 410 oben angeführte Bild. Die bereits erwähnten Hilfs­

variablen werden durch ein Kreissymbol zum Ausdruck gebracht, während

als Konstantensymbol ein kleiner Kreis· mit einem waagerechten Quer­

balken dient.

Die Einflüsse zwischen den Variablen eines System-Dynamics-Modells

werden mit Ausnahme der Levelzu- und -abflüsse durch unterbrochene

Pfeil I inien dargestellt. Auf die Bedeutung des Quel len- und Senken­

symbols als Anfangs- und Endpunkt eines im Modell unerklärten Level~
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zu- oder -abflusses wurde bereits hingewiesen.

Das nachfolgende Bild zeigt das vollständige System-Dynamics-Diagramm

des erörterten Modells.

-

SLEY=450

B= 0 ~ 65
.......
-0

o A=O~8

---
ZUF

~/

-----.....~ .
.......

"-
"- ,

"-- "- ----:8----0
.;'

./
.;'

LEV

Abb. 31.5 System-Dynamics-Diagramm des erweiterten Einlevelmodells

Für bestimmte Arten von Level- und Hilfsvariablen werden im Rahmen

der beschriebenen Diagrammtechnik die Symboldarstel lungen noch stär-
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ker konkretisiert. Doch reicht die vorl iegende Beschreibung aus, um

jedes bel iebige System-Dynamics-Model 1 durch ein Diagramm zu reprä­

sentieren.

System-Dynamics-Diagramme besitzen nicht denselben Informationsgehalt

wie die auf ihrer Grundlage entwickelten Modelle. Sie erweisen sich

daher als die weniger scharfe Vorstufe eines Model I ierungsansatzes,

die durch weite~e Verschärfung der Modellhypothesen zu dem eigentli­

chen parametrisch-singulären System-Dynamics-Modell führt. Die fol­

gende Ubersicht zeigt die in einem System-Dynamics-Model I verwende­

ten Gleichungstypen und Diagrammsymbole:

Element Glei- Gleichungstyp Diagramm-
chungs- Symbol
symbol

Level l L.K=l.J+DT*(ZUF.JK-ABF.JK) , ,

Rate R R.Kl=F[ll.K, ... ,lN.K,Al.K, ... ,AM.K] t>< I
Hil.fsva- A A. K= F[ II . K, ... ,LN. K, A1. K, ... ,AM. K] 0
riable

Anf,ang swert N N = numer ische r Wert kein Symbol

Parameter C C numer i scher Wert .e-

Symbolb~z~i'chnung

Senke

Quell e

unterbrochene
Pfeillinie'

Diagramm­
symbol

- - - -" ..

Verwendung

Ende eines Levelabflusses

Beginn eins level zuflusses

Pfeilspitze kennzeichnet Beeinflus­
sungsrichtung einer Variablen durch
Level, Hilfsvariable oder Parameter

Da simultane Gleichungen unter den Hilfsvariablen nicht zugelassen

sind, und die erklärenden Variablen der Level- und Ratengleichungen

um eine Periode verzögert sind, ist ein System-Dynamics-Modell stets

rekursiv.
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3.1.4. Exponentielle Bestands- und Informations­
verzögerungen

A. Exponentielle Bestandsverzögerungen

Jeder Level kann als ein schwarzer Kasten gedeutet werden, aus dem

die Zuflüsse verzögert abfließen. Die Art der Verzögerung, die die

Elemente in dem Level erfahren, hängt von der Abflußratenhypothese

ab. Da die in diese Hypothesengleichung eingehenden Variablen wie­

derum durch andere Hypothesen erklärt werden, ergibt sich in der Re­

gel ein System von Hypothesen, welches indirekt an der Erklärung der

Abflußvariablen betei 1igt ist. Wie bereits anläßl ich der Beschreibung

der Verwei1zeithypothesen erwähnt wurde, ist es unter Umständen mög­

1 ich, aus dem vorl iegenden Hypothesensystem eine sekundäre Verwei 1­

zeithypothese abzuleiten. Denn würde es gelingen, in einem System­

Dynamics-Modell die Verknüpfung zwischen den Zu- und Abflüssen eines

Levels zu modell ieren, dann wäre diese Beziehung stets als Verweil­

zeithypothese aufzufassen.

Primäre Verweilzeithypothesen können immer dann verwendet werden,

wenn dem Modellentwickler die Impulsantwort zwischen einem Levelzu­

und -abfluß bekannt ist. Dies ist zum Beispiel der Fall, wenn die

Einkaufsabtei1ung eines Unternehmens die Art der Verzögerung zwi­

schen ~usgehenden Beste1 lungen und eingehenden Lieferungen und damit

die Impulsantwort zwischen den Bestellungen ZUF (als Eingang) und

den auf diese Bestel lungen verzögert eingehenden Lieferungen ABF

(als Ausgang) kennt. Eine schematische Darstellung dieses Zusammen­

hanges zeigt Abbildung 31.6.

100

ZUF

LL UBESTAND AN

BESTELLUNGEN
l..------'

o PERIODE ZUF ABF

EI NG I PFELJ GER

ABF VERLAUF

18 f -.-r-..

.l~~

o PERIODE

Abb. 31.6 Schematische Darstellung der verzögerten Beziehung zwischen
ausgehenden Bestellungen (ZUF) und eingehenden Lieferungen (ABF)



413

Zwei Ausprägungen einer derartigen Impulsantwort der Liefereingänge

zeigt Abbildung 31.7.
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Abb. 31.7 Charakteristiken des verzögerten Eingangs bestellter Waren
bei einer einmal igen Bestellung von 100 Einheiten in Periode 0

FORRESTER verwendet zur Model lierung von Leveln, deren Impulsantwor­

ten bekannt sind, bestimmte Teilklassen von Verweilzeithypothesen,

die sogenannten exponentiellen Verweilzeithypothesen. Die von ihm im

Rahmen dieser Tei lklasse fast ausschl ieBl ich angewendeten exponentiel­

len Verweilzeithypothesen dritter Ordnung zeichnen sich durch einen

eingipfel igen Ve~lauf ihrer Impulsantworten aus. Ist ein Modellent­

wickler zu der Auffassung gelangt, daß die Impulsantwort eines vor­

liegenden Levels dieser Klasse ent~tammt, dann reicht es zur voll-
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ständigen Modell ierung einer parametrisch-singulären Verweilzeithy­

pothese aus, die sogenannte durchschnittl iche Verzögerung numerisch

zu spezifizieren. Diedurchschnittl iche Verzögerung ist ein Parame­

ter, der die durchschnittliche Verweildauer eines in den Level ein­

tretenden Elementes zum Ausdruck bringt. 1 Beide in Abbildung 31.7

dargestellten Impulsantworten sind exponentielle Verweilzeithypothe­

sen dritter Ordnung. Die 'mit Z gekennzeichnete Impulsantwort besitzt

eine durchschnittl iche Verzögerung von zwanzig Perioden, während der

mit F beschriebene Kurvenverlauf eine Durc~schnittsverzögerungvon

fünfzehn Perioden aufweist.

Die Model lierung derartiger Verweilzeithypothesen kann in DYNAMO

durch folgende Makrofunktion beschrieben werden: 2

R ABF.ICL=DELAY3(ZUF.JK,DVZ) (31.4)

ABF und ZUF kennzeichnen hierbei die Zu- und Abflußvariablen, während

mit DVZ die durchschnittl iche Verzögerung angegeben wird. Mit DELAY3

kom~t zum Ausdruck, daß eine exponentielle Verwei lzeithypothese drit­

ter Ordnung vorl iegt. Sie wird in einem System-Dynamics-Diagramm mit

folgendem Symbol beschrieben:

BEV

'0
3

' besagt, daß es sich um eine exponentielle Verweilzeiihypothese

dritter Ordnung (Delay3) handelt. Das mittlere Segment kennzeichnet

den Namen der Abflußrate der Verzögerung (ÄSF). Der Pa~ametername der

durchschnittl ichen Verzögerung (DVZ) wird im rechten Segment der un­

teren Symbolhälfte eingetragen. Ist man daran interessiert, auch den

Bestand des Verzögerungslevels zu kennen, so wird die diesen Bestand

kennzeichnende Levelvariable (BEV) in die obere Symbolhälfte eingetra­

gen. Da die Abflußrate ABF eines DELAY3-Levels nicht von anderen Le­

veln direkt beeinflußt wird, wird sie im Diagramm nicht durch ein

1 Siehe auch Seite 288
2 Zum Begriff einer Makrofunktion siehe Seite 434
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besonderes Venti lsymbol gekennzeichnet. Die Angabe der Bezeichnung

der Abflußrate im Levelsymbol ersetzt daher gewissermaßen das Ven­

ti 1symbol.

Die Bestimmung und Anwendung derartiger exponentieller Verwei lzeit­

hypothesen im Rahmen des System-Dynamics-Konzeptes ist nicht unpro­

blematisch und wird später eingehender diskutiert. 3

B. Exponentielle Informationsverzögerungen

Bei der Beschreibung von System-Dynamics-Diagrammen wurde darauf hin­

gewiesen t daß die Beeinflussung einer Raten- oder Hilfsvariablen

durch unterbrochene Pfeil linien gekennzeichnet wird. Diese Pfeill i­

nien bezeichnet FORRESTER als informationel le Verknüpfung. Dieser Be­

zeichnungsweise liegt die Deutung zugrunde, daß die Raten, welche das

Verhalten bestimmter Einheiten wie Personen oder technische Aggrega­

te beschreiben, durch Iinformationen i in Form der Level-, Hilfsvaria­

blen- und Parameterwerte beeinflußt werden. Während die durchgezoge­

nen Pfei 1linien damit substantiel le Flüsse beschreiben, werden durch

die zu den Raten führenden unterbrochenen Linien gewissermaßen Infor­

mationsv~rbindungen zur Ausdruck gebracht. Diese Informationen, d.h.

Kenntnisse über die Level- und Hilfsvariablenausprägungen, müssen

von der beschriebenen Verhaltenseinheit nicht unmittelbar zur Raten­

festlegung herangezogen werden. Sie können (oder werden) vielmehr

(bewußt oder unbewußt) verzögert. Der Beschreibung dieser Verzögerun­

gen dienen die sogenannten exponentiellen Glättungsverzögerungen.

Exponentiel le Glättungsverzögerungen definieren einen Level, dessen

Inhalt die zeitl iche Entwicklung eines Prognosewertes beschreibt,

der mit Hilfe des als exponentielle Glättung bezeichneten Prognose­

verfahrens ermittelt wird.

Die Levelgleichung dieses 'Prognoseleveltyps' lautet:

L PLE.K=PLE.J+DT*{ZUF.JK-PLE.J)/APF

3 Vgl. Seite 489ff.
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APF wird als Anpassungsfaktor bezeichnet. Unter Verwendung des übl i­

ehen Glättungsfaktors a=l/APF läßt sich Gleichung (31.5) in die üb­

liche Darstellungsform einer exponentiellen Glättung

PLE(t) = PLE(t-1) + a[ZUF(t-l)-PLE(t-1)]

überführen.

In der DYNAMO-Sprache wird eine exponentiel le Glättung der .Form (31.5)

durch eine Makroinstruktion (SMOOTH-Funktion)

A PLE.K=SMOOTH(ZUF.JK,APF) (31.6)

ausgedrückt.

Als Prognoselevel kann beispielsweise die Schätzung einer Verkaufs­

menge (PLE) in Abhängigkeit von ~en realisierten Verkaufsmengen (ZUF)

zur Anwendung kommen. Allgemein werden mit Prognoseleveln Schätzwer­

te beschrieben, welche als erklärende Variablen (direkt oder indi­

rekt) in bestimmte Ratengleichungen eingehen. Für Prognoselevel wi rd

ein spezielles Level symbol der folgenden Art verwendet:

S IPLE IAPF

Mit 15' wird zum Ausdruck gebracht, daß es sich um einen Glättungs­

level (Smooth) handeln soll. Die Eintragung im mittleren Segment ent­

hält den Namen der prognostizierten Variablen, während im rechten

Segment der Name des Anpassungsfaktors eingetragen wird.

Die beiden beschriebenen Formen einer exponentiellen Verweilzeithy­

pothese dritter Ordnung und einer Glättungsverzögerung sollen im fol­

genden anhand eines einfachen Fertigungsmodel ls demonstriert werden.

An die Fertigung eines Betriebes gerichtete Bestel lungen BMR sollen

in der Fertigung eine Verzögerung erfahren, die sich durch eine ex­

ponentielle Verweilzeithypothese dritter Ordnung mit einer durch­

schnittlichen Verzögerung von DVZ=10 Wochen beschreiben läßt. Die

aus der Fertigung abgehenden ausgeführten Bestel lungen FZU erhöhen

zugleich den Fertiglagerbestand FLB. Der den Fertiglagerbestand ver-
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mindernde Fertiglagerabgang FLA soll stets das 0,3fache des Fertig­

lagerbestandes betragen. Die an die Fertigung gerichteten Bestellun­

gen BMR werden von dem entsprechenden Disponenten als die RF-fache

Differenz zwischen dem tatsächlichen Fertiglagerbestand FLB und ei­

nem Sol lagerbestand SLB zuzügl ich des prognostizierten Fertiglager­

abgangs festgelegt. Der Sol lagerbestand des Fertiglagers wird so

festgelegt, daß er stets das MF-fache des mit Hilfe einer exponen­

tiellen Glättung prognostizierten Fertiglagerabganges PFLA plus 500

beträgt.

MF

/
/

/
/,

/

,
\

\,
FLA

BMR

~-----, ..... _--e RF

...... -
. -

~---B- 0,3
'------

Abb. 31.8 System-Dynamics-Diagramm eines Fertigungs- und Lagerhal­
tungssystems
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Das DYNAMO-Programm des beschriebenen Modells ergibt

* FERTIGUNGS-UNDLAGERHALTUNGSSYSTEM
*R BMR.KL=PFLA.K+RF*(SLB.K-FLB.I)
R FZU.KL=DELAY3(BMR.JK,DVZ)
L FL:B.K=FLB.J+DT*(FZU.JK-FLA.JK)
N FL:8=450
A PFL!.K=SMOOTH(FLA.JK,AP~)

A SL:8.K=MF*PFLA.K+500
R FLA.KL=0.3*FLB.K
C RF=0.3iDVZ=10,APF=2,MF=0.25
SPEC DT=1,LENGTH=20,PRTPER=l,PLTPER=1
PLOT FL:B=F/FZU=Z/FLA=A/SL]=S
PRINT FL:8,FZU,ILA,SL]
RUN

In dem vorliegenden Modell sind manche Parameter d'irekt im Modell

numerisch spezifiziert, wie zum Beispiel i'n der Gleichung für FLA,

während andere wie DVZ erst im Rahmen einer Konstantengleichung ei-,

nen numerischen Wert erhalten. Eine Belegung der Parameter in den

strukturellen Gleichungen durch Symbolausdrücke, die erst im Rahmen

von Konstantengleichungen definiert werden, empfiehlt sich immer,

wenn die betrachteten Parameter in sukzessiven Simulations läufen va­

riiert werden sollen. Denn DYNAMO gestattet im Rahmen sogenannter

Reruns, d.h. wiederholten Simulationen desselben M0gel Is mit geänder­

ten Parametern, eine sehr flexible Variation der Parameter, die im

Rahmen von Konstantengleichungen definiert werden.

3.1 .5. Tabellenfunktionen und sonstige Makrofunktionen

Raten- und Hilfsgleichungen eines System-Dynamics-Modells sollen die

empirischen Hypothesen in Form der Verknüpfung bestimmter metrischer

Gr6ßen;zum Ausdruck bringen. Diese Verknüpfungen k6nnen in einigen

Fällen mit Hilfe elementarer algebraischer Funktionen beschrieben

werden; wie in Abbildung 31.9 beispielsweise durch die Funktion

Y=O,Olx 2+1.
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Y=O, 01X
2

+1

3

2

1 Y=F(X)

o 1 2 3 4 5 6 7 8 9 x

Abb. 31.9 Funktionsverläufe in dynamischen Modellen

In derselben Abbildung ist jedoch auch eine Funktion F(x) eingetra­

gen, die nicht durch eine elementare Funktion beschrieben werden

kann. Zur Modell ierung derartiger Funktionsverläufe in der DYNAMO­

Sprache kann man sogenannte Tabellenfunktionen verwenden.

Die zu beschreibende Funktion wird in gleichen Abszissenabständen

durch senkrechte Linien geschnitten und die Ordinatenwerte dieser

Schnittpunkte werden als StOtzpunkte einer stOckweise 1inearis1erten

Funktion verwendet, welche die ursprüngl iche Funktion näherungsweise

beschreibt.

Entscheidet man sich im Beispiel der Funktion F(x) für eine von 0

bis 9 laufende Abszissenstückelung von 1, dann ergibt sich ein Poly­

gonzug, dessen Ordinatenstützwerte in Abbildung 31.10 anqeführt sind.

Dieser Funktionszusammenhang wird durch

A Y.K=TABLE(TAB~X.K,0,9,1)
T TAB=2.3/2.7/3.1/3.15/3.1/3.0/2.6/2.3/1.5/1.2

beschrieben. Das erste Argument der Makrofunktion nennt den Na-
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men der Tabelle (hier TAB genannt), in dem die Ordinatenwerte ab­

gespeichert sind. Das zweite Argument kennzeichnet den Namen der un­

abhängigen Variablen (in diesem Fall X.K) der Funktion. Die letzten

drei Argumente spezifizieren den größten und kleinsten Definitions­

wert des Absziss~nbereiches (0 und 9) sowie die Schrittweite des ge­

wählten Abszissenabschnitts.

y

4

3 ~
,

3, 1

2 \ 2,7
2,3

1
~

1,2

0 1 2 3 4 5 6 7 8 9 X

Abb. 31.10 Beispiel einer Tabellenfunktion im System-Dynamics-Kon­
zept

Derartige Tabellenfunktionen werden in System-Dynamics-Model1en in

großem Umfang verwendet und tragen entscheidend zur Nichtlinearität

dieser Modelle bei. FORRESTER verwendet in seinem Weltmodell allein

21 Tabel lenfunktibnen.

Das von uns entwickelte Model leines Fertigungs- und Lagerhaltungs­

systems soll um eine derartige Tabellenfunktion erweitert werden

und damit alle wesent1 ichen Elemente enthalten, die in System-Dyna­

mies-Modellen auftreten.

Wir unterstel len, daß der Fertiglagerabgang FLA durch

A FLA.K=FAK.K*FLB.K

beschrieben wird, wobei FAK entsprechend der in Abbildung 31.11 be­

schriebenen Funktion von FLB abhängt.
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FAK

0,3

0,2

0,1

o 100 500 1000

FLB

Abb. 31.11 Tabellenfunktionsverlauf am Beispiel eines Fertigungs­
und Lagerhaltungsmodel ls

Dieser Zusammenhang wird durch

A FAK.K=TAELE(TAFA,FL~.K,0,1000,100)

T TAFA=e.02/0.05/0.0?/0.11/0.18/0.25/0.29/0.32/0.32/0.32/0.32

beschrieben. Man erhält das DYNAMO-Programm

BESTELLMENGENRATE
FERTIGLAGERZUGANG
FERTIGLAGERBESTAND
PROGNOSTIZIERTER LAGERABGANG
SOLLAGERBESTAND·

C RF=0.3
C DVZ=10
C APF=2
C HF=0.25
SPEe DT=1,LENGTH=50,PRTPER=l,PLTPER=1
PRINT iLB,FZU,FLA,BHR
PLOT SLB=S(300,550)/FLB=L(300,550)/FZU=Z(100,150)/FLA=A(100,150)
RUN

* FERTIGUNGS-UND LAGERBALTUNGSSYSTEM
*R BMR.KL-PFLA.K+RF*(SLE.I-FLB.I)
R FZU.IL=DELAY3(BMR.JK,DVZ)
L FLB.lzFLB.J+DT*(FZU.JK-FLA.JI)
A PFLA.K=SMOOTB(FLA.JI.APF)
A StB.I=MF*PFLA.I+500
N FLB=450
R FLA.IL=FAK.I*F1E.I FERTIGLAGERABGANG
A FAK.K=TABLE(TAFA.FLB.I,0,1000,100) 1AGERABGANGSIOEFFIZIENT
T TAFA=0.02/0.05/0.07/0.11/0.18/0.25/0.29/0.32/0.32/0.32/0.32

FUNKTIONSWERTE
BESTE1LFAITOR
DURCHSCHNITTL. VERZOEGERUNG
ANPASSUNGSFAKTOR
SOLLBESTANDSFAKTOR
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und das System-Dynamics-Diagramm

BMR

- -=e- RF

MF

FLB

Abb. 31.12 System-Dynamics-Diagramm eines Ferti"gungs- und Lagerhal­
tungssystems

Das aufgrund des Programmes erstellte Histogramm zeigt Abbildung

31.13· Man erkennt, daß das System einem Gleichgewicht zustrebt.
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Abb. 3f.13 Histogramm eines Fertigungs- und lagerhaltungssystems

Neben den Mak~ofunktionen wie DELAY3, SMOOTH oder TAßlE stehen eine

Reihe von anderen Funktionen zur'Verfügung, mit welchen beispielswei­

se bestimmte Zufallszahlensequenzen oder Verläufe der exogenen

Variablen erzeugt werden können. 4 Erwähnt werden sollen an dieser

Stelle nur noch die ClIP- und SWITCH-Funktionen, welche später

öfter verwendet werden. Beide Funktionen beschreiben logische Ope­

rationen, da in Abhängigkeit von dem Ergebnis eines Vergleichspro­

zesses unterschied] iche Alternativen zur Anwendung kommen.

Die SWITCH-Funktion besitzt die Form:

SWITCH(A,B,V)

4 Siehe [163J
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und bringt die Beziehung

A
SWITCH(A,B,V) = {B

zum Ausdruck.

Durch die CLIP-Funktion

CLIP(A,B,Vl,V2)

wird die Beziehung

wenn
wenn

V=o
V+O

CLlP(A,B,Vl,V2)

beschrieben.

{A wenn Vl~V2

B wenn Vl<V2

CLIP- und SWITCH-Funktionen dienen oft zur Formul ierung von Entschei­

dungsregeln.

Eine Lagerabgangsforderung LAF kann beispielsweise nur dann voll' be­

friedigt werden, wenn der tatsächliche Lagerbestand LAB mindestens

so groß ist wie die abgerufene Menge. Der tatsächl iche Lagerabgang

LAT ergibt sich daher nach der Beziehung:

LAT = {LAF wenn LAB~LAF
LAB wenn LAB<LAF

Unter Verwendung der CLIP-Funktion kann diese Verhaltensweise durch

A LAT.K=CLIP(LAF.K,LAB.K,LAB.K,LAF.K)

modelliert werden.

Die sukzessive Entwicklung der Beschreibungselemente von System-Dyna­

mics-Modellen wurde von Anfang an unter Verwendung der Simulations­

sprache DYNAMO vorgenommen, da diese speziell zur Model lierung die­

ser Konzeption entwickelt worden ist und sich daher als besonders

einfach und Ubersichtl ich erweist. Die Formul ierung der im folgenden

erörterten System-Dynamics-Modelle erfolgt daher ebenfalls in DYNAMO.

Man sollte sich jedoch bewußt sein, daß die Beschreibungselemente ei­

nes System-Dynamics-Model ls nicht auf eine Formulierung im Rahmen der

DYNAMO-Sprache angewiesen sind, sondern, wie später gezeigt werden

wi rd, auch mit Hilfe anderer Programmiersprachen, wie zum Beispiel

FORTRAN oder CSMP, vollständig erfaßt werden können. DYNAMO ist da-
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her nur eine (allerdings sehr geeignete) von mehreren Sprachen zur

computeradäquaten Formulierung von System-Dynamics-Modellen. 5

3.2. Feedbackheuristik und Geschlossenheitsprinzip
als Elemente derSystem-Dynamics-Konzeption

Bisher wurde die sogenannte Level-Raten-Interpretation des System~

Dynamics-Konzeptes geschildert, nach welcher die Welt als eine Bezie­

hung von Bestands- und Flußgrößen gesehen werden kann.

Auf der Basis dieser Level-Raten-Interpretation wurde die Modell le­

rung realer Systeme bis zur Entwicklung simul ierfähiger Modelle dar­

gestell t.

Nachdem die für System-Dynamics-Model le so fundamentale Level-Raten­

Interpretation erörtert und durch Beispiele illustriert wurde, sol­

len zwei weitere Elemente der System-Dynamics-Konzeption beschrieben

werden.

Das erste konzeptionelle Element bezieht sich auf die Art der Hypo­

thesengewinnung eines System-Dynamics-Modells. FORRESTER ist der Auf­

fassung, daß sich soziale Systeme als ein Geflecht von Feedbackkrei­

sen deuten lassen. An diese Deutungsweise anknüpfend, fordert er, die

Entwicklung von System-Dynamics-Model len an der Identifizierung be­

stimmter Feedbackkreise auszurichten. Diese Vorgehensweise zur Hypo­

thesengewinnung soll als Feedbackheuristik bezeichnet werden. Das

zweite konzeptionelle Element ist eine Maxime, welche sich auf die

Modellgrenzen eines System-Dynamics-Model 15 bezieht und als Geschlos­

senheitsprinzip bezeichnet wird.

5 Auch DYNAMO ist im Hinblick auf seine Funktion als Darstellungs­
mittel von System-Dynamics-Modellen verbesserungsfähig. Beispiels­
weise ist die Kennzeichnung der Gleichungstypen mit Buchstaben red­
undant, weil der DYNAMO-Compiler schon aus der Indizierung den
Gleichungstyp erkennen könnte. Auch wäre es angebracht, auf die
Ratenindizierung KL zu verzichten. Man käme mit weniger Zeitindi­
zes aus, wenn die zu erklärenden Ratenvariablen mit demselben In­
dex JK versehen werden würden, mit welchem sie in den Levelglei­
chungen auftreten.
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3.2.1. Feedbackheuristik des System-Dynamics­
Konzeptes

Wi r erinnern uns, daß jede Schleife in der VerknUpfungsmatrix eines

rekursiven dynamischen Modells als ein Feedbackkreis interpretiert

werden kann. Die Aufweisung bestimmter Feedbackkreise wird von vie­

len Model lanwendern nach der Entwicklung eines primären Hypothesen~

systems vorgenommen, um zusätzl iche Informationen über die Struktur

des Systems zu erhalten. Im Gegensatz dazu dient FORRESTER die Iden­

tifizierung bestimmter Feedbackkreise als Vorstufe zur Entwicklung

eines parametrisch-singulären Modells. FORRESTERs Vorgehen läßt sich

in folgende Stufen aufgl iedern:

(1) Identifizierung der Feedbacks, welche in einem System wirken und

Entwicklung eines Feedbackdiagrammes, das die Wirkungsrichtungen

der Feedbacks zum Ausdruck bringt sowie die Variablen kennzeich­

net, über welche die Feedbacks laufen.

(2) Verschärfung des informatorischen Gehalts des Feedbackdiagrammes,

indem die erkannten Feedbackkreise als positiv oder negativ cha­

rakterisiert werden.

(3) Entwicklung eines komparativen Kausaldiagrammes anhand des Feed­

backdiagrammes. 1

(4) Entwicklung eines System-Dynamics-Diagrammes auf der Grundlage

eines komparativen Kausaldiagrammes

(5) Formulierung eines System-Dynamics-Modells (zum Beispiel in der

Simulat~onssprache DYNAMO).

FORRESTERs Forderung, die erste Stufe einer Modellentwicklung mit der

Identifizierung der wirkenden Feedbacks einzuleiten, wird als Feed­

backheuristik bezeichnet, weil dieser Weg sich unter Umständen als

eine heuristisch fruchtbare Hypothesenfindungsmethode erweisen kann.

Seine Forderung zur Feststellung der Feedbackkreise kann nicht so

verstanden werden, daß alle in dem System wirkenden Feedbacks zu er­

mitteln seien, sondern die als wesentl ich erachteten.

Aus den Veröffent 1 i chungen von FORRESTER und se i nen Schül ern ist
nicht klar zu erkennen, ob ein Kausaldiagramm immer einem Feed­
backdiagramm nachfolgt oder umgekehrt.
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Ein Modellentwickler wäre bei großen Modellen Uberfordert, wenn er

die umfangreiche Anzahl von Schleifen zu identifizieren hätte, die

man in der Regel nach einer Modellformul ierung mit Hilfe einer Schlei­

fenanalyse der Verknüpfungsmatrix feststellen kann.

Die erste Stufe der Modellentwicklung läßt sich in unserer Termino­

logie dadurch charakterisieren, daß ein nichtparametrisches Schau­

bildmodel 1 eines Systems entwickelt wurde, in welchem bestimmte

Schleifen als 'wesentliche' Feedbackkreise ~ekennzeichnet sind.

In der zweiten Stufe müssen die wesentlichen Feedbacks als positiv

oder negativ erkannt werden. Diese Bestimmung dUrfte vielen Personen

erst aufgrund eines komparativen Kausaldiagrammes möglich sein. Of­

fenbar handelt es sich bei dieser Festlegung um eine mehr intuitive

Bestimmung die unter Umständen bei der Entwicklung eines Kausaldia­

grammes revidi~rt werden kann.

Im Falle des beschriebenen Fertigungs- und Lagerhaltungssystems läßt

sich folg~ndes Feedbackdiagramm formul ieren:

SOLLAGER-

BESTj:

FERTIGLAGERABGANGS­
PROGNOSE

2

FERTIGLAGER­
ABGANG

/.:ESTELLMENGE

FERTIGLAGER­
ZUGANG

r J

FERTIGLAGER­
BESTAND

2

z·Jn
Abb. 32.1 Feedbackdiagramm eines Fertigungs- und Lagerhaltungssystems
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Man kann zwischen drei Feedbackkreisen unterscheiden, die durch die

Zahlen 1 bis 3 gekennzeichnet sind. Die Unterscheidung, ob es sich

um positive oder negative Feedbackkreise handelt, wird unter der Vor­

aussetzung getroffen, das System befände sich in einem Gleichgewicht

und der Wert einer Variablen, die sich in dem zu beurtei lenden Kreis

befindet, würde erhöht. Unter dieser Annahme verfolgt man gedankl ich

die Auswirkung der Erhöhung über die einzelnen Variablen des Feed­

backkreises bis zu der ursprünglich erhöhten Ausgangsvariablen. Hat

die gedankliche 'Durchwanderung ' des Feedbackkreises eine Erhöhung

der Ausgangsvariablen zur Folge, dann liegt ein positiver Feedback­

kreis vor, während eine Verminderung als ein negativer Feedbackkreis
. 2

angesehen wi rd.

Betrachten wir als erstes den durch 2 gekennzeichneten Kreis: Eine

Erhöhung des Fertiglagerbestandes führt zur Erhöhung des Fertiglager­

abganges, und die Erhöhung des Fertiglagerabganges wiederum führt

zur Verminderung des Fertiglagerbestandes. Es I iegt damit ein nega­

tiver Feedbackkreis vor.

Die mit den Zahlen 1 und 3 gekennzeichneten Kreise führen beide über

die Variable 'Bestellmenge ' . Diese Größe kann sowohl zunehmen als

auch abnehmen, wenn im Falle der Analyse von Kreis 1 , der Fertigla­

gerbestand oder, im Falle von Kreis 3, der Sol lagerbestand als wach­

send angenommen wird. Denn die Entscheidung, ob ~ie Bestellmenge bei

wachsendem 5011- oder Fertiglagerbestand wächst oder fällt, hängt

von der Relation zwischen dem 5011- und Istlagerbestand ab. Die Ver­

knüpfung zwischen der Bestellmenge und den beiden Lagerbeständen wird

daher durch eine nichtkomparative Hypothese beschrieben. Es ist somit

ni~ht mögl ~ch, die beiden Kreise als (ständig) positiv oder negativ

zu klassifizieren. Mit diesem Beispiel wurde deutlich, daß die For­

derung FORRESTERs, die positiven und negativen Feedb~cks von Syste­

men zu identifizieren, aus empirischen Gründen nicht immer mögl ich

ist.

Im Rahmen der dritten Stufe wird ein komparatives Kausaldiagramm des

betreffenden Systems entwickelt.

2 Vgl. Seite 59f. und 282f.



429

In Abbi ldung 32.2 ist das Kausaldiagramm des beschriebenen Fertigungs­

und Lagerhaltungssystems dargestellt.

Im Hinblick auf die Bestellmenge wird durch das Zeichen ± zum Aus­

druck gebracht, daß die Bestel lmenge durch eine nichtkomparative und

in diesem Fall auch multikausale Hypothese beschrieben wird. Es ist

daher im vorl iegenden Bei spiel nur unter Vorbehalt mögl ich, von ei­

nem komparativen Kausaldiagramm zu sprechen, da es nicht nur kompa­

rative Hypothesen enthält.

BESTELLMENGE

+

SOLLAGER­
BESTAND

t+
FERTIGLAGERABGANGS­
PROGNOSE

+

FERTIGLAGER­
BESTAND

FERTIGLAGER-

Z~T +

FERTIGLAGERABGANG

Abb. 32.2 Komparatives Kausaldiagramm eines Fertigungs- und Lager­
haltungssystems

In der vierten Stufe kommt nunmehr die schon beschriebene Level-Ra­

ten-Interpretation zur Anwendung. Die Variablen des komparativen Kau­

saldiagrammes werden daraufhin untersucht, ob sie sich als Level-,

Raten- oder Hilfsvariablen klassifizieren lassen. Die Beziehungen

zwischen den Variablen und Parametern werden durch die uns bereits

bekannten System-Dynamics-Diagramme beschrieben.
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Die Formu1 ierung des parametrisch-singu1ären System-Dynamics-Mode11s

vollzieht sich in der fünften Stufe.

3.2.2. Geschlossenheitsprinzip und System-Dynamics

. Das Geschlossenheitsprinzip charakterisiert eine bestimmte Auffas­

sung FORRESTERs bezüglich des Auftretens exogener Variablen in einem

System-Dynamics-Model1. Im Hinblick auf die Existenz bestimmter exo­

gener Variablen läßt FORRESTER nur zwei Modellformen zu: gesch1osse­

~ Modelle und singulär offene Modelle. Geschlossene Modelle sind,

wie uns bereits bekannt ist, Modelle ohne zeitveränder1 iche exogene

Variable. Unter einem 'singulär offenen Modell 5011 ein Modell mit nur
einer zeitveränderl ichen exogenen Variablen verstanden werden.

A. Singulär offene System-Dynamics-Ansätze

a) Kennzeichung singulär offener System-Dynamics-Ansätze

Singulär offene Modelle dienen nicht der Ex-post- oder Ex-ante-Prog­

nose bestimmter endogener Variablen, sondern der Ermittlung bestimm­

ter typischer Systemverhaltensweisen. Zu diesem Zweck wird ein Mo-

del I künstlich in einen (in der Real ität fast nie vorliegenden) Gleich­

gewichtszustand versetzt Und dann im Hinblick auf seine Reaktion be­

züglich bestimmter Testeingänge untersucht. 3 Eine derartige Testant­

wortanalyse dient dem Studium des Systemverhaltens. Singulär offene

System-Dynamics-Model le, welche aussch1 ieß1ich für Testanwortana1y-

sen entwickelt werden, sollen als Testantwortmodelle bezeichnet wer­

den. Durch bestimmte Änderungen der kontroll ierbaren Systemparameter

versucht man nach der Formulierung eines Testantwortmodells das M~­

dellverhalten im Hinbl ick auf bestimmte wünschenswerte Eigenschaften

wie etwa eines monotonen Verhaltens zu verändern. Führt die Wahl ei­

nes anderen Parameterwertes im Rahmen der Testanwortanalyse zu dem

gewünschten Erfolg, dann werden diese Parameteränderungen am konkre­

ten System realisiert.

3 Vgl. zu dieser Methode Seite 202f.



431

Als Beispiel sei eine Version des bereits erörterten Einlevelmodells

angeführt, in der die Abgangsrate ABF eine exogene Variable darstellt.

ABF 5011 durch eine Testfunktion in Form eines in der Periode 5 auf­

tretenden Impulses von 500 Einheiten ersetzt werden. Hierzu verwen­

det man die Funktion,

R AEF.KL=PULSE(500,5,1000)

in der das erste Argument die Impulshöhe und das zweite den Zeitpunkt

des Impulsauftretens kennzeichnet. Das dritte Argument ~ib~ die l~­

pulsfrequenz an, d.h. den Zeitabstand, nach welchem ein neuer Impuls

auftritt. Dieser 1 iegt mit 1000 außerhalb des Simulationszeitraumes.

Man erhält folgendes Programm:

* EIN-LEVEL-MODELL
*
L LEV.I=LEV.J+DT*{ZUF.JK-ABF.JI)
N lEV=200 ANFANGS WERT DES LEVELS
R ZUF.KL=APf#(SLEV-LEV.K)
R ABF.KL=PULSE(500,5,1000)
C APF=0.1 ANPASSUNGSFAKTOR
C SIEV=600 SOLLBESTAND
SPEe DT=1,PLTPER=1,PRTPER=1,LENGTE=50
PLOT LEV=L/ZUF=Z/ABF=A
PRINT LEV,ZUF,ABF
RUN

Manchem Leser wird nicht entgangen sein, daß das vorliegende Modell

für eine Testantwortanalyse noch nicht geeignet ist, da von einem

Gleichgewichtszustand auszugehen ist~ d.h. durch eine geeignete Wahl

der Levelanfangswerte eine künstliche Gleichgewichtssituation zu

schaffen ist. Während (wie wir später sehen werden) diese Gleichge­

wichtssetzung in vielen Modellen durchaus keine Trivialität ist, ge­

staltet sich hier das A~ffinden eines gleichgewichtigen Levelanfangs­

wertes als sehr einfach. Im Gleichgewicht muß der Sollbestand SLEV=6oo

dem Istbestand LEV entsprechen, d.h. LEV ist gleich SLEV zu setzen.

Aus der Gleichung für ZUF erkennt man, daß unter der Annahme LEV=SLEV

die Zuflußrate ZUF=O wird. Da ABF ebenfalls Null ist, folgt:

LEV.K=LEV.J, d.h. die Levelwerte ändern sich nicht, und es herrscht
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somit ein Gleichgewicht. Wir ersetzen damit die ursprUngl icheLevel­

anfangswertgleichung durch die Anfangswertgleichung

N LEV=SLEV GLEICHGEWICHfSANFANGSWERT

und erhalten damit ein gleichgewichtiges System. Man erkennt, daß

auch Anfangswertgleichungen auf der rechten Seite Variablen enthal­

ten dürfen, die erst über andere Anfangswertgleichungen auf numeri­

sche Werte zurUckgeführt werden.

In Abbildung 32.3 sind verschiedene Impulsantworten für unterschied­

liche Anpassungsfaktoren APF angeführt.
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Der Anpassungsfaktor APF=O,5 zeigt eine schnellere Anpassung des Le­

ve1wertes an den Gleichgewichtspfad als der ursprünglich gewählte

Faktor. Geht man von dem Ziel einer Verminderung der Fluktuation aus,

dann sollte im konkreten System APF=O,5 dem ursprüngl ichen Anpassungs­

faktor von APF=O,l vorgezogen werden.

Es fragt sich, wie die empirische Uberprüfung derartiger Gleichge­

wichtsmodel le erfolgen soll, denn die künstlich geschaffene Gleich­

gewichtssituation stimmt erklärtermaßen nicht mit der Realität über­

ei n.

Im Prinzip sollte esm6gl ich sein, bel Kenntnis des historischen Ver­

laufs der exogenen Flußrate eine Ex-post-Prognose vorzunehmen und an­

hand dieser die empirische Adäquanz des Modells zu beurteilen. Ein

derartiges Vorgehen lehnt FORRESTER jedoch ab. Er ist vielmehr der

Auffassung, daß ein Modell dann gerechtfertigt ist, wenn die auf­

grund einer normativen Modellanalyse gefundenen Maßnahmen zum ge­

wünschten Erfolg führen. Im Falle des Sprague-Mode1ls, dem singulär

offenen Model) eines Elektrobetriebes, führten beispielsweise die an­

hand des Modells gewonnenen Maßnahmen zu einer Verminderung der La­

ger- und Personalf1uktuation. 4 Im Sinne von FORRESTER 1iefert dieses

Ergebnis eine hinreichende Rechtfertigung des Modells.

b) Zur Bestimmung von gleichgewichtigen Levelanfangswerten
in singulär offenef! System-Dynamics-Ansätzen

Es wurde bereits darauf hingewiesen, daß die Bestimmung der zu einem

Gleichgewichtssystem führenden Levelanfangswerte Schwierigkeiten be­

reiten kann. Dies soll ~m Beispiel des erörterten Lagerhaltungs~ und

Fertigungsmodells gezeigt werden.

Die Abflußrate des Fertig1agerbestandes FLA soll nicht nur wie in dem

auf Seite 421 beschriebenen (geschlossenen) Modell vom Fertiglagerbe­

stand abhängen, sondern auch von einer exogen bedingten Gr6ße EX, d;h.

R FLA.KL=FAK.K*FLE.K+EX.K

Geht man davon aus, daß EX im Gleichge,wi~ht 25 betragen 5011, und

4 Zum Aufbau dieses Modells siehe [53,S.173J und [230J
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puls der Größe 150 auf, dann-wird dies durch das Programm dargestellt.

* FERTIGUNGS-UND LAGERHALTUNGSSTSTEM
*R BMR.IL=PFLA.I+RF*(SLB.K-FLB.K)
R FZU.KL=DELAY3(BMR.JI,DVZ)
L FLB.[=FLB.J+DT*(FZU.JK-FLA.JI)
N F!B=450
A PFIA.K=SHOOTH(FLA.JK,AP~)
A SLB.[=MF*PFLA.K+500
R FLA.KL=FAI.K*FLB.K+EX.I
A EX.K=25+PULSE(150,5,100)
A FAK.K=TABLE(TAFA,FLB.K,0,1000,100)
T TAFA=0.02/0.05/0.07/0.11/e.1S/0.25/0.29/0.32/0.32/0.32/0.32
C RF=0.3,DVZ=10,APF=2,MF=0.25
SPEC DT=1,LENGTH=50,PRTPER=1,PLTPER=1
PLOT FLB=F/FZU-Z/FLA=A//SLB=S
PRINT FLB,FZU,FLA,SLB
RUN

Es stellt sich nunmehr die Frage, wie die Levelanfangswerte zu wäh­

len sind, um ein Modellgleichgewicht herzustellen.

Man könnte meinen, daß aussch1 ieß1ich die Bestimmung des gleichge­

wichtigen Levelanfangswertes für FLB notwendig sei, der den nur vor­

1ä~fig gewählten Anfangswert der Höhe 450 ersetzt. Da in den verwen­

deten DELAY3- und SMOOTH-Makros ebenfalls Levelvariablen auftreten,

ist auch der Frage nachzugehen, wie die Anfangswerte dieser Variab­

len im Falle eines Gleichgewichts zu wählen sind. Diese grundsätz1 j­

che Frage 5011 vorab geklärt werden.

ba) Makrofunktionen in gleichgewichtigen Modellen

Makrofunktionen - im folgenden kurz Makros genannt - stehen stellver­

tretend für eine Reihe von elementaren DYNAMO-Instruktionen, die

beim Aufruf dieser Makrofunktionen aktiviert werden. Makrofunktionen

.können neben den vorhandenen vom Benutzer in DYNAMO selbst definiert

werden. Die im Rahmen des DYNAMO-Compt 1ers vorgenommene Defin-ition

des SMOOTH-Makros lautet:

MACRO SMOOTH(IN,DEL)
L SMOOTH.K=SMOOTH.J+DT*(IN.J-SMOOTH.J)/DE1
N SMOOTH=IN
MEND
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Die elementaren Instruktionen des Makros sind von den Zeilen MACRO

und MEND eingeschlossen. An das Wort MACRO hat sich der zu definie­

rende Makroaufruf anzuschl ießen, wobei die als Makroeingangsgrößen

dienenden Argumente in ihrer Bezeichnung (IN und DEL) mit den ent­

sprechenden Bezeichnungen dieser Größen in den Gleichungen überein­

stimmen müssen.

Der Makroname (SMOOTH) muß mit der Variablen in den Gleichungen iden­

tisch sein, deren Wert durch die Makrofunktion ausgedrückt werden

5011. Variablen, die in den Gleichungen des Makro? auftreten, aber

weder Eing~nge noch Ausgänge bilden, erhalten als erstes Variablen­

symbol ein $-Zeichen. Im Fall des SMOOTH-Makros treten solche makro­

internen Variablen nicht auf. Anders dagegen in der folgenden Makro­

funktion einer exponentiel len Verzögerung dritter Ordn~ng:

MACRO DELAY3(IN,DEL)
A DELAY3.K=$LV3.K/$DL.K
L $LV3 .K=$ LV3 •J +DT* ($RT2 .JK-DEL.AY'3.J)
N $LV3=$DL*IN
R $RT2.KL=$LV2.K/$DL.K
L $LV2.K=$LV2.J+DT*($RT1.JK-$RT2.JK)
N $LV2=$LV3
R $RT1.KL=$LV1.K/$Dl.K
L $LV1.K=$LV1.J+DT*(IN.JK-$RT1.JK)
N $LV1=$LV3
A $DL.K=DEL/3.
MEND

Werden in einem Modell eine SMOOTH- oder DELAY3-Makrofunktion verwen­

det, so kann man diese durch ihre elementaren Gleichungen ersetzen.

Da Makros aber gerade dem Ziel dienen, den mit der Formul ierung die-

·ser Gleichungen verbundenen Aufwand zu vermeiden, ist ein solches

'Vorgehen für praktische Zwecke nicht sehr sinnvol l. Stellen wir uns

jedoch im Hinblick auf die zur Diskussion stehende Frage vor, daß al­

le SMOOTH- und DELAY3-Makros eines Model 1s durch entsprechendeelemen­

tare Gleichungen ersetzt werden, dann wird deutlich, daß weitere Le­

velgleichungen in dem Modell enthalten sind, deren Anfangswerte of­

fenbar bei der Herbeiführung eines Gleichgewichtszustandes zu berück-



436

sichtigen sind.

Eine genauere Untersuchung der angeführten Makrofunktionen zeigt,

daß die Anfangswerte in bestimmter Weise definiert sind.

Der Anfangswert von SMOOTH ist gleich dem als konstant anzusehenden.

IN gesetzt, mit der Folge, daß der Klammerausdruck in der Levelglei­

chung Null wird und sich damit SMOOTH.K=SMOOTH.J ergibt.

Für den DELAY3-Makro soll die Existenz eines Gleichgewichts nur für

$LVl gezeigt werden. Setzt man die Gleichung für $RTl in die Level­

gleichung $LVl ein, dann folgt:

$LVI .K=$LV1.J~DT*(IN.JK-($LV1.J/$DL.J))

Geht man davon aus, daß das System im Gleichgewicht sein soll, dann

ist IN.J ein konstanter Wert. Mit 'den Anfangswertgleichungen

$LV1=$ LV3

und

$LV3=.$DL*1 N

folgt

IN=$LV1/$DL

Bei konstantem IN verschwi ndet dami t der Klammerausdruck inder Glei­

chung für $LV1, und es wi rd LV1.K=LV1.J für alle Zei tpunkte, in denen

IN konstant ist. Eine analoge Betrachtung kann für die Level $LV2 und

$LV3 durchgeführt werden.

Als Ergebnis ist festzuhalten, daßSMOOTH- und DELAY3-Makros, die ei­

nem konstanten Input IN ausgesetzt sind, immer auch einen konstanten

Output SMOOTH(IN,DEL) bzw. DELAY3(IN,DEL) zur Folge haben.

bb) Gleichgewichtsbestimmung von Modellen durch Simulation

Kehren wir zu dem Problem der Bestimmung von Gleichgewichtsanfangs­

werten in dem Fertigungs- und Lagerhaltungsmodell zurück. Wir wissen

nunmehr, daß bei SMOOTH- und DELAY3-Makros ein gleichgewichtiger Ein­

gang einen gleichgewichtigen Ausgang hervorruft. Doch unbeantwortet

blieb bisher die Bestimmung des Gleichgewichtsanfangswertes für den

Level FLB.
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Vorab eine kurze Festlegung: Der Gleichgewichtswert eines Levels oder

einer Rate soll durch einen Querstrich Ober dem Variablennamen gekenn­

zeichnet werden. Anhand der Gleichungen des Lagerhaltungs- und Ferti­

gungsmodel ls können wir folgende Betrachtungen ans tel len:

Im Gleichgewicht muß der gleichgewichtige Sol lagerbestand SLB dem

gleichgewi.chtigen Fertiglagerbestand FLB entsprechen, ci.h.

weiter gilt immer im Falle eines Gleichgewichtes

S['ß=MF*PFLA + 500

PFLA=FLA

FLA=FLB*FAK+EX

FAK=TABLE(FLB)

EX=25

Durch sukzessives Einsetzen erhält man die Gleichgewichtsbedingung

fOr FLB

FLB=MF*[FLB*TABLE(FLB)+25]+500

Da TABLE(FLB) eine nichtl ineare Funktion repräsentiert, muß zur Er­

mittlung von FLB eine nichtlineare Gleichung gelöst werden.

Handelt es sich in real istischeren Fällen um'ein System mehrerer,

in vielfältig nichtl inearer Weise miteinander verknOpfter Level, so

ist ein nichtl ineares simultanes Gleichungssystem zur Ermittlung

der Levelanfangswerte zu lösen.

Angesichts dieser Schwierigkeiten, die mit dem Lösen derartiger Glei­

chungssystemeverbunden sind, bietet sich ein anderer Weg zur Gleich­

gewichtsermittlung an:

Man simuliert den Zeitverlauf der Level eines Systems bei Unterdrük­

kung der Testfunktion, ermittelt die Gleichgewichtswerte und setzt

diese als Levelanfangswerte ein. Da eine Veränderung bestimmter Sy­

stemparameter (in unserem Fßll MF) jedesmal zu anderen Gleichgewichts­

werten fOhrt, ist dieses Verfahren mühselig, wenn Parametermodifika­

tionen getestet werden sollen.
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In diesem Fall sei das folgende Programm empfohlen, welches bewirkt,

daß im Simulationslauf eine Testfunktion erst nach dem Erreichen des

Gleichgewichtszustandes dem System aufgeprägt wird und nur von der

gewünschten Testantwort ein Histogramm erstellt wird.

Folgende Instruktionen sind dem eigentlichen Programm voranzustellen:

MACRO VI 1(A)
L VE1.K=VE1.J+(DT/DT)($AA.J-VE1.J)
1 $11.1=A.I
N VE1=0
MEND
MACRO A(X}
1 A.K=CLIP(X.K,-X.K,X.K,0)
MEND
MACRO S(LI,GK}
A $Z.K=A«LI.K-VE1(LI.K})/LI.K)
A S.K=CLIP(0,1,$Z.K,GK)
MEND
MACRO 5U(A)
A SU.K=VE1(SU.K}+A.K
MEND
* BRUECKENINSTRUKTIONEN ZWISCHEN MACRO UND PROGRAMMTEIL
A PLTPER.K=CLIP(DT,0,SU(CLIP(l,0,ZSU.I,AGP»,1}
A ZSU.K=SU(DT*SG.I-(1-SG.I)*VE1(ZSU.K}} .
A STE.K=CLIP(1,0,SU(PLTPER.K},AGA+DT) STEPEINSCHALTER
A IME.K=SVITCH(1,0tSTE.K-VE1(STE.[)~1) IMPULSEINSCHALTER* .
* STEUERGROESSEN
*C GK=0.0001
C AGA=10
C AGP=5

Die Parameter bedeuten:

GK: Kriterium für das Errei~hen eines Gleichgewichtszustandes, aus­

gedrUckt durch die relative Änderungsrate eines Levels zwischen

Periode J und K. Es genügt in der Regel GK=O.OOOl.

AGP: Anzahl der Perioden, in welchen das Gleichgewichtskriterium er­

füllt sein soll.

AGA: Anzahl der Gleichgewichtsperioden im Histogramm vor Beginn des

Testeinganges.
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Die Variable STE bestimmt im Falle, das der Testeingang eine Sprung­

funktion darstellt, den Beginn des Sprunges, d.h. STE wird nach AGA

Perioden auf Dauer 1. Soll eine Sprungfunktion die Sprunghöhe STH

besitzen, 50 wird sie durch

STEPF.K=STE.K*STH

beschrieben.

Eine Impulsfunktion IMPF mit der Impulshöhe IPH kann analog durch

IMPF. K= IME. K*J PH

dargestellt werden.

Nach den Steuergrößen ist vor dem eigentl ichen Simulationsmodell ei­

ne Hilfsgleichung für SG.K zu definieren, in die alle die Level

Ll ,L2, ... ,LN des Modells eingehen, von denen man verlangt, daß sie

sich beim Auslösen der Testfunktionen im Gleichgewicht befinden. SG.K

lautet:

Als Anwendungsfall sei .das uns bekannte Fertigungs- und Lagerhaltungs­

model 1 verwendet, welchem im Gleichgewicht ein Impuls der Höhe 80 auf­

geprägt werden soll.

} MACRO VEl(l)

* STEUERGROESSEN
C AGA=10
C AGP=5
C G.K=0. 0001
* VOM BENUTZER ZU DEFINIERENDE GLEICHUNG
A SG.K=S(FL].K.GK)* FERTIGUNGS-UND LAGERHALTUNGSSYSTEM

}
A EX.K=25+IMPF.K
A IMPF.K=IME.K*IPH
C IPH=80
RUN
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Dieses Programm erzeugt das nachfolgende Histogramm.

~) . ,
.I,n •••••••••

..,N
r')N
Li")

u) & I • • • • • • • • • I • • • • • • • • • I • • • • • • • • • I • • • • • , • • • I • • • • • • • • • I
!'-es>
tOt') 1 I I

'I

I

K'><->;<-K..x , I I I
><' ><-~

/ I ><-1o<·1o<·..,:·><·Io<.><.><-><-><·><·K-K·><·I<·><-><·K I
~, 'x_'><-><-X'I<-><'>('><-:+<-><

/

I I I I

I I
• ./ • • I I • • • • • • • • • • • • • • •• • ....

I :
x

I I

• I ••••••••• I ••••••••• 1

I

• es>
es; • p~p...tl...~.P-.-O-p.-,,-.p:. I p.,.c...c..p.,.p...p..,.t:l.,.Q.,.c-p.,.p..p'p.,.p.,.p..""."-p'p.,.p._p-o..p..~_p.,_p.,.p..p..l>...A..p..p..o...l>...l>...p..Q..A~p..
c:::.,) .,.

.... ül u, tO u) .r) Lf)

0' cs> N I"l ~
..-.4 M .....

11",
• Ci) I • • • • • .. • t I

~ül
\11 .... ,
....

I

I

I

I

I

0) • I
• Ui ." ••••••

t'"J['­
.."....

Abb. 32.4 Histogramm der Impulsantwort eines im Gleichgewicht befind­
1ichen Fertigungs- und Lagerhaltungssystems

B. Geschlossene System-Dynamics-Ansätze

Die ursprünglichen Versionen des Einlevelmodells sowie des Ferti­

gungs- und Lagerhaltungsmodells gehören zur Famil ie der geschlosse­

nen Modelle. Denn sämtl iche Zu- und Abflußraten.l ießen sich (über

die Hi lfsvariablen) auf andere Level zurückführen. Auch die Weltmo­

delle von FORRESTER und MEADOWS sowie das von FORRESTER veröffent­

1ichte Stadtentwicklungsmodell fallen in diese Kategorie. Geschlos­

sene System-Dynamics-Modelle müssen in der Lage sein, den histori-
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schen Zeitverlauf des model I ierten Systems zu reproduzieren. Oder

anders ausoedrückt: Die Akzeptierbarkeit eines geschlossenen System­

Dynamics-ModeJ Is kann anhand von Ex-post-Prognosen beurteilt werden.

Nach der Formul ierung und empirischen Uberprüfung eines geschlosse­

nen System-Dynamics-Modells werden verschiedene Pol itiken erprobt,

mit denen man versuchen will, unerwünschte Zeitverläufe bestimmter

Modellvariablen im 'positiven' Sinne zu beeinflussen. Im Rahmen des

Weltmodells von MEADOWS zeigte sich beispielsweise, wie in Abbildung

32.5 zu erkennen ist, ein starkes Uberschwingen der Weltbevölkerung

mit einer anschließenden Bevölkerungskatastrophe (overshoot and col­

lapse). Diese unerwOnschte Entwicklung versuchte man durch die Ände­

rung geeigneter kontrollierbarer Parameter abzufangen.
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Abb. 32.5 Prognose der Bevölkerungsentwicklung ohne (X) und· mit Inve­
stitionsstop (*) 1m Modell von MEADOWS [Einhelt M: Millionen]
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In diesem Fall wurde von MEADOWS unter anderem ein Investitionsstop

vorgeschlagen, als dessen Folge, wie aus Abbildung 32.5 zu erkennen,

die Bevölkerungskatastrophe ausbleiben sollte.

3.3. Analysemethoden von System-Dynamics-Modellen

Die Analyse von Testantwortmodel len anhand von Simulationen gestal­

tet sich etwa folgendermaßen: Singulär offene Modelle werden wie

beschrieben in einen Gleichgewichtszustand überführt.
1

Auf dieser

Grundlage wird dem Modell über die exogene Zuflußrate eine bestimm­

te Testfunktion laufgeprägt' , und die Testantwort in Form bestimm­

ter Verläufe der endogenen Variablen wird simul iert. Durch Variation

der kontrol lierbaren Parameter versucht man dann im Rahmen eines Tri-

al-and-Error-Prozesses eine Parameterkombination zu finden, die einer

festgelegten normativen Vorstellung über ein 'erstrebenswertes ' Sy­

stem- bzw. Modellverhalten entspricht. Im Falle des erwähnten Mo­

dells der Sprague-Electric-Company ist die Testantwort der interes­

sierenden endogenen Variablen in Abbildung 17.7 dargestellt. 2 Durch

eine entsprechende Wahl bestimmter Kontrollparameter gelang es FOR­

RESTER bei gleicher Testfunktion einen wesentl ich gedämpfteren Ver­

lauf der be~reffenden endogenen Variablen zu erreichen.

Im Falle geschlossener Modelle wird in analoger Weise versucht, durch

die zukünftige Modifizierung bestimmter kontrol lierbarer Parameter

einen gegenüber dem Ausgangsmodell 'wünschenswerteren ' Verlauf einer

oder mehrerer endogener Variablen.zu bewirken. Als Beispiel sei der

ursprüngliche Verlauf der Weltbevölkerung im Modell von MEADOWS an­

geführt, der durch die Wahl bestimmter Parameter wesentlich gedämpf­

ter wurde, so daß wie aus Abbildung 32.5 zu ersehen ist, bei einer

tatsächl ichen Real isierung der gewählten Parameter eine Bevölkerungs­

katastrophe ausbleiben würde.

Das bisher beschriebene Analyseverfahren, welches relativ einfach

und einsichtig ist, dient allein dem Ziel einer wie immer im einzel­

1 Vgl. Seite 433
2 Siehe Seite 134
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nen zu definierenden Modellverbesserung, d.h. normativen Zwecken.

In den vorangehenden Ausführungen wurde jedoch ausführlich dargelegt,

daß die Aufdeckung von Impl ikationen zur Gültigkeitsprüfung von Mo­

dellen mit herangezogen werden kann. 3

Dieses Ziel der Impl ikationenbestimmung müßte auch bei System-Dynamics­

Modellen zum Tragen kommen. Sie sind ihrer Intention nach zwar Ent­

scheidermodelle, d.h. Modelle, deren Hypothesen nicht aufgrund sta­

tistischer Schätzungen, sondern primär aufgrund subjektiver Experten­

schätzungen gewonnen wurden.

Aber auch 'subjektive Expertenmodellei müssen in der Lage sein, die

Vergangenheitsentwicklung der endogenen Variablen eines Systems ange­

nähert wiederzugeben, d.h. eine befriedigende Ex-post-Prognose zu er­

mög 1 i chen.

1m Falle von singulär offenen Modellen begnügt sich FORRESTER wie

beim Modell der Sprague-Electric-Company mit einem Turingtest, d.h.

er ist der Auffassung, daß man durch einen Vergleich des Modellver­

haltens im Fal le einer bestimmten Testfunktion mit dem beobachteten

Systemverhalten zu einem Urteil kommen kann, ob mit dem tatsächli­

chenModell ein adäquates Abbild des Systems dargestellt werden kann

oder nicht. 4

Im Gegens~tz zu einer solchen relativ problematischen Adäquanzent­

scheidung gilt im Falle geschlossener Modelle die angenäherte Ex-post­

Reproduktion der Beobachtungsvariablen durch das Modell als Akzeptanz­

kr i ter ium.

Um eine zusätzl iche Uberprüfung des Gültigkeitsanspruches eines Sy­

stem-Dynamics-Modells zu erhalten, 1iegtes daher nahe, diese mit

Hilfe .bestimmter Impl ikatiönenaufdeckungen durchzuführen. Im folgen­

den wird die Anwendbarkeit und die technische Durchführung der Sen­

sitivitäts- und Retrodiktionsanalyse von System-Dynamics-Modellen

beschrieben, deren grundsätzl iche Bedeutung für die Modellüberprüfung

bereits im ersten Kapitel dargelegt wurde.

Während die Sensitivitätsanalyse sowohl für Testantwortmodel le als

auch für geschlossene Prognosemodelle erörtert wird, werden die Me-

3 Vgl. Seite 139ff.
4 Vgl. Sei te 134f.
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thoden der Retrodikttonsanalyse nur an Prognosemodel len aufgezeigt.

3.3.1. Sensitivitätsanalyse von System-Dynamics­
Modellen

Die Durchführung von Sensitivitätsanalysen ist für System-Dynamics­

Modelle von eminenter Bedeutung, denn wie wir sehen werden, stellen

SenSitivitätsanalysen einen wesentl ichen Prüfstein zur empirischen

Akzeptierbarkeit dieser Modelle dar.

Die Parameter eines System-Dynamics-Modells sollen nach FORRESTERs

Auffassung durch subjektive Expertenschätzungen gewonnen werden. In

diesem Sinne bemerkt er:

"Wi r werten auf bestmög li che We i se das we i te Fe Id der Erfahrung und

der beschreibenden Information aus, welches wahrscheinl ich 98 Pro­

zent der wichtigsten fnformationen bezügl ich des Entscheidungsver­

haltens umfaßt. Die anderen zwei Prozent stammen von den formalen,

statistischen und numerischen Daten. II ([52,S.561, Ubersetzung des Ver­

fassers)

Bei der Beurteilung der Zulässigkeit eines solchen ~odellgewinnungs­

verf~hrens I iegt der Einwand nahe, daß ein Experte wohl kaum eine

Punktschätzung vornehmen kann, sandern zumeist nur in der Lage ist,

einen Bereich anzugeben, in dem sich der zu schätzende Parameter

'wahrscheinl ich l befinden wird.

Diesem Einwand stellt FORRESTER eine These entgegen, die als die For­

restersche Insensitivitätshypothese sozialer Systeme bezeichnet wer­

den soll. Sie lautet: Soziale Systeme sind (weitgehend) insensitiv

gegenüber Par~meteränderungen. Diese Hypothese taucht mehr oder min­

der explizit in vielen Äußerungen FORRESTERs auf. So behauptet er:

"Complex Systems are remarkably insensitive to changes in many of the

systems parameters (constants in the equations)" [56,5.110], oder er

bemerkt:

"When structure and theory are handled properly the design of an im-
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proved system becomes surprisingly insensitive to the numerical va­

lues of parameters. 11 [54,S.508J

Selbst wenn FORRESTER die Existenz einer solchen Insensitivitätshy­

pothese ablehnen wUrde, mUBte sie doch gelten, um die generelle An­

wendung seiner Konzeption zu rechtfertigen.

Denn würde sich herausstellen, daß in einem System-Dynamics-Modell

ein geschätzter Parameter existiert, dessen geringfügige Änderung

zu einem völlig anderen Systemverhalten führt, dann wäre die Akzep­

tierbarkeit dieses Modells auch als ein subjektives Entscheidermo­

delI äußerst fragwUrdig. Wenn ein System-Dynamics-Modell vorliegt,

so ist die I Bewährung I dieses subjektiven Modells daran zu messen,

ob es trotz großer MUhen nicht gel ingt, plausible Parameterkombina­

tionen zu finden, die einen grundsätzlich anderen Zeitverlauf der Mo­

dellvariablen bewirken. Das hier zu Tage tretende Uberprüfungsverfah­

ren ähnelt POPPERs Vorgehen zur Uberprüfung genereller empirischer

Hypothesen: Gel ingt es einem Wissenschaftler trotz ernsthaften BemU­

hens nicht, eine generelle empirische Hypothese zu falsifizieren,

dann wächst die Bewährung dieser Hypothese. Analog gilt: Gel ingt es

einem Wissenschaftler nicht, die Sensitivität der subjekt"iv geschätz­

ten, unkontroll ierten Parameter eines Modells aufzuzeigen, so erhöht

sich die Anwendbarkeitsberechtigung dieses Modells.

A. Sensitivitätsmaße und ihre Anwendung in System-Dynamics-Modellen

In Ubereinstimmung mit den in der Regelungstheorie verwendeten Sensi­

tivitätskenngrößen wird auch bei System-Dynamics-Modellen zwischen

den Begriffen der absoluten und relativen S~nsitivität unterschieden.

Die Levelgleichung eines System-Dynamics-Ansatzes wird in allgemei­

ner Fo rm du rch

Li(t) = Li (t-l) + (DT)F i [L,(t-l),L
2
(t-l), ... ,L

n
(t-l)]

beSChrieben.

Die Umformung

L. (t)-L. (t-l)
I I

DT
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führt mit DT+O zu der Differentialgleichung

dL.(t)
I

dt

Da Forrester, wie wir später sehen werden, tatsäch1 ich davon ausgeht;

DT sei als infinitesimal klein anzusetzen, sollen die auf seinen An­

satz anzuwendenden Sensitivitätsmaße vorerst auch unter dieser Annah­

me (Infinitesimalprämisse) formuliert werden.

Als absolute Sensitivität der Variablen L. gegenüber dem Parameter A
I

wird die Ableitung von L. nach A bezeichnet, d.h.
I

Unterstellen wir als einfaches Beispiel ein System-Dynamics-Modell,

welches aus einer linearen Levelgleichung besteht, d.h.

so führt dies bei Annahme des Infinitesimalfalles zu der Form

dL(t) = L()
dt p t

Die Lösung dieser Differentialgleichung führt zu

Die absolute Sensitivität S (t) wird in diesem Fall durch
a

s (t) = Ctept
a

ausgedrückt.

Die relative Sensitivität berücksichtigt nicht nur die infinitesimal

kleine Änderungsrate dL gegenüber dA, sondern beschreibt die Ände­

rungsraten in Abhängigkeit von den Ausgangswerten L(t) und A. Die re­

lative Sensitivität zwischen dem Parameter A und dem Level L. ist de-
I

finiert mit:

A
L. (t)

I

Auf das oben angeführte Beispiel angewendet ergibt sich eine relati-
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ve Sensitvität von

S (t) = Cte pt
r

-p- = tp
Cept

Die entwickelten Sensitivitätsbegriffe lassen sich als eine Art Mar­

ginaJsensitivität interpretieren, da sie di~ Änderung einer endoge­

nen Variablen im· Hinblick auf eine infinitesimal kleine Parameterän­

derung zum Ausdruck bringen.

Die relative Sensitivität entspricht in ihrem Aufbau dem in den Wirt­

schaftswissenschaften oft verwendeten Begriff der Elastizität, eine

Maßeinheit, die die relative Ursachenänderung von A mit der durch

sie bewirkten relativen Wirkungsänderung von L in Verhältnis setzt.

Geht man von einem allgemeinen System-Dynamics-Modell

dL. (t)
~t = Fj[L1(t),L2(t), ... ,Ln(t),Pl,P2,· .. ,PrJ

aus, 50 verlangt die Ermittlung der absoluten oder relativen Sensi­

tivitäten der L.(t) bezüglich der Parameter P. die Lösung von (33.3)
I . J

sowie die Ableitung gemäß (33.1)

S =oLi (t)
i j aPj

Die Gesamtheit der Sensitivitätskoeffizienten S.. (t) bi ldet die
IJ

(n x r)-Sensi tivl tätsmatrix S.

Verschiedene Autoren haben Programme zur Gewinnung derartiger Sensi­

tivitätsmatrizen eines Modells entwickelt [28J.

SO beschreibt STUBEL einen etwa 1000 FORTRAN-Instruktionen umfassen~

den 'Sensitivitätsmodellgenerator', welcher es gestattet, eine Sen­

sitivitätsmatrix der absoluten Sensitivitäten zu berechnen.[;94,S.1189J

Da System-Oynamics-Modelle allerdings ~orwiegend nichtl inear sind,

ist es in der Regel nicht ohne weiteres möglich, die Differentialquo­

tienten aL.(t)/ap., d.h. die absolute Sensitivität, durch Differen-
I J

tiation zu bestimmen. Ihre Ermittlung setzt voraus, daß die zur Dis-

kussion stehenden System-Dynamics-Modelle der Form (33.3) differen­

zierbar sind, und der Differentialquotient durch einen Formelaus-
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druck beschrieben werden kann.

Diese Voraussetzung ist in System-Dynamics-Modellen aber nicht gege­

ben, wenn diese Stepeingänge oder auch CLIP-, SWITCH- und Tabellen­

funktionen besitzen.

Dem bisher beschriebenen Verfahren der Ermittlung von Sensitivitäts­

maßen liegt die bereits erwähnte InfinitesimalprämJsse zugrunde;

d.h. man geht von der Existenz von Differentialgleichungsmodellen

aus. Beachten wi r jedoch, daß es sich bei den vorl iegenden Modellen

tatsächlich um Differenzengleichungsmodelle handelt, dann wird die

Bestimmung der relativen und absoluten Sensitivitäten zu einem recht

einfachen Problem, welches ohne Schwierigkeiten von jedem DYNAMO-An­

wender gelöst werden kann.

Man definiert zwei DYNAMO-Programme desselben Modells, die sich nur

hinsichtl ich des zur Diskussion stehenden Parameters unterscheiden.

Bezeichnet man den Level des ursprUngl lehen Ansatzes mit L und den

sich bei einer Änderung des Parameters P auf P(l+AR) mi t AR>O erge­

benden Level mit AL, dann bestimmt sich die absolute Sensitivität SA

ana log (33.1)

SA.K=(AL.K-L.K)/(P*AR)

und im Falle der relativen Sensitivität durch

SR K = AL.K-L.K P__
. L. K * P*AR

oder

SR.K=(AL.K-L.K)/(L.K*AR)

Die Anwendung dieses Verfahrens soll anhand des be.eits mehrfach an­

geführten Fertigungsmodells demonstriert werden. 5 Es 5011 die Sensi­

tivität des Fertiglagerbestandes FLB bezügl ich des Parameters RF er­

mittelt werden. Das hierfür notwendige Programm ist im folgenden an­

geführt.

5 Vg I. Se i te 421
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* UNTERSUCHUNG DER SENSITIVITAET IM FERTIGUNGSMODELL
** GRUNDHODELL
*R BMR.KL=PFLA.!+RF*(S1B.I-FLB.K)
R FZU.l1=DELAY3(BHR.JK.DVZ)
L FLB.K=FLB.J+DT*(FZU.JK-FLA.JK)
A PFLA.K=SMOOTH(FLA.JK.APF)
A SlB.K=MF*PFLA.I+500
R FL1.IL=FA[.K*1L].1
A FAK.I=TABHL(TAFA.FLB.K.0.1000,100)
N F1B=450
** AENDERUNGSMODELL
R ABMR.KL=APFLA.K+ARF.K*(ASLB.K-AFLR.K)
R AFZU.KL=DiLAY3(ABMR.JK.DVZ)
L AFLB.K~AFLB.J+DT*(AFZU.JK-AFLA.JI)
A AP1LA.I=SMOOTH(11LA.JI,APF)
A ASLB.K=MF*JPFLA.I+500
R AFLA.K1=AFAK.K*AFLB.K
A AFAK.I=TABHL(TAFA.AFLB.I.0,1000,100)
N AILB=450
** GEMEINSAME PARAMETER
C DVZ=10/APF=2/MF=.25
T TAFA=0.02/0.05/0.07/0.11/0.18/0.25/0.29/0.32/0.32/e.32/0.32
** PARAMETERAENDERUNGEN
C RF=0.3
! ARF.K=RF*(l+AR)
C AR=0.1 AENDERUNGSRATE DES PARAMETERS
** SENSITIVITAETSMASSE
A SR.K=(AFLB.K-FLB.K)/(FLB.I*AR) RELATIVE SENSITIVITAET
A SA.K=(AFLB.I-FLB.I)/(RF*AR) ABSOLUTE SENSITIVITAET
*SPEC DTz l,LENGTH=50.PLTPER=1,PRTPERz l
PLOT SR=R/SA=!
RUN

Abbildung 33.1 zeigt die absolute und relative Sensitivität des Pa­

rameters RF bezUglieh des Levels FLB bei einer Änderungsrate des Pa­

rameters von AR=O.l. Man erkennt, daß die Sensitivität-in. der zwan­

zigsten Periode den höchsten Wert annimmt.

Die relative Änderung des Parameters RF um zehn Prozent führt in

Periode 20 zu einer relativen Änderung von FLB um neun Prozent.

Eine Parametersthwankung von RF dUrfte sich daher besonders in dem

hochsensitiven Zeitbereich der zwanzigsten Periode auswir~en.
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Abb. 33.1 Rela~ive (R) und absolute Sensitivität (A) des Levels FLB
bezügl ich des Parameters RF in einem Fertigungsmodell

Besitzt ein Modell n Level und r Parameter, so erhält man, wie er­

wähnt, eine (nxr) große Sensitivitätsmatrix, in der jedes Element die

zeitliche Entwicklung der Sensitivität zum Aus~ruck bringt. Zur Er­

mittlung dieser Werte sind dabei r Simulationsläufe erforderl ich.

Die Aufgabe der Infinitesimalprämisse und die weitere Annahme einer

nichtinfinitesimalen Parameteränderung führte im dargestel lten Bei­

spiel zur Wahl eines Änderungsfaktors von AR=O,l. Dieser Parameter,

welcher im Infinitesimalfall gegen Null konvergiert, darf nicht zu

groß gewählt werden. Denn mit wachsendem AR besteht die Gefahr, daß

AL einen von l so verschiedenen Zeitpfad beschreibt, daß die vor je-



der Variation unterstellte Gleichsetzung von L mit AL nicht mehr ak­

zeptabel ist. Da man bei einer noch so kleinen Wahl von AR nie weiß,
, '

ob diese Gefahr behoben ist, empfiehlt sich der folgende Weg: Das Än­

derungsmodell wird so gestaltet, daß seine Levelvariablen auf die Le­

velwerte des Grundmodelles rückgesetzt werden, wenn die vorgenommene,

Parameteränderung sich zum ersten Male auf die betrachtete Variable

auswirkt.

Zur Durchführung der Rücksetzung erhalten die jeweil igen Levelglei­

chungen im Änderungsfall die folgende Gestalt. 6

L AL.K=(AL.J+DT*(AZ.JK-AA.JK)*(l-S.K)+S.K*(L.J+DT*(Z.JK-A.JK»

Für SMOOTH und DELAY3-Makroinstruktionen können entsprechende Rück­

setzungsmakros entwickelt werden, deren Aufbau aus dem nachfolgenden

Beispiel zu ersehen ist. Bezeichnen wir die in die Sensitivitätsana­

lyse eingehende Variable mit VAR, so wird der Rücksetzungsschalter S

durch

A S~K=SWITCH(0,1,VAR.K-AVAR.K)

bestimmt. Wenn nach einer Rücksetzung die Variablenwerte miteinander

übere1nstimmen, dann nimmt es, in Abhängigkeit von den in der Aus­

wirkungskette liegenden Leveln, unterschiedliche Zeit in Anspruch,

bis die betrachtete Variable wiederum eine Abweichung aufweist. Wäh­

rend dieses Auswirkungszeitraumes wird durch

A SRZ.K=(VAR.K-AVAR.K)/VAR.K*AR
A SR.K=SU(SRZ.K-S~ITCH(0,ltSRZ.K)*VE1(SR.K»

der vorher ermittelte Wert für SR ausgedruckt.

Im Anhang ist auf den Seiten 58of. ein Programm des Fertigungsmodells

zur Sensitivitätsanalyse mit Rücksetzung angeführt.

6 Im Falle der Verwendung des DYNAMO I I
F

und I I IF Compi lers ist es
nicht zulässig (was aus dem DYNAMO-Handbuch nicht klar hervorgeht),
daß andere Levelvariablen auf der rechten Seite einer Levelglei­
chung stehen, weil sie unter Umständen dann den Zeitindex K besit­
zen. Aus diesem Grunde ist in diesem Fall der Ansatz

L AL.K=(AL.J+DT*(AZ.JK-AA.JK)*(l-S.K)+S.K*(LZ.J+DT*(Z.JK-A.JK))
A LZ.K=L.K

zu wählen.
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Abbildung 33.2 zeigt den Verlauf der relativen Sensitivität des Le­

vels FlB bezügl ich RF in beiden Fällen.
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Abb.33.2 Relative Sensitivität des Levels FLB bezüglich RF ohne Rück­
setzung (0) und mit Rücksetzung (1) [Einheit A: 10-3]

Man erkennt, daß zwischen den relativen Sensitivitäten mit und ohne

Rücksetzung zumindest in den Anfangsperioden Unterschiede im relati­

ven Verlauf auftreten. Eine Rücksetzung dürfte vor allem bei der Un­

tersuchung komplexer nichtl inearer Modelle von Bedeutung sein.

Als Beispiel sei das Weltmodell von MEADOWS angeführt. In Abbildung

33.3 ist der zeitliche Verlauf der relativen Sensitivität der Bevöl­

kerungshöhe POP bezügl ich der durchschnittlichen Nutzungsdauer des
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Industriekapitals (ALIC) dargestel It. Man erkennt einen deutlichen

Unterschied im relativen Verlauf der ermittelten Sensitivitätsmaße.

Der starke Sprung im Jahre 2015 ist auf die Tabellenfunktion von FIE·

.. k f"h 7zuruc zu uren.
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Abb. 33.3 Relative Sensitivität der Levelvariablen Bevölkerung POP
bezügl ich des Parameters ALIC im Weltmodell von MEADOWS
mit Rücksetzung (1) und ohne Rücksetzung (0) [Einheit A: 10-3]

Die bisherigen Betrachtungen basierten auf dem Konzept der Marginal­

sensitivität. Es fragt sich jedoch, ob dieses in der Regelungstheo­

rie üb] iche Sensitivitätsmaß den von FORRESTER angesprochenen Begriff

der Sensitivität voll erfaßt.

7 Siehe zum Aufbau des Model1s [135J
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FORRESTERs erwähnte Insensitivitätshypothese dürfte nur so zu ver­

stehen sein, daß ein System dann als insensitiv zu bezeichnen ist,

wenn zwischen dem durch eine 'geringfügige' Parameteränderung bewirk­

ten Zei~verlauf und dem ursprünglichen Zeitverlauf einer endogenen

Variablen keine großen Abweichungen auftreten. Bezeichnen wir den

Zeitverlauf eines Levels bei Vorliegen des Parameterwertes P mit L(t)

und im Falle der Parameteränderung P(l+AR) mit AL(t), so 5011 als Maß

der durch die Parameteränderung bewirkten Zeitverläufe während des

Betrachtungszeitraumes T der Ausdruck

T
t~OIL(t)-AL(t) I

verwendet werden. Ein derartiges Maß 5011 als Integralsensitivität

bezeichnet werden, wei 1 in ihm der Gesamteffekt einer Parameterände­

rung beschrieben wird. Zwischen der Integral- und Marginalsensitivi­

tät eines dynamischen Modells besteht kein zwingendes Abhängigkeits­

verhältnis.

So ist es beispielsweise denkbar, daß zwei Modelle in einem bestimm­

ten Zeitintervall dieselben Marginalsensitivitäten besitzen, ihre In­

tegralsensitivitäten aber stark voneinander abweichen.

Wenn die Integralsensitivitäten unter der Vorgabe der gleichen Ände­

rungsrate für ~erschiedene Parameter überprüft werden sollen, dann

bietet es sich an, als Sensitivitäts- bzw. Abweichungsmaß den Theil­

schen Ungleichheitskoeffizienten zu verwenden. 8

Nach der Beschreibung der Sensiti~itätsmaße stellt sich die Frage,

in welcher Form ihre Ermittlung zur Stützung oder Erhärtung von FOR­

RESTERs Insensitivitätshypothese und damit zur Gültigkeitsprüfungei­

nes vorl iegenden Modells beiträgt.

Weist ein Modell bezügl ich eines Parameters eine hohe Marginalsensi­

tivität auf und zeigt sich, daß dies auch eine hohe Integralsensiti­

vität zur Folge hat, dann ist der Gültigkeitsanspruch des Modells er­

schüttert.

Zeigt ein Model I kein sensitives Verhalten, so kann man jedoch nicht

den Schluß ziehen, daß das vorl iegende Modell im Sinne FORRESTERs als

8 Vgl. Sei te 94f.



455

insensitiv zu bezeichnen ist.

FORRESTERs Insensitivitätsbehauptung gilt nämlich auch fOr den Fall,

daß mehrere Parameter kombiniert geändert wer.den. Ein System kann im

Sinne seines Insensitivitäsbegriffs nur dann als insensitiv bezeich­

net werden, wenn die isolierte und auch die kombinierte 'geringfügi­

gel Änderung der Modellparameter keine entscheidenden Veränderungen

des Modellverlaufes zur Folge hat.

Die Integralsensitivität eines Modells ist daher prinzipiell für al­

le möglichen Kombinationen der um AR*P. geänderten Parameter zu über-
I

prüfen. Wenn diese Kombinationen durchgeprüft werden und sich heraus-

stellt, daß das Model I bezügl ich aller Variationen insensitiv rea­

giert, dann kann man erst sagen, daß der Gültigkeitsanspruch des Mo­

delIs gestützt wird. 1m Falle der·Kombination der drei Parameteraus­

prägungen 'positive Änderung ' , Inegative Änderung l sowie 'unverän­

derte Parameter l erhält man bei n Parametern (ohne Berücksichtigung

des Grundlaufes) 3n-1 mögl iche Kombinationen.

1m bisher behandelten Fall der Integralsensitvität wurde von der iso­

I ierten Änderung eines Parameters ausgegangen. Die Zahl der isolier­

ten Änderungen umfaßt im Unte~schied zur kombinierten Parameterunter­

suchung nur ~ Fälle. An dem folgenden Beispiel soll nunmehr demon­

striert werden, daß die Sensitivitätsbestimmung aufgrund einer lso-

I ierten Änderung der Parameter eines Modells keine zwingenden Rück­

schlüsse auf die Sensitivitäten im Falle einer kombinierten Änderung

zuläßt.

Betrachten wir das einfache Modell

L L.K=L.J+DT*(Z.JK-A.JK)
N L=100
R Z.KL=A*(L.K-50)
R A.KL=]*(L.K-50)
C A=1/B=1.21

Es besi tzt die Parameter A~l und B=1~21. Unterstellen wi r nun eine

positive bzw. negative Änderungsrate von AR=±O,1, so sind folgende

Kombinationen zu Uberprüfen:



4,-1',0

Iso 1i erte

Änderungen

Kombinierte·

Änderungen

1) A= (1 tAR)*l B';'l,21

2) A=(l-AR)*l B=1,21

3) B= (1 tARh1,21 A=l

4) B=(1-AR)*1,21 A=l

5) A=(ltAR)*l B=(ltAR)*1,21

6) A=(l-AR)*l B=(ltAR)*1,21

]) A=(l-AR)*l B=(1-AR)*1,21

8) A=(ltAR)*l B=(1-AR)*1,21

Als Maß der Integralsensitivität wurden sowohl die aufsummierten ab­

soluten Differenzen zwischen den Zeitverläufen von L als auch der

Thei Ische Koeffizient für einen Zeitraum von 30 Perioden gewählt.

Tabelle 33.1 zeigt das Ergebnis der Simulationen:

Isolierte Parameteränderungen Kombinierte Parameteränderungen

Ma ß fü r Inte-
gralsensiti- 1 2 3 4 5 6 7 8
vi tät

Theilscher 0,062 0,033 0,037 0,084 0,008 0,057 0,009 . 0,319Koe ff i z i en t

30
- k IAL(t)-L(t)1 -201;1,34 76,6 86,9 292,6 21,5 121,9 26,2 1597

t=0

Tab. 33.1 Integralsensitivitäten eines einfachen System-Dynamics-Mo~

delIs im Falle isolierter und kombinierter Parametervaria­
tionen (AR=O,l)

Man erkennt, daß im Falle der isolierten und kombinierten Parameter­

änderungen 1 bis 7 nur relativ geringe Abweichungen- auftreten, wäh­

rend die kombinierte Änderung 8 zu einer hohen Abweichung führt. Die

hier notwendige Uberprüfung der prinzipiell möglichen Parameterkom­

binationen nimmt im Falle wachsender Parameterzahlen schnell astro­

nomische Dimensionen an. Dieser Umstand erschwert eine entsprechen­

de Untersuchung eines System-Dynamics-Model ls in hohem-Maße.

Wir können feststellen, daß die oft im Rahmen von System-Dynamics~
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Model len praktizierte isol ierte Bestimmung von Marginalsensitivitä­

ten zur Gültigkeitsprüfung der Modelle wenig beizutragen vermag.

Als geeignetes Maß bieten sich hier die Integralsensitivitäten iso­

1ierter und kombinierter Parameteränderungen an.

Da eine Untersuchung aller mögl ichen Parameterkombinationen bei gros~

sen Modellen kaum durchführbar ist, liegt es nahe, heuristische Such­

verfahren zu entwickeln, mit deren Hilfe man versucht, OOgl ichst sen­

sitive Parameterkombinationen zu ermitteln.

Das wohl einfachste Beispiel einer solchen allerdings nie zwingenden

Suchstrategie besteht darin, die Integralsensitivitäten eines Modells

bei isolierter Parameteränderung zu bestimmen und die Parameter, wel­

che hohe Sensitivitäten aufweisen, in ihren kombinierten Wirkungen

weiter zu untersuchen.

Tabelle 33.2 zeigt die Integralsensitivität in Form des Theilschen

Koeffizienten bezügl ich der endogenen Variablen Bevölkerung (POP)

bei verschiedenen isolierten Parametervariationen im Weltmodel 1 von

MEADOWS für einen Betrachtungszeitraum von 1900 bis 2100.

Nr. Pa rame te r- ± 0,1. The i 1. Nr. Pa rame te r- ± 0,1 Thei I.
name Koeff . name ~ Koeff .

1 RLT - 0,13908 9 FIOAC - 0,10232
2 ICOR + 0,13044 12 SFPC + 0,02945
3 RLT + 0,12926 17 SCOR - 0,02420
4 DCFSN - 10,12635 20 LYF + 0,02270
5 FIOAC + 10,11391 22 ALIC - 0,02106
6 ICOR - 10,11357 28 IEAT - 0,00934

Nr. Parameter- ±0, 1 Thei 1. Nr. Parameter- ±0,1 Thei 1.
name Koeff . name Koeff .

31 PPOL70 - 0,00582 54 IMEF - 10,00192
35 SAD + 0,00368 60 ALAI - 10,00076
38 LPD + 0,00335 62 AL LN - 10,00022
41 HSID + 0,00302 67 LUFDT - 10,00005
46 FIPM + 0,00240 70 UILDT + b,00004
51 PPID - 0,00203 72 1070 - b,oOOOO

Tab. 33.2 Integralsensitivitäten des Weltmodells von MEADOWS im Fal­
le isol ierter Parametervariationen (AR±O,l)
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Es zeigen sich extreme Unterschiede in der Sensitivität des Modells

bezüglich verschiedener Parameter. Als sehr sensitiv erweist sich

das Modell u.a. bezügl ich der Parameter des Investitionsbereiches

FIOAC (5) und ICOR (2). Wie später im einzelnen dargestellt werden

wird, führt die kombinierte Änderung dieser Parameter zusammen mit

dem Parameter ALle (22) zu einem extremen Modellverhalten. 9

B. Sensitivitätsanalysen bei einer Parametrisierung von Tabellenfunktionen

Bisher wurden Sensitivitätsanalysen ausschI ießI ich auf Parameter an­

gewendet, die in Form von Konstantengleichungen definiert waren. Die

sogenannten Tabellenfunktionen enthalten jedoch darüber hinaus Pa­

rameter, welche in starkem Umfang das dynamische Verhalten eines Sy­

stem-Dynamics-Modells bestimmen. Es fragt sich daher, auf welche Wei­

se derartige Tabellenfunktionen einer parametrischen Sensitivitäts­

analyse zugängl ich sind.

Die" stückweise 1inearen Verläufe einer Tabellenfunktion lassen sich

im einzelnen durch eine 1ineare Funktion parametrisch beschreiben.

Die drei Ordinatenstützpunkte enthaltende Tabellenfunktion in Abbil­

dung 33.4 wird beispielsweise durch die Parameter Al, A2, tga und

OUT

AllL..-. I-.. !......- _

IN

Abb. 33.4 Parameter einer Tabellenfunktion

9 Vgl. Sei te 479f.
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tgß beschrieben.

Enthält eine Tabellenfunktion n Ordinatenstützpunkte, so kann sie

durch 2n-2 Parameter gekennzeichnet werden. Durch die Hinzunahme para­

metrisch erfaßter Tabellenfunktionen wird der Parameterraum eines Mo­

delIs wesentlich erweitert. Das Weltmodell von FORRESTER enthält bei­

spielsweise neben 24 Parametern in Form von Konstantengleichungen 2'

Tabellenfunktionen. Die Ermittlung kombinierter Parametersensitivi­

täten würde damit wesentlich aufwendiger. Zur Verminderung des Para­

meterraumes I iegt es nahe, vorgegebene nichtl ineare Funktionsverläu­

fe nicht durch Polygonzüge, sondern durch Polynome zu approximieren.

Die in DYNAMO verfügbare Tabellenfunktio~ TABPL (statt TABLE) führt

zu der Entwicklung eines Polynoms, welches durch al le vorgegebenen

OrdinatenstUtzpunkte fUhrt. Bei n Ordinatenstützpunkten ist im all­

gemeinen. jedoch ein Polynom der Form

erforderlich, d.h. die Tabellenfunktion wird durch n Parameter a"

a2 , ... ,a beschrieben. Auch in diesem Fall wird eine Sensitivitäts-n .

untersuchung durch die hohe Za~l der Parameter erschwert.

Nach Angaben von DAY [36,5.268J ist die Funktion

in der Lage, eine Fülle von typischerweise in 5ystem-Dynamics-Model­

len verwendeten nichtlinearen Verläufen zu beschreiben. Als Beispiel

sei die Approximation der nichtlinearen Funktion in Abbildung 33.5

angeführt [36,S.269], welche mit a,=O und K=' durch die Funktion

beschrieben wird.

Durch die Einführung derartiger Funktionen besteht die Mögl ichkeit,

den Parameterraum des Modells zu reduzieren, um damit die Vorausset­

zungen. für eine wirtschaftlich noch vertretbare Sensitivitätsanaly­

se zu schaffen.
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Abb. 33.5 Approximation eines Polygonzuges durch einen geschlosse­
nen Funktionsausdruck

C. Parameterstochastisierung und Sensitivität

In System-Dynamics-Modellen geht man von deterministischen Parame­

tern aus. Diese Annahme ist nicht ganz real istisch, denn tatsächl ich

werden dies~ Parameter zum gr5ßten Tei I anhand von Schä~zungen er­

mittelt. Der eingesetzte Parameterwert kann daher allenfalls im Sin­

ne eines wahrscheinl ichsten Wertes gedeutet werden. Zeigt eine Sen­

sitivitätsanalyse nunmehr, daß die geringfügige Variation der Modell­

parameter zu nur unbeachtl ichen Auswirkungen führt, so bezeichnet man

das Modell als insensitiv. Ist ein Modell insensitiv, so folgt daraus,

daß geringfügige Parameterschwankungen die Verläufe der endogenen Va­

riablen nur wenig beeinflussen. Aus dieser Konsequenz kann man wie­

derum. den Schluß ziehen, daß das Modell empirisch zutreffend sei.

Die Gültigkeit dieses Schlusses basiert auf der Voraussetzung, daß

aufgrund der festgestel lten lnsensitivität der nur geringfügig ab­

weichende Irichtige' Parameterwert zu einem ähnl ichen Zeitverlauf

führt.

Zur empirischen Überprüfung eines Modells kann man also auch von ei-
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ner etwas anders gelagerten Argumentation ausgehen. Man sagt: Die Pa­

rameter des Modells sind Schätzwerte, die prinzipiell durch eine be­

stimmte subjektive Wahrschein1 ichkeitsvertei1ung des Modellentwick­

lers beschrieben werden können. Setzt man diese oder auch statistisch

geschätzte Wahrschein1 ichkeitsvertei lungen statt der Parameter in das

Modell ein, so erhält man ein stochastisches Modell, dessen Simula­

tion zur Gewinnung des zeit1 ichen Verl?ufes einer Wahrscheinlich­

keitsverteilung der interessierenden endogenen Variablen führt.

Hinsichtlich der empirischen Relevanz des entwickelten Modells kann

man die Behauptung auf~te1len: je geringer die Streuung der ermittel­

ten Wahrschein1 ichkeitsvertei1ungen ist, um so höher ist die Gewähr

der empirischen Mode11adäquanz des entsprechenden deterministischen

Mode 11 s.

Zur Illustration dieser Uber1egungen betrachten wir das schon mehr­

fach angeführte Fertigungs- und Lagerhaltungsmodell . Die Parameter

RF, MF sind kontroll ierbar, während das für die Parameter DVZ und

APF nicht der Fall ist. Von ihnen wird angenommen, daß ihre subjek­

tiven Schätzwerte im Intervall DVZ±SF*DVZ bzw. APF±SF~~APF einer

G1eichvertei Jung unterliegen. Die ursprünglichen farameter werden

daher durch folgende Hilfsvariablen ersetzt:

A ZDVZ.K=STF(SF)*DVZ
A ZAPF.K=STF(SF)*APF

D~e Makrofunktion STF(SF) dient zur Auswahl der Zufallszahlen und

ist durch

MACRO STF(SF)
A STF.K=SAMPLE(0,100,1+2*SF*NOISE(»
MENI

definiert.

Die Stochastisierung der Parameterwerte der Konstantengleichungen

läßt ~ie in die Tabe1 1enfunktionen eing~henden Parameter außer acht.

Sie sol lte daher auch auf die Tabellenfunktionen ausgedehnt werden.
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Dies erreicht man durch die folgende Verknüpfung des STF-Makros mit

einer Tabellenfunktion:

A Y.K=STF(SF)*TABHL(YTAB,X.K,XLtXH,XINCR)

In den beiden folgenden Abbildungen ist der aus fünfzig Simulationen

geschätzte Verlauf des Erwartungswertes und der obersten und unter­

sten Extremwerte der Realisationen des auf Seite 421 beschriebenen

Modells eines Fertigungs- und Lagerhaltungssystems dargestel lt.
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Abb. 33.6 Erwartungswert (E) sowie minimaler (U) und maximaler (0)
Wert der Real isationen der Levelvariablen FLB des Ferti­
gungsmodells bei einer'Parameterstreuung von ± 10 Prozent
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Abb. 33.7 Erwartungswert (E) sowie minimaler (U) und maximaler Wert (0)
der Real isation der Levelvariablen FLB der Fertigungsmodells
bei einer Parameterstreuung von ± 20 Prozent

Die Frage, bei welchem Wert von SF die Streuspanne der Verläufe von

FLB noch akzeptiert werden kann, hängt von den Anforderungen ab, die

der Modellentwickler an die Genauigkeit der von dem Modell zu prog­

nostizierenden Variablenverläufe stellt. Das beschriebene Verfahren

bietet dem Modellentwickler die Grundlage, von den vorgegebenen.Un­

sicherheiten der Parameter auf die Unsicherheiten der Prognose zu

schl ieBen.

D. Sensitivitätsuntersuchungen am Beispiel des Weltmodells von Meadows

Die vorgetragenen Methoden sollen nunmehr am Beispiel des von MEADOWS

entwickelten Weltmodells demonstriert werdeM.
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Genauer gesagt: FIOAC und ICOR wurden um 10 Prozent erhöht, ALle in

gleichem Ausmaß erniedrigt. Das Ergebnis ist überraschend. Die Be­

völkerung wächst nur geringfügig von 2 Milliarden im Jahr 1900 auf

unter 4 Milliarden im Jahre 2100. Ein Zusammenbruch findet für die

Zukunft nicht statt, und die bisherige Entwicklung wird von dieser

Modellversion nicht reprod~ziert. Wenn dieses Ergebnis aber aJ lein

schon durch eine zehnprozentige Änderung von drei Parametern erreicht

wird, dann ist damit der Nachweis erbracht, daß das WeltmodeJl hoch
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empfindl.ich reagiert und damit seine Akzeptierbarkeit frag1 ich wird.

MEADOW5 stellt in seiner Untersuchung fest: " ... we have come to the

conclusion that the standard behaviour mode of overshoot and decline

exhibited by the model isremarkably insensitive to variations in

the estimates of most system parameters." [1'34,5.5091

MEADOWS' Schluß würde zu einer Bestätigung der FORRESTERschen Insen­

sitivitätshypothese führen. Doch angesichts der vorgetragenen Befun­

de dürfte es fragl ich sein, ob dieser Schluß zu akzeptieren ist.
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Wenden wi r uns nunmehr der Stochastisierung der Parameter des Welt­

modells von MEADO~S entsprechend dem eingangs beschriebenen Verfah­

ren zu. In den Abbildungen 33.10 und 33.11 ist der Verlauf der Er­

wartungswerte sowie der Extremrealisationen der Levelvariablen 'Be­

völkerung/ des Modells bei einem Streufaktor von 0,05 und 0,1 auf

der Basis von 50 Simulationsläufen dargestellt.

Es zeigt sich, daß selbst im Falle einer Parameterstreuung von nur

fUnf Prozent die Zeitpfade der Bevölkerungsentwicklung einen so

unterschiedlichen Verlauf aufweisen, daß das von MEADOWs apostro­

phierte Overshoot-and-Collapse-Verhalten nicht generell zum Aus­

druck kommt. Mit zunehmender Zeit wird zudem die Streuung der prog­

nostizierten Werte der Bevölkerungsentwicklung so hoch, daß,eine

praktische Verwertbarkeit dieser Ergebnisse kaum mehr mögl ich er­

sehe in t.

Geht man davon aus, daß das beschriebene Verfahren einer Parameter-

stochastisierung als ein Test der FORRESTERschen Insensitivitäts­

hypothese anzusehen ist, dann würde seine These auch in diesem Fall

widerlegt.

Angesichts dieser Ergebnisse fragt es sich, ob FORRESTERs Insensiti­

vitätshypothese noch zu halten ist.

Ihre Ablehnung würde dazu führen, daß FORRESTER'seinen Standpunkt

gegenOber der 'Gültigkeitsprüfung von System-Dynamics-Modellen zu

revidieren hätte. Auf diesen Problemkomplex werden wi r später zu­

rückkommen.

Die vorstehenden Untersuchungen machen deutl ich, daß es im Rahmen

der Analyse eines System-Dynamics-ModeHes stets empfehlenswert ist,

zur Beurtei lung seines Modellverhaltens die lntegralsensitivitäten

zu untersuchen und eine Parameterstochastisierung durchzuführen.
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3.3.2. Retrodiktionsanalyse von System-Dynamics­
Modellen

A. Grundlagen der Retrodiktion eines System-Dynamics-Modells

Es I iegt die Frage nahe, ob es im Rahmen geschlossener System-Dyna­

mies-Modelle mögl ich ist, eine Retrodiktion durchzuführen. Wie be­

reits im einzelnen erörtert, dient die Retrodiktion eines Modells

der Aufdeckung falsifizierbarer Impl ikationen und damit einer Ableh­

nung oder Modifizierung des vorliegenden Ansatzes.

Die Durchführung einer Retrodiktion wirft eine Reihe technischer Pro­

bleme auf, mit denen wir uns im folgenden befassen wollen. Geschlos­

sene System-Dynamics-Modelle wie die Weltmodelle von FORRESTER und

MEADOWS oder das Stadtentwi~klungsmodell von FORRESTER zeichnen sich

stets durch Niveaustabi I ität aus.

Es ist einleuchtend, daB von einem im Gleichgewicht befindlichen Sy­

stem keine Retrodiktion vorgenommen werden kann.

Das gleichgewichtige Einlevelmodell

L LEV.!=1EV.J+DT*(ZUF.JK-ABF.JK)
A ZUF.JK=90
A ABF.JK=0.3*LEV.K
N LEV=300

besitzt beispielsweise einen konstanten Levelwert LEV=300, und es ist

nicht mögl ich, zu ermitteln, welche 'Vergangenheit' zu diesem Gleich­

gewicht geführt hat. Im Prinzip kommen vielmehr unendl ich viele Zeit­

pfade in Frage. Betrachten wir beispielsweise den Gleichgewichtspfad

des Einlevelmodells LEV=300 und die Zeitpfade der Levelwerte, welche

von Periode 0 zu diesem Gleichgewichtspfad hinführen, dann zeigt sich

folgendes Problem: Simul iert man von Levelwert Al (0) den Zeitpfad des

Systems bis zu einem Zeitpunkt i und erhält den Levelwert Al (i) und

führt von Al(i) ausgehend eine Retrodiktion bis zur Periode 0 durch,

dann ist es mögl ich, daß wegen des Auftretens von Rundungsfehlern

der Wert A
j

(0) ni eht mehr reproduziert werden kann. Mi t wachsendem

und daher gröBerer Annäherung an den Gleichgewichtspfad steigt die
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Wahrscheinlichkeit einer Abweichung gegenüber dem ursprüngl ichen Wert.

Denn die Zeitpfade ldrängen' sich damit immer stärker um den Gleich­

gewichtspfad, so daß schon geringe Rundungsfehler die Rückrechnung auf

LEV

300

o 5 10 TIME

Abb. 33.12 Zeitpfade des Einlevelmodells bei unterschiedl ichen An­
fangswerten von LEV(O)

einen anderen Zeitpfad führen, dessen Levelanfangswert sich wesent­

1ich von Al (0) unterscheidet mit der Folge, daß eine Retrodiktion

sinnlos wird.

Dieser Einwand ist grundsätzlich richtig; entscheidend ist jedoch,

von welchem Grad der Annäherung an einen Gleichgewichtspfad die Re­

tro,diktion zu inakzeptablen Ergebnissen führt.

Bevor dieser Frage nachgegangen wird, sollen anhand von Abbildung

33.13 einige Begriffe erläutert werden:

Mit der Anfangsprognose wird eine Variable bis zum Zeitpunkt TIMA+AAP
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TIMA

INTERVALL ANFANGS­

PROf.;NOSE (AAP) .. TIMA+AAP

..
TIME

TI ~1A+AAP-AR RETRODIKTIONSINVERVALL (AR)
I ...
1 I

.: INTERVALL KONTROLLPROGNOSE (AKP) I

....:-------------------4.....' TI M.l'.I,+ AAP - .AR +AK P
I
I

I

Abb. 33.13 Darstel lung einiger Begriffe zur Anwendung von Retrodik­
tionen

simul iert. Unter Anwendung einer Retrodiktion wird die Variable dann

(auch über TIMA hinaus) zurückverfolgt. Eine sich anschließende Kon­

trollprognose überprOft, ob der Ausgangswert im Zeitpunkt TIMA und

die sich anschließenden Werte der Anfangsprognose wieder reproduziert

werden.

Es soll ein Verfahren aufgezeigt werden, mit dem man in vielen Fällen'

Retrodiktionen von System-Dynamics-Modellen durchführen kann.

Um die Probleme einer Retrodiktion zu verstehen, gehen wir gedankl ich

von einem Ansatz aus, in dem durch sukzessives Einsetzen von Raten

und Leveln ein System-Dynamics-Modell bis auf die Gleichungen seiner

Levelgrößen reduziert wird.



Substituiert man sämtliche in einem geschlossenen System-Dynamics­

Modell auftretenden Hilfsvariablen in den Ratengleichungen, so er­

hält man Ratengleichungen der Form

R.KL = F[L1.K,L2.K, ... ,LN.K]

oder bei der zeitl ichen Verzögerung um eine Periode

R.JK = F[Ll.J,L2.J, ... ,LN.J] (33.4)

d.h. die Raten lassen sich als eine Funktion der um eine Periode ver­

zögerten Levelwerte beschreiben. Setzt man die durch (33.4) gewonne­

nen Ratengleichungen in die Levelgleichungen ein, so reduziert sich

das System auf die Form:

L1.K = L1.J + DT(Gl[Ll.J,L2.J,,,.,LN.J])

L2.K L2.J + DT(G2[Ll.J,L2.J, .. ; ,LN.J])

LN.K = LN.J + DT(GN[LLJ,L2.J,,,. ,LN.J])

wobei Gi[] eine beliebige funktionale Abhängigkeit zum Ausdruck

bringt. Ist eine Retrodiktion vorzunehmen, 50 sind die Levelwerte

L1.K,L2.K,,,.,LN.K gegeben und die Werte L1.J,L2.J, ... ,LN.J zu er­

mitteln. Da die Funktionen Gi [ ] fast immer nichtlinear sind, ist

zur Bestimmung der Levelwerte ein nichtlineares s~multanes Gleichungs­

system zu lösen, bei einer Retrodiktion von AR Perioden also damit

AR/DT-ma I .

Die Lösung simultaner nichtl inearer Gleichungssysteme mit Hilfe der

Gauß-Seidel-Methode wurde bereits erörtert. 11 Wie geschildert, hängt

die Konvergenz des Verfahrens unter anderem davon ab, welche der Va­

riablen Ll.J,L2.J, ... ,LN.J in jeder Gleichung als unabhängige Variab-

len gewählt werden. Aus rechentechnischen Gründen wäre es sehr er­

st~ebenswert, daß eine Iteration schon dann konvergiert, wenn man in

Gleichung (33.5) den jeweils ersten Levelwert auf der rechten Sei­

te als unabhängige Variable wählt, d.h. von folgendem Iterationsan­

satz ausgehen könnte:

11 Vgl. Seite 343f.



473

L1. J L1. K - OT (G 1[L1 . J , L2 . J , ,LN. JJ )

L2. J = L2. K - OT (G2 [L1. J , L2. J , , LN. JJ )

LN. J = LN. K - DT (GN [ L1. J , L2. J , ... , LN. J])

Für diesen Fall wurde vom Verfasser ein Programm entwickelt, wel­

ches es gestattet, bei einer geringfügigen Änderung der Levelglei­

chung von einem System eine Vorwärtsprognose, Retrodiktion und Kon­

trollprognose durchzuführen. Das im Anhang auf Seite 582f. angeführte

Programm stellt den sogenannten Retrodiktionsvorspann dar. Er ist

stets dem Arbeitsprogramm voranzustel len, d.h. dem Programm, welches

das zu retrodizierende Modell beschreibt.

Die im Retrodiktionsvorspann definierte Variable TI~ beschreibt die

Perioden während der einzelnen Phasen. TIM läuft vom Anfangswert von

TIME, genannt TIMA, bis zum Ende der Anfangsprognose T1MA+AAP und

von hier bis zum Ende der Retrodiktion TIMA+AAP-AR sowie während der

Kontrollprognose bis TIMA+AAP-AR+AKP. OT kann bel iebig gewählt wer­

den, doch ist zu empfehlen, OT=1/2n (n=1 ,2, ... ) zu setzen. 12 Mit der

Konstanten IG wird die Zahl der Iterationen in einem Retroschritt

festgelegt, nach der das Verfahren abgebrochen werden soll, weil of­

fenbar keine Konvergenz des Prozesses zur Bestimmung einer tösung von

(33.6) vorliegt. Falls die I~erationsgrenze IG in einem Retroschritt

überschritten wird, kann man sich mit der Konstantenspezifizierung

ANI die nachfolgenden ANI-Werte ausdrucken lassen, um zu beurteilen,

ob die Variablenwerte noch konvergieren, was im positiven Fall dazu

führt, daß IG größer zu wählen ist. Wird IG überschritten und ist

ANI+O gewählt, so zählt TIM wieder von 1 an bis ANI. Oie Genauigkeits­

grenze der Iteration hängt von der Genauigkeit ab, mit der man die

Ausgangswerte reproduzieren will. Die Iteration bricht ab, wenn AQ

für alle Level i=1, ... ,n die Bedingung

12 Dies gi lt allgemein für 5imulationen mit DYNAMO, siehe DYNAMO News­
letter, ~RAG/1, 5.4, Pugh Roberts Associates Inc. 1973. Nur in die­
'sen Fäl Jen ist DT binär voll darstellbar. Bei einer anderen Wahl
von DT ist TIME bei langen Simulationen wegen starker Rundungsfeh­
ler nicht mehr ganzzahlig, was zu Ungenauigkeiten führt.
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L. (v)-L. (v-l)
AQ ~ I I

L. (v)
I

erfüllt, wobei mit v der v-te Iterationsschritt gekennzeichnet wird.

Die Verschärfung von AQ wird durch die Anzahl der Stellen begrenzt,

mit der die Variablen auf der betreffenden Rechenanlage beschrieben

werden. Je niedriger man AQ wählt, um so mehr erhöht sich die Anzahl

der Iterationen pro Retroschritt. Die Anzahl der Iterationen während

eines Schrittes JK kann durch (TIME.K-TIME.J)/DT berechnet werden.

Die Größe AA wird als Brückenvariable bezeichnet, weil sie die Ver­

knüpfung zu dem eigentl ich zu retrodizierenden Modell beschreibt.

Die Variablen AL1, ... ,ALN korrespondieren jeweils mit einem Level

.Ll , ... ,LN des programmierten M6dells, in welchem allein die Level­

gleichungen geringfügig geändert werden. Eine Levelgleichung der Form

L L.K=L.J+DT*(ZUF.JK-ABF.JI)

wi rd durch

A L.K=L.J+DT*S.J*(ZUF.JK-ABF.JK)+RL.J
A RL.K=RE(L.K,AQ,AL.I,R.K,S2.K)

ersetzt. RE( ) ist eine Makrofunktion, die im Retrodiktionsvorspann

definiert ist. Alle Variablen und Konstanten, die hier neu auftreten,

stammen bis auf AL und L auch aus dem Retrodiktionsvorspann.

L ist eine Eingangsgröße des Retrodiktionsmakros RE( ) und ist mit

dem entsprechenden Level identisch, in dessen Definitionsgleichung

RE( ) über RL eingeht. AL ist eine Ausgangsgröße des Retrodiktions­

makros und zweckmäßigerweise so zu benennen, daß dem entsprechenden

Levelnamen ein A vorangestellt wird. Die auf diese Weise durch die

Retrodiktionsmakros für jeden Level des Arbeitsprogrammes definier­

ten Variablen ALl,: .. ,ALN gehen in die erwähnte Brückengleichung ein.

Die Größe LENGTH wählt man zweckmäßigerweise nach dem Richtwert:

LENGTH=TIMA+AAP+AR*IG+AKP

Dieser Wert bildet die obere Grenze der Simulationslänge, da die

höchste Iterationszahl in einem Retrodiktionsschritt in der Regel
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nicht benötigt wird. Bei der Retrodiktion des Weltmodellsvon FORRE­

STER betrug die durchschnittliche Zahl der Iterationen pro Retrodik­

tionsschritt beispielsweise 13.

Als Beispiel sei das erörterte nichtlineare System-Dynamics-Modell

eines Fertigungs- und Lagerhaltungssystems angeführt. Die DELAY3­

und SMOOTH-Makrofunktionen sind durch entsprechende Retrodiktions­

makros ersetzt, die im Retrodiktionsvorspann definiert sind. Die er­

sten beiden Argumente entsprechen den Formalparametern der üblichen

DELAY3- und SMOOTH-Funktionen, während die nachfolgenden Argumente

Variablen enthalten, die aus dem Retrodiktionsvorspann stammen.

* RETRODIKTIONSMODELL

} SIEBE ZU DIESEM MODELLTEIL SEITE 582f.

* BRUECKENINSTRUITIONEN
A AA.lzAALEV.K*AFLB.I*ASM.K
*
** FERTIGUNGS- UND LAGERHALTUNGSSYSTiM
R BMR.KL=PFLA.K+RF*(SLB.K-FLB.K)
R FZU.IL=DELY3R(BMR.JI,DVZ,AALEV.K,R.K,S2.K,S.K,AQ)
L FLB.K=FLB.J+DT*S.J*(FZU.JI-FLA.JK)+RFLB.J
A RFL].K=RE(FLB.K,AQ,AFLB~KtR.K,S2~K)
A PFLA.K=SMOTHR(FLA.JK,APF,ASM.K,R.I,S2.K,S.K,AQ)
A SLB.K=MF*PFLA.K+500
N F1B=450
C RF=e.3/DVZ=10/APF-2
R FLA.KL=FAK.K*FLB.K
A FAK.K=TABHL(TAFA,FLB.K,0,1000,100)
T TAFA=0.02/0.05/0.07/0.11/0.18/0.29/0.32/0.32/0.32/0.32/0.32
C MF=0.25
*
*
RUN

Wie bei DYNAMO-Simulationen übl ich, wird von .ei~er unveränderl iehen

Grundversion ausgegangen, und die Parameterveränderungen werden im

Rerun eingegeben. Wir wählen abweichend von den Parameterfestle~un­

gen des Retrodiktionsvorspannes die Werte:

AAP=5, AR=8, AKP=6, DT=1, IG=50, LENGTH=300

und erhalten den folgenden Ausdruck:



476

TIME TIM PFLA EMR FZU 'FLE
E+00 E+00 E+00 E+00 E+00 E+00

.0 .0000 96.75 119.01 119.01 450 .00
Anfangs- 1. 1.0000 96.75 112.33 119.01 472.26

2. 2.0000 102.82 115.82 119.01 482.37prog-
3. 3.0000 108.73 120.86 119.01 486~74nose

AAP==5 4. 4.0000 112.95 124.85 118.83 488.58
c:; 5.0000 115.59 127.51 118.54 489.17....

32. 4.0000 112.95 124.85 118.83 488.58
Re- 61. 3.0000 108.73 120.86 119.01 486.74
tro- 94. 2.0000 102.82 115.82 119.01 462.37
dik- 129. 1.0000 96.74 112.32 119.01 472.26
tion 167. .0000 96.73 118.99 119.01 450.01
AR==8 204. -1.0000 116.56 152.15 116.41 410.50

240. -2.0000 174.34 226.45 99.41 369.88
284. -3.0000 270.86 317.45 35.28 412.41

Kon- 285. -2.0000 174.34 226.45 99.41 369.88
t ro 11- 286. -1.0000 116.56 152.15 116.41 410.50
prog- 287. .0000 96.73 ,118.99 119.01 450.01
nose 288. 1.0000 96.74 112.32 119.01 472.26
AKP==6 289. 2.0000 102.82 115.82 119~01 482.37

290. 3.0000 108.73 120.86 119.01 486.74

Es zeigt sich, daß mit der Kontrollprognose die Levelwerte von TIM=3

in der Anfangsperiode voll reproduziert werden. Das Verfahren hat

sich also in diesem Beispiel bewährt. Zu einer ausgewogenen Würdi­

gung muß man sich allerdings vor Augen führen, daß es nicht zwingend

zu einer Retrodiktion führt. ~ie Retrodiktion erfolgt durch, eine suk­

ze'ssive Lösung des nichtlinearen simultanen Gleichungssystems (33.6).

Es ist durchaus mögl ich, daB ein derartiges System mehrere Lösungen

besitzt, so daß auch ein anderer Zeitpfad möglich wäre. Ähnliche Pro­

bleme gelten für die Lösungen nichtlinearer interdependenter Modelle,

die, wie erwähnt, in der Ökonometrie in groBem Umfang verwendet wer­

den. Hier wie dort kann man jedoch davon ausgehen, daß bei nicht zu

starken zeitl lehen Änderungen der Levelwerte in der Realität der al­

lein relevante Zeitpfad ermittelt wi rd.

Es zeigt sich, daß im obigen Fall die Retrodiktion zur Reproduktion

des Zeitpfades führt. Auch für größere Perioden und DT<l ist das Ver­

fahren anwendbar.

Wählt man DT=O.25, AAP==lO, AR=10, AKP=lO, PFA=2, PFR=2, PFK=2, IG=50
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und LENGTH=100, so ergibt sich

TIME TIM PFLA BMR FZU FLB
E+00 E+00 E+00 E+00 E+00 E+00

.0 .000 96.75 119.01 119.01 450.00
2. 2.000 103.01 117.28 l1B.98 478.18
4. 4.000 111.02 123.43 118.77 486.39
6. 6.000 115.44 127.53 118.78 488.56
8. 8.000 117.48 129.41 119.48 489.62

10. 10.000 118.67 130.20 120.86 491.24
21. 8.000 117.48 129.41 119.47 489.61
33. 6.000 115.45 127.54 118.78 488.56
45. 4.000 111.04 123.45 118.76 ·486.40

58.25 2.000 103.02 117.25 118.91 478.33
74.25 .000 96.31 118.23 118.79 450.99
76.25 2.000 103.02 117.25 118.91 478.33
78.25 4.000 111.04 123.45 118.76 486.39
80.25 6.000 115.45 127.54 118.78 488.55
82.25 8.000 117..48 129.41 11.9.47 489.61
'84.25 10.000 118.67 130.20 120.85 491.24

cl.h. die gesamten Werte der Kontrollprognose werden wieder rekonstru­

iert. Dies geschieht über die Lösung von vierzig, sukzessiv unterein­

ander gekoppelten, simultanen ~lelchungssystemen.

Das geschilderte Retrodiktionsverfahren hat zur Folge, daß während

jedes Zeitschrittes DT ein z~meist nichtlineares Gleichungssystem ge­

löst wird. Dies ist immer dann notwendig, wenn von einem Differenzen­

gleichungsansatz ausgegangen wird. Da FORRESTER jedoch von der Auf­

fassung ausgeht, im (durch eine digitale Simulation nicht real isier­

baren) Idealzustand müßte DT gegen Null gehen, d.h. ein Differential­

gleichungssystem vorl iegen, wollen wir den Fall einer Retrodiktion

unter dieser Bedingung analysieren. Man kann von einem Gleichungssy­

stem

(i=1,2, ... ,n) (33.7)

ausgehen. Will man den Wert von L. bei einem infinitesimalen positi­
I

ven Zuwachs dt ermitteln, so gilt die Beziehung

L. (t +d t) = L. (t) + d t{ d L. I d t)
I I I
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und mi t (33. n
L.(t+dt) = L.(t) + dt(F.[L,(t),L2 (t),···,L (t)J)

I I I n
(33.8)

Wird das infinitesimal kleine dt durch das endl iche Zeitinkrement DT

ersetzt, so erhält man die teilweise mit DYNAMO korrespondierende

Schreibweise

L.. K = L.. J + DT ( F. [L 1. J , L2. J , ... , LN. J]) (33 .9)
I I I

Wählen wir in Gleichung (33.8) das Zeitinkrement dt negativ, so er­

halten wir analog

L.(t-dt) = L.(t) - dt.(F.[L 1(t),L2 (t), .. ·,L (t)J)
I I I n

und unter Verwendung einer DYNAMO-ähnlichen Schreibweise

L.. K = L .. J - DT ( F. [L 1. J , L2. J , ... , LN. J] )
I I I

Dieses Ergebnis legt den Schluß nahe, man brauche in einer Levelglei­

chung nur +DT durch -DT auszutauschen mit dem Ergebnis, daß der si­

mu1 ierte Wert von L. einen Zeitpfad beschreibt, der vom Anfangszeit-
I

punkt in die Vergangenheit führt. Dieser Schluß ist aber nur dann

richtig, wenn DT infinitesimal klein ist. Da dies aber in praktischen

Simulationen nicht der Fall ist, wird man bei Anwendung dieses Ver­

fahrens die Ausgangswerte bei einer ansch1 ieBenden Kontrollprognose

nur annäherungsweise reproduzieren können. Je kleiner jedoch DT ge­

wählt wird, um so besser wird die Annäherung an den Ausgangswert. Da

das Verfahren von der Annahme eines infinitesimal kleinen Zeitinkre­

mentes DT ausgeht, soll es als Differentialrückrechnung bezeichnet

werden. Im Gegensatz dazu soll das oben beschriebene Verfahren Diffe­

renzenrütkrechnung genannt werden. Vergleicht man die belden Verfah­

ren, so erkennt man, daß sie miteinander übereinstimmen, wen~ man

die Lösung des simultanen Gleichungssystems im Rahmen der Differen­

zenrückrechnung nach der ersten Iteration abbrechen würde. Zum Ver­

gleich beider Verfahren kann durch die Wahl des Parameters US=O im

Retrodiktionsvorspann die Iterationszahl auf 1 beschränkt und damit

eine Differentialrückrechnung durchgeführt werden.

Wegen der (durch AQ steuerbaren) höheren Genauigkeit der Differenzen-
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rückrechnung, welche durch eine stärkere Annäherung an die Levelan­

fangswerte im Rahmen der Kontrollprognose ,zum Ausdruck kommt, ist

die Differenzenrückrechnung der Differentialrückrechnung vorzuziehen.

Zeigt sich bei dem Versuch, ein Modell mit Hilfe der Differenzenrück­

rechnung zu retrodizieren, daß der Iterationsprozeßzur L5sung des si­

multanen Gleichungssystems nicht konvergiert, dann bietet es sich an,

eine Differentialrückrechnung durchzuführen.

B. Durchführung einer Retrodiktion am Beispiel des Weltmodells
von Forrester

Das Verfahren 5011 nunmehr an einem komplexen System-Dynamics-Modell

demonstriert werden und zwar an dem von FORRESTER entwickelten Welt­

modell. Dieses Modell setzt sich aus 5 Level-, 31 Hilfs- und 9 Raten­

gleichungen zusammen. 21 Tabellenfunktionen mit insgesamt 151 Parame­

tern verleihen dem Modell einen hohen Grad an Nichtlinearität.

Die fünf Levelvariablen des Weltmodells werden durch POL, CIAF, NR,

P und CI beschrieben. Die Brückenvariable bestimmt sich nach

A AA.K=AP.K*ACIAF.K*ANR.K*APOL.K*ACI.K

Die Retrodiktion bis 1880 und die Kontrollprognose bis 1900 ergibt

den folgenden Ausdruck (DT=0.25 , AR=20, AKP=20, PFR=2, PFK=2, LENGTH=2250)

TIME
E+00

1900.
1932.~

1963.8
1995.5
2027.

2058.8
2090.3
2121.8
2153.3
2185.3

22.17.
2219.
2221.
2223.
2225.
2227.
2229.
2231.
2233.
2235.
2237.

TIM
E+00

1900.0
1898.0
1896.0
1894.0
1892.0
1890.0
1888.0
1886.0
1884.0
1882.0
1880.0
1882.0
1884.0
1886.0
1888.0
1890.0
1892.0
1894.3
1896.0
1898.0
1900.0

P
E+06

16513.0
1673.9
1711.9
1770.4
1856.0
1977.3
2147.0
23·85.9
2739.3
332'0.0
4338.3
3320.0
2739.3
2385.9
2147.0
1977.3
1856.0
1770.4
1711.9
1673.9
1650.0

DR
E+06

89.76
96.17

104.88
117.06
133.22
154.95
185.02
228.24
306.25
457.43
736.82
457.43
306.24
228.24
185.02
154.95
133.20
117.06
104.88
96.17
89.76

DRMM
E+00

2.3351
2.4019
2.46e6
2.5354
2.6020
2.6679
2.7325
2.7949
2.8549
2.9123
2.9642
2.9123
2.8549
2.7949
2.7325
2.6679
2.6020
2.5354
2.4686
2.4019
2.3351

MSL
E+00

.27706

.24923

.22143

.19359

.16582

.13836

.111~6

.08546

.06045

.133655

.01491

.03655

.06045

.08546

.11146

.13836

.16582

.19359

.22143

.24923

.2'77 e5

BR
E+06

80.909
81.419
81.974
82.443
83.428
84.989
87.126
89.666
91.972
91.212
96.762
91.212
91.972
89.666
87.126
84.989
83.428
82.443
81.973
81.419
80.909

DRPM
E+00

.92211

.92000

.92000

.92000

.92000

.92000

.92000

.92000

.92000

.920Z0

.92~00

.92e,e0
.920013
.920ee
.92000
.9200e
.92000
.92000
.92000
.92000
.92211

DRFM
E+00

.9537

.9807
1.0165
1.0662
1.1248
1.1936
1.2752
1. 3745
1.5567
1. 8499
2.1335
1.8499
1.5566
1.3745
1.2752
1.1936
1.1248
1.0662
1. 0165

.9807

.9537

DReH
E+00

.9461

.94:68

.9479

.9495

.9519

.9553

.9600

.9667

.9766

.9928
1.0425

.9928

.9766

.9667

.9600

.9553

.9519

.9495
.9479
.9468
.9461
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Die Auswahl der ausgedruckten Variablen erfolgte schon im Hinblick

auf die bereits zur Retrodiktion dieses Modells vorgenommenen Betrach­

tungen. 13 Die Todesrate DR der Weltbevölkerung ergibt sich als Pro­

dukt von vier Todesratenmultipl ikatoren, die den Einfluß des Lebens­

standards (DRMM), der Umweltverschmutzung (DRPM), der Nahrungsmittel­

versorgung (DRFM) und der Uberbevölkerung (DReM) zum Ausdruck bringen.

Eine eingehendere Analyse zeigt, daß die hohe Todesrate DR im Retro­

diktionszeitraum vorwiegend durch den Einfluß des Lebensstandard-To­

desratenmultiplikators DRMM bewirkt wird. Dieser hängt wiederum über

die Tabellenfunktion

A DRMM.K=TABHL(DRMMT,MSL.K,0,5,.5)
T DRMMT;3/1.8/1/.8/.7/.6/.53/.5/.5/.5/.5

von dem Lebensstandard MSL ab. Modifiziert man den ersten Tabellen­

wert dieser Tabellenfunktionvon 3 auf 1.8, d.h. geht man davon aus,

daß ein weniger starker Einfluß zwischen Lebensstandard und Todesra­

tenmultiplikator vorliegt, dann erhält man im Falle einer Kontroll­

prognose den in Abbildung 17.12 beschriebenen Verlauf der Bevölkerung

sowie der Geburten- und Todesfälle. Es zeigt sich, daß die vorgenom­

mene Hypothesenmodifizierung zu einer besseren Annäherung an die tat­

sächl ichen verläufe der beschriebenen Variablen führt.

3.4. Die FOLR-Modellierung als Alternative zum
System-Dynamics-Konzept

In diesem Ab.schnitt werden bestimmte konzeptionelle Elemente des Sy­

stem-Dynamics-Ansatzes kritisch analysiert und durch eine alternati­

ve Konzeption ersetzt. Diese schrittweise entwickelte Konzeption wird

als FOLR-Model lierung (~eedbackorientierte~ffene ~evel-~aten-Model­

lierung) bezeichnet. Ihre Entwicklung vollzieht sich in vier Stufen.

In der ersten Stufe wird die dem System-Dynamics-Konzept immanente

lnfinitesimalprämisse durch eine Diskretzeitprämisse ersetzt. Die

zweite Stufe führt zur Verwerfung des im System-Dynamics-Konzept ge­

13 Vgl. Seite 14of.
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übten Prinzips, daß informationelle Beziehungen stets von Informa­

tionsleveIn stammen. Im Rahmen der dritten Stufe wird das von der Sy­

stem-Oynamics-Konzeption geforderte Geschlossenheitsprinzip durch

ein umfassendes Offenheitsprinzip abgelöst. Danach wird in der vier­

ten Stufe gezeigt; daß die von FORRESTER postul ierte 'statistische

Sonderstellung l der System-Dynamics-Konzeption aufzugeben ist.

Abschl ießend erfolgt eine Würdigung der FOLR-Modell ierung.

3.4.1. Die Infinitesin,alprämisse des System-Dynamics­
Konzeptes und ihre Ablösung durch die Diskretzeit­
prämisse

A. Infinitesimal- und Diskretzeitprämisse als alternative Elemente eines
Modeliierungsansatzes

Im Verlauf der Darstellung des System-Dynamics-Konzeptes wurde die

(als vorläufig bezeichnete) Annahme getroffen, daß die in den Level­

gleichungen auftretenden Zeitinkremente DT immer gleich eins zu wäh­

len seien. Mit dieser Annahme wurde zuglelch unterstel It, daß die

Zeiteinheit iwisthen den beiden Ereigniszeitpunkten J und K, welche

als JK bezeichnet werden kann, mit der Zeiteinheit TIME identisch

i si.

~it dieser Prämissensetzung wurde, ohne damit das Verständnis der

übrigen Elemente der Model!konzeption zu beeinträchtigen, von einem

wesent! iehen Charakteristikum der System-Oynamics-Konzeption abstra­

hiert, welches alsselne Infinitesimalprämisse bezeichnet· werden soll.

Im System-Dynamics-Konzept wird, entgegen der bi'sherigen Annahme, da­

von ausgegangen, daß sich die Zeiteinheiten JK und TIME. voneinander

unterscheiden. Das Verhältnis zwischen beiden Einheiten kann durch

den Umrechnungsfaktor OT beschrieben werden. Es gi lt hierbei die Be­

ziehung

DT(1 Zeiteinheit ITlME');: 1 (Zeiteinheit 'JK ' )

Da in einem System-Dynamics-Model 1 somit zwei Zeiteinheiten auftre-
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ten, ist es wichtig, ihre inhaltl iche Verwendung voneinander abzu­

grenzen. Die Zeiteinheit TIME wird verwendet, um in exponentiel len

Verweilzeithypothesen,den Wert der durchschnittlichen Verzagerung zu

bestimmen. Des weiteren wird der Parameter LENGTH, der die Länge des

Simulations laufes bestimmt, stets in der Einheit TIME angegeben.

Durch JK dagegen wird der Zeitabschnitt gekennzeichnet, auf den sich

die Ratenhypothesen beziehen.

Die Infinitesimalprämisse FORRESTERs kann als eine empirische Behaup­

tung angesehen werden, welche besagt: In einem die Real ität mögl ichst

weitgehend beschreibenden System-Dynamics-Modell muß DT40 streben,

d.h. infinitesimal klein sein. Konsequenterweise fordert FORRESTER

deshalb, in einem konkreten System-Oynamics-Modell DT so klein wie

magl ich zu wählen, um damit der adäquaten Systemmodel lierung weit-
1gehend zu entsprechen.

Um deutl icher zu machen, wie eine derartige' Infinitesimal isierung '

von DT empi risch zu deuten ist, wollen wir uns vorstellen, wir hätten

ein Model I im Rahmen der bisherigen Annahme von DT=1 und der damit ver­

verbundenen Model I interpretation entwickelt und würden nunmehr DT ver­

kleinern, Wählen wir OT=1/7 und wurde fü·r TIME die Zeite~nheit 'Woche'

gewählt, so bedeutet diese Änderung, daß sich die durch die Ratenhy­

pothesen erklärten Levelzu- und -abflUsse nur noch auf ein Zeitinter­

vall von einer siebtel Woche, d.h. einen Tag, beziehen. Währ bis­

her die Werte der Variablen in einem wachentlichen Abstand berechnet

wurden, werden sie nunmehr, weil die Ratenhypothesen die täglichen

Ve rär]derungen bes chre i ben, täg I ieh berechnet. Eine i nha I tl i ehe. Ve..r­

änderung der ursprünglichen Ratenhypothesen kommt zum einen dadurch

zustande, daß sie sieh auf einen kUrzeren Zeitraum beziehen oder an­

ders ausgedrUckt, daß die Verzagerung zwischen ihren Wenn- und Dann­

.Komponenten von einer Woche auf eine siebtel Woche vermindert wurde.

Weiter werden die. Ratenhypothesen auch dadurch inhaltlich verändert,

daß in den typischen Levelgleichungen der Art

FORRESTER legt folgende Maxime fest: Das Lasungsinterval I muß so
klein sein, daß sein Wert die Berechnungsergebnisse nicht ernsthaft
beeinträchtigt. Es sollte so groß wie magl ich gewählt werden, um un­
n6tige Rechenzeit zu vermeiden. [53,5.79J
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1 LEV.K=1EV.J+DT*(ZUR.JK-ABR.JK)

di'e Dann-Komponenten der ursprüngl ichen Ratenhypothesen mit DT mul­

tipI iziert werden.

Diese formale Darstellung und inhaltliche Interpretation des Uber­

gangs zum Infinitesimalfal I wirkt höchst befremdend, wei I eine ein­

leuchtende empirische Interpretation von Verhaltensgleichungen, de­

ren Dann-Komponenten von Wenn-Komponenten bestimmt werden, die eine

nur infinitesimal kleine Verzögerung aufweisen, kaum mögl iGh ist.

Um die empirische Gültigkeit von FORRESTERs Infinitesimalprämisse

kritisch zu diskutieren, sol I folgender Weg eingeschlagen werden: Es

wird anhand eines typischen Beispiels die Behauptung veranschaulicht,

daß der Entwickler eines System-Dynamics-Modells in vielen Fällen im­

plizit von einem zeitdiskreten Primäransatz ausgeht, d.h. einem An­

satz seiner Modellhypothesen, in welchem implizit ein DT=l zugrunde

gelegt wird. Von diesem Tatbestand ausgehend, wird anhand eines Bei­

spiels gezeigt, daß die 'nachträgliche ' Verkleinerung ~von DT eine

unzulässige und abwegige Hypothesenveränderung bewirkt.

Die Behauptung, daß die meisten Entwickler von System-Dynamics-Model­

len beim formul ieren ihrer Hypothesen einen zeitdiskreten Primäran­

satz unterstellen, bedeutet anders ausgedrDckt: Sie gehen von der

Vorstel lung aus, daß die Zeitindizes J und K bestimmte feste Perio­

denpunkte symbol isieren.

Betrachten wir zur Verdeutl ichung dieser Behauptung das einfache Mo­

dell des Bestellwesens eines Handelsbetriebes~ Die Levelgleichung des

Lagerbestandes kann durch

L LES.K=LBS.J+DT*(LBR.JK-LAG.JI)

LBS: Lagerbestand [Mengeneinh.J

LBR: Lagerbestellmenge [Mengeneinh./WocheJ

LAG: Lagerbestandsabgang [Menge~einh./WocheJ

beschrieben ~erden.

In diesem Betrieb wird wöchentlich eine Bestellung LBR vorgenommen,

die noch in derselben Woche gel iefert wird. Die Höhe der Lagerabgänge

wird ebenfalls nur wöchentl ich festgestellt. In diesem Fall wird ein
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Modellentwickler intuitiv Kund J als die Periodenzeitpunkte eine~

nach Wocheneinheiten differenzierten festen diskreten Zeitskala an­

sehen.

Diese Sichtweise findet ihre Fortsetzung bei der Bestimmung der wö­

chentlichen Bestellrate LBR. Sie wird aufgrund einer im Unternehmen

praktizierten Entscheidungsvorschrift bestimmt. Ihre Höhe resultiert

aus zwei Komponenten: Die erste Komponente berücksichtigt die wöchent­

lich festgestellte Differenz zwischen dem 5011- und Istlagerbestand

und wird beschrieben durch:

A Kl.K=(SLB.K-LBS.K)*APF
SLB: Sollagerbestand [Mengeneinh.J

LBS: Istlagerbestand [Mengeneinh.]

APF: Anpassungsfaktor [dimensionslos]

Die zweite Komponente K2 wird aus einer Prognose der wöchentlich an­

fal lenden Lagerabrufe LAG mit Hilfe einer exponentiellen Glättung er­

mittelt.

A K2.K=SMOOTH(LAG.JK,GLF)

LAG: Lagerbestandsabgang [Mengeneinh.]

GLF: Faktor der exponentiellen Glättung [dimensionslos]

Kaum ein Model lformulierer wird in dieser Situation LBR.JK anders

auffassen als .die Menge der Lagerzugänge zwischen den Periodenzeit­

punkten J und K. Diese Annahme hat jedoch zur Folge (was den meisten

Modellentwicklern nicht bewußt sein dürfte), daß DT=1 sein muß.

Ähnlich wie in diesem Beispiel dürfte ein Großteil der Entwickler

von System-Dynamics-Modellen, bedingt durch die beobachteten zeit~

diskreten Änderungen der Real ität oder den nur zeitdiskreten Daten­

anfall, ihre Modelle so formulieren, als sei JKein festes (und nicht

infinitesimal kleines) Zeitinterval 1. Die meisten Primäransätze von

System-Dynamlcs-Modellen sind daher als Differenzengleichungsansätze

intendiert. Ihrem Systemverständnis nach gehen die meisten Modellent­

wickler daher implizit von einer Diskretzeitprämisse aus~ Der eigent­

1ieh verfolgte Primäransatz wird In der sich ansehl ießenden Simula-
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tion dann in ein Differentialgleichungsmodell UberfOhrt, indem die

Modellanwender (ohne kritische Reflektion?) allein FORRESTERs Forde­

rung gehorchend, DT so klein wie möglich wählen und damit in unzuläs­

siger Weise die Modellhypothesen verändern.

Die empirischen Konsequenzen einer DT-Variation sollen am Beispiel

des gerade beschriebenen Modells verfolgt werden. Dazu sind noch ei­

nige Angaben zur vollständigen Kennzeichnung des Modells notwendig.

Da es sich um ein singulär offenes Modell handelt, sollen die Betrach­

tungen auf der Grundlage eines im Gleichgewicht befindl ichen Systems

vorgenommen werden. Das (mit N LBS=SLB) gleichgewichtige System soll

einen konstanten Lagerbestandsabgang von LAG=100 [Einh./Woche] auf­

weisen. Dem System wird nunmehr in Periode 1 ein Impuls der Höhe 1000

als zusätzlicher Lagerbestandsabgang aufgeprägt. Wir erhalten damit

das DYNAMO-Programm

* LAGERDISPOSITIONSMODELL
*L LBS.K=LBS.J+DT*(LBR.JI-LAG.JI)
N LBS=SLB
R L:BR.KL=(SLB-Ll3S.I)*APF+SMOOTH(LAG.JK,GLF)
R LAG.IL=100+PULSE(1000,l,100)
A LLZM.K=DT*LBR.JK
C APF=0.7/SLB=1200/GLF=3

. SPEC DT=1,LENG'rH=15
PRINT tLZM
A PRTPER.K=DT
RUN

LAGERBESTAND

LAGERBESTELLRATE
LAGERABGANGSRATE
LAGERBESTELLMENGE

Die Impulsantwort der Bestellungen LLZM ist fUr DT=1 und DT=O,5 aus

Abbildung 34.1 zu ersehen.

Wie ist nunmehr in diesem Modell eine Veränderung von DT=1 auf DT=0,5

empirisch zu interpretieren? Der einwirkende Impuls in Höhe' von

1000 Einheiten/Woche muß bei einer Differenzierung der Wochenein­

heit in zwei halbe Wochen offensichtlich in eine Folge von zwei Im­

pulsen von je 500 Einheiten zergl iedert werden. Unter Verwendung die­

ser Impulsfolge ergibt sich ein neuer Verlauf entsprechend Abbildung

34.1
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LLZM
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"Abb.34.1 Impulsantwort eines Lagerhaltungsmodells bei variierendem
Zeitinkrement DT

Die einzig plausible empirische Interpretation des Zeitverlaufes der

Lagereingänge bei OT=0,5 wäre, daß die berechneten Werte von LLZM die

während einer halben Woche eingehenden Bestel lungen darstellen. Wenn

nun zum Beispiel in einer bestimmten Woche im Primäransatz 100 Bestel­

lungen eingehen, und es ergibt sich bei "DT=0,5 für die erste Wochen­

hälfte ein Abgang von 60 und für die nächste halbe Woche ein Abgang

von 40 Bestellungen, so muß man sich darüber im klaren sein, daß durch

diese Differenzierung nachträglich neue empirische Hypothesen 'einge­

schmuggelt l werden. Da im primären Ansatz nur eine wöchentlich prak­

tizierte Bestellregel befolgt wurde, die zu einer Bestellmenge von
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100 Einheiten führte, ist es nicht möglich, aus diesem Ansatz logisch

zwingend einen Eingang von 60 Aufträgen in der ersten und 40 in der

zweiten Halbwoche abzuleiten. Vielmehr sind alle Kombinationen denk­

bar, die sich zu 100 ergänzen. Denn aus dem Primäransatz weiß man

nur, daß am Ende der Woche 100 Einheiten eintrafen. Durch jede Va­

riation des im Primäransatz zugrunde gelegten OT wird aber eihe sol­

che 'Hypotheseneinschmuggelung 1 betrieben.

Diese neu eingeführten Hypothesen ?tellen auch keine - wie auch im­

mer zu motivierende - Verschärfung des primäransatzes dar, sondern

fUhren zu einem logischen Widerspruch. Widerspruchsfreiheit zwischen

dem Primäransatz und einem durch DT-Variation modifizierten Modell

liegt immer dann vor, wenn bei einer Bestellmenge LZG(t+1) im Primär­

ansatz die sich bei einer Zergl iederung der Periode t in n Teilperio­

den t,ttDT,tt2DT, ... ,t+(n-1)DT ergebenden Bestellmengen LZG(t),

LZG(ttDT), ... ,LZG(tt(n-1)DT) zu LZG(tt1) addieren, d.h. die Beziehung

n-1
L LZG(ttiDT) = LZG(tt1) [Mengeneinh.J

i=O

erfüllt wird.

Eine derartige Konsistenz der primären mit den 'eingeschmuggelten l

Hypothesen ist jedoch im allgemeinen nicht gegeben. Tabelle 34.1

zeigt in der ersten Zeile die Impulsantwort der Bestellmenge LLZM

des Primäransatzes. Aus den nachfolgenden Zeilen kann man die bei

Wahl unterschiedlicher OT=l/n (Wochen) summierten Bestel lungen wäh­

rend einer Woche erkennen.

Der Impuls des Primäransatzes in Höhe von 1000 Einheiten wurde bei

der Zergliederung der O-ten Periode in eine Impulskette 1(0),1 (OT),

I (20T), ... , I ([n-1JDT) der Höhe 1000/n aufgelöst.

In Periode 4 beispielsweise werden bei einem Zeit inkrement von OT=1

insgesamt 86 Gütereinheiten vom lager bestellt. Verändert man (nach­

träglich) DT auf 1/20, dann werden in der vierten Periode im Rahmen

von zwanzig Einzelbestellungen 157 Gütereinheiten angefordert. Die

auftretenden Abweichungen lassen erkennen, daß keine strenge Kon­

sistenz vor1 iegt.
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OT Tei l- a 1 2 3 4 5 6 7
per ioden

1 1 100 100 1133 299 86 46 51 63

1/2 2 100 358 755 307 140 83 70 71

1/4 4 100 438 650 297 151 95 78 75
1/8 8 100 471 608 292 155 100 81 77
1/10 10 100 477 600 291 156 101 82 78
1/20 20 100 489 586 289 157 103 83 79

OT Tei 1- 8 9 10 11 12 13 14 Summe
perioden

1 1 74 83 88 92 95 97 98 2505

1/2 2 77 82 87 91 94 95 97 2507
1/4 4 79 83 87 91 93 95 96 2508
1/8 8 80 83 87 90 93 95 96 21)08

1/10 10 80 83 87 91 93 95 96 2510

1/20 20 80 83 87 91 93 95 96 2511

Tab. 34.1 Bestellmengen während einer Woche bei Variation des Zeit­
inkrementes OT in einem System-Dynamics-Modell

Der Ubergang zu einem kleineren DT ist nicht nur eine unzulässige Hy­

potheseneinschmuggelung in Bezug auf den Primäransatz, sondern führt

auch dazu, daß die entstandenen Ineuenl ~ypoth~sen reichlich absurd

sind. W~hlt man beispielsweise DT=1/20 Woche, so bedeutet dies, daß

ein Lagerverwalter alle 24'7/20=8,4 Stunden einen Soll-Ist-Vergleich

vornimmt und eine. Bestellung aufgibt. Im konzeptionellen Idealfall

eines infinitesimal kleinen DT erreicht die Schwierigkeit einer em­

pirischen Deutung ihren HBhepunkt. Die Kalamitäten einer sinnvOllen

Deutung der auftretenden Hypothesen zeigen sich auch an anderen Mo­

dellen. So modellierte FORRESTER in seinem Model I der Sprague-Electric-
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Company bestimmte Entscheidungsregeln zur Bestellung von Material ien

wie sie oben beschrieben wurden und verwendet ein DT von 1/20 Woche

[53]. In einem System-Dynamics-Unternehmensmodell wählte STUBEL für

einen Simulationszeitraum von drei Jahren ein DT von ca. zwei 5tun~

den. Das bedeutet streng genommen: Alle zwei Stunden müßten nach die­

sem Ansatz bestimmte Entscheidungsregeln wie die Bestellung von Ma­

terial in dem Unternehmen durchgeführt werden [193,5.221].

Es soll hier nicht behauptet werden, soziale Zusammenhänge seien nur

mit Differenzengl·eichungen in adäquater Weise zu beschreiben; doch

dürfte es relativ selten der Fal I sein, daß Differentialgleichungs­

ansätze einem Differenzengleichungsansatz vorzuziehen sind. Denn

selbst in demographischen Modellen, in denen eine zeitkontinuierl iche

Bestandsveränderung noch am wahrscheinlichsten ist, stehen zumeist

nur Jahresbeobachtungswerte zur Verfügung, so daß es sich anbietet,

selbst derartige Prozesse als zeitdiskret aufzufassen und entspre­

chend zu modellieren.

FORRESTERs Infinitesimalprämisse er~cheint mir aus den genannten

Gründen als ein kategorisches Postulat nicht akzeptabel zu sein. In

den meisten Fällen einer Modellentwicklung dürfte vielmeh~ eine an­

gemessene Realitätsbeschreibung erst durch die Annahme. eines diskre­

ten äquidistanten Zeitsystems möglich werden. Die damit zum Ausdruck

kommende Diskretzeitprämisse wird daher als ein tragendes Element

der im folgenden sukzessiv entwickelten FOLR-Modellierung angesehen.

B. Exponentielle Verweilzeithypothesen im Falle der Infinitesimal- und
Diskretzeitprämisse

Exponentielle Verweilzeithypothesen spielen im System-Dynamics-Kon­

zept eine entscheidende Rolle als tprozeßmacher l
, weil sie die für

dynamische Systeme typischen verzögernden Einflüsse besonders zum

Ausdruck bringen~ Ihre Anwendung und Anwendbarkeit soll daher im fol­

genden sowohl unter Zugrundelegung der Infinitesimal- als auch der

Diskretzeitprämisse erörtert werden.
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a) Zur Definition der durchschnittlichen Verzögerung exponentieller
Verzögerungen dritter Ordnung

Exponentielle Verweilzeithypothesen werden im System-Dynamics-Konzept

durch die Angabe des Grades der Verzögerung und des Betrages ihrer

durchschnittl ichen Verzögerung DVZ bestimmt. Auch wenn wir von der

Annahme ausgehen, daß die durchschnittliche Verzögerung im Infinite­

simalfall, d.h. im Grenzfall DT+O, ihrer Defini tion nachkommt, so

ist dies für den Fall DT+O bisher nicht nachgewiesen.
2

Oa System-Dy­

namics-Modelle mit einem Zeitinkrement DT+O simul iert werden, sollte

eine, mtt einem bestimmten DVZ simulierte, exponentielle Verweilzeii­

hypothese keine von diesem Wert abweichende tatsächliche durchschnitt­

liche Verzögerung aufweisen.

Zur Verdeutl ichung dieser Forderung betrachten wir eine exponentiel­

le Verweilzeithypothese erster Ordnung mit einer durchschnittlichen

Verzögerung von DVZ=lO Wochen. Es sollen zwei Fälle unterschieden
,

werden: Im ersten Fall sei das Zeitintervall JK=l Woche gewählt, d.h.

DVZ 1=10 [Wochen] und DT 1=1. Im zweiten Fall dagegen sei JK=1/2 Woche,

d.h. DVZ 2=20 [Halbwachen] und OT2=0,5. Die Impulsantworten der sich

durch differierende Zeiteinheiten JK auszeichnenden exponentiellen

Verweilzeithypothesen unter Annahme einer Impulshöhe von 100 zeigt

Abbildung 34.2.

Eine Invarianz von DVZ gegenüber DT läge vor, wenn beide Impulsant­

worten dieselbe durchschnittl iche Verzögerung DVZ aufweisen würden.

Diese Frage, ob solche Invarianzen bei variierendem OT auftreten

oder nicht, interessiert uns insbesondere, wei 1 im Falle der Unter­

stellung der Diskretzeitprämisse (und damit der Wahl vonDT=l) ~ie

im System-Oynamics-Konzept eine große Rolle spielende Fami lie der

exponentiel len Verwei lzeithypothesen nur dann Anwendung finden dürf­

te, wenn das gewählte DVZ auch tatsächlich der auftretenden durch­

schnittlichen Verzögerung entspricht.

2 Zur Berechnung von DVZ im Infinitesimalfal I siehe [55,S.10-8ff]
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ABFM

5 15 TIME

Abb. 34.2 Impulsantwort einer exponentiellen Verzögerung erster Ord­
nung bei verschiedenen Zeiteinheiten JK

Da die DIskretzeitprämisse ein grundlegendes Element der als Alterna­

tive zum System-Dynamics-Konzept entwickelten FOLR-Mode1 lierung bil­

det, soll im folgenden der umfangreiche Beweis einer DVZ-DT-Invarianz

geführt werden.

Der Beweis gliedert sich in drei Schritte: Im ersten Schritt wird

die Operatorenübergangsfunktion einer exponentiellen Verwei lzeithy­

pothese n-ter Ordnung entwickelt. Diese dient der im zweiten Schritt

vorgenommenen Gewinnung der sequentiellen Form der Ubergangsfunktion

und damit auch der Ermittlung der Gewichtsfunktion einer exponentiel­

len Verweilzeithypothese. Anhand der Gewichtsfunktion wird dann im

d~i tten Schritt die durchschnittliche Verzögerung DVZ bei unbestimm-
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tem OT ermittelt und bezüglich ihrer lnvarianz gegenüber DT unter­

su cht.

Oie zeitl iche Indizi~rung von System-Dynamics-Modellen 5011 als er­

stes in die übliche Formul ierweise von Differenzengleichungen über­

führt werden. Die Zufluß- und Abflußmengen (DT)ZUF.JK und (DT)ABF.JK,

die die Zu- und AbflUsse eines Levels während des Zeitintervalls JK

beschreiben, stellen Aggregate über das Zeitintervall JK dar, deren

Werte zum Zeitpunkt K bekannt sind. Daher können sie auch durch den

Zeitindex K gekennzeichnet werden, d.h. ·(DT)ZUF.K und (DT)ABF.K.

Setzt man L=t, K=t-1 und J=t-Z, so folgt fUr eine exponentielle Ver­

weilzeithypothese erster Ordnung

LEV(t-1) = LEV(t-2) + DT[ZUF(t-1)-ABF(t-1)]

ABF(t) = LEV(t-l)/DVZ

Aus (34.2) folgt

LEV(t-Z) = (DVZ)ABF(t-1)

LEV(t-1) = (DVZ)ABF(t)

(34.1)

(34.2)

Mi t 04.1), (34.3) und (34.4) ergibt sich die Ubergangsfunktion ei­

nes exponentiellen Verzögerungslevels erster Ordnung

DT DT
ABF(t) '= ABF(t-l )[1- DVZ 1 + DVZ ZUF(t-1)

Setzt man T1=DVZ/DT, dann folgt aus (3~.5)

T1- 1 . 1
ABF(t) = (-T---)ABF(t-1) + ~ZUF(t-1)

1 . 1
(34.6)

Eine exponentielle Verweilzeithypothese n-ter Ordnung ergibt sich

aus der n-fachen Kaskadierung einer exponentiellen Verweilzeithypo­

these erster Ordnung, was durch eine kaskadierende Verknüpfung ihrer

Ubergangsfunktion der Form (34.6) beschrieben werden kann.

Man erhält damit das Gleichungssystem

T -1
AB Fi (t) = -T- AB Fi (t -1) + .,f- ZU Fi (t -1 )

n n
i=1,2, ... ,n



und

ZUFi(t) = {AB Fi -1 Ct)
ZUFi(t)

i=2 ,3, ... ,n
i=l
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(34.8)

T = DVZ/n(DT)
n

Mit der Einführung des Operators

Knx(t) = x(t-n)

folgt aus (34.7) und (34.10)

K(T -1 )
ABFi (t)[l- / ] = T

K
ZUFi (t)

n n

Au s (34. 11) f 0 1gt

(34.10)

(34.11)

ABFi (t)
T -1 1 K

= [l-K(+-)]- T ZUFi (t)
n n

(34.12)

Definiert man das Operatorpolynom der Ubergangsfunktion mit

G = [1 - K( (T - 1 ) / T )] - 1 (K/T )
n n n

dann impl izieren (34.12) und (34.13)

ABFi.(t) = G·ZUFi (t)

(34.13)

(34. 14)

Die exponentielle Verwei lzeithypothese n-ter Ordnung wird durch eine

Kette kaskadierender Gl ieder mit demselben Operatorenpolynom G be­

schrieben. Die Operatorenübergangsfunktion zwischen dem Eingang ZUFl

und dem Ausgang ABFn ergibt sich nach der Reduktionsvorschrift kas­

kadierender Gl ieder aus (34.14):3

Unter Anwendung der vereinfachenden Schreibweise

ABFn(t) =

ZUF1 (t)

ABF (t)

ZUF (t)

(34.16)

(34.17)

folgt aus (34.15) bis (34.17)

ABF(t) = [l-K«(T -1)/T )]-n(Kn/Tn)ZUF(t)
n n n

3 Siehe Seite 228f.

(34.18)
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Mit (34.18) ist die Ubergangsfunktion einer exponentiellen Verweil­

zeithypothese n-ter Ordnung bestimmt.

In einem zweiten Schritt soll die Gewichtsfunktion von (34.18) er­

mittelt werden. Aufgrund des Binominal lehrsatzes gi lt~4

mit

T -1
[l-K(_n_) J-n =

T
n

T -1
A = _n_

Tn

(34. 19)

(34.20)

Aus (34.18) bis (34.20) folgt die sequentielle Darstellung einer ex­

ponentiellen Verweilzeithypothese n-ter Ordnung

co T -1
1 n+n-1 n n

ABF(t) = [Tn J : ( n ) (-T-) ZUF(t-n-n) (34.21)
n n-O n

Es gi 1t

[_1]
Tn

n

= [1-1+_1 ]n
T

n

T - 1
[l __n_J n

T
n

(34.22)

Mit (34.21 ) und (34.22) folgt

T -1 co T -1
. ABF(t) = [1- ~T ] n }:; (n+r 1) (_n_)nZUF(t-n-n)

n n=O Tn
(34.23)

Die Einheitsimpulsantwort oder Gewichtsfunktion ergibt sich aus (34;21)

w(t)
für t=O,l , ... ,n-1

für t=n,n+1, ...
(34.24)

In einem System-Dynamics-Modell wird die durchschnittl iche Verzöge­

rung DVZ in der Zeiteinheit TIME festgelegt. 'Wird nunmehr im Rahmen

4 Dieser Satz gilt nur für O<A<l und damit
0«Tn-1)/Tn <1

Diese Bedingung wird immer dann erfüllt, wenn T <1, was wegen (34.9)
nimmer dann der Fall ist, wenn

(DVZ/n»f)T (*)
FORRESTER dagegen stellt die Forderung auf, daß für die Wahl von DT
die folgende Relation einzuhalten ist: DT<DVZ/2n [59,S.79J. Bei Nicht­
beachtung von (*) weist die exponentielle Verweilzeithypothese keine
endl iche Impulsantwort auf.
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der DT-Variation ein DJ bestimmt, so ist es notwendig, daß nach ei­

ner Umrechnung der durchschnittlichen Verzögerung von der Zeitein­

heit JK in die Zeiteinheit TIME stets die Verzögerung OVZ [TIME] auf­

tritt. Bezeichnen wir daher ~ als die durchschnittl iche Verzögerung

in einer Zeiteinheit JK, so kann gemäß

0T = D· OT [TIME] 04.25)

DT als die durchschnittliche Verzögerung in der Zeiteinheit TIME an­

gesehen werden. Um die Invarianz von DVZ gegenüber einer Variation

von DT.zu zeigen, ist daher zu beweisen, daß stets DT=OVZ für alle

DT <DVZ/n gi I t.

Die durchschnittl iche Verzögerung für D, d.h. bei beliebigem DT in

der Zeiteinheit [JK], bestimmt sich mit

00

D= L;w(t)t
t=O
n-1 00

D= ~ w(t)t + L; w(t)t
t=O t=n

Da

n-1
L;w(t)t = 0

t=Q

folgt mi t (34.26)

00

D= L;w(t)t
t=n

und bei Berücksichtigung von (34.24) folgt

00 T -1 T-1
D = ~ (t-1) (1- _n__)n (__n__) t-n t

t=n t-n T Tn n

04.26)

(34.27)

Führen wir einen neuen Summenindex Tl ein, der von n ab läuft, d.h.

n=t-n, dann folgt

00 T -1 T-1
D = L; (n+Tl-l) (1- _n_) n (_n_)n (n+n)

n=O n Tn Tn

Definieren wir

T -1 T-1
= (n+n- 1) (1- _n_) n (_n_) n

Tl T T
n n

(n= Q, 1 ,2 , ... ) (34.28)



dann ist

04.30)

Der Ausdruck v(n) entspricht einer Pascalverteilung n-ter Ordnung~

deren Erwartungswert der ersten unendlichen Summe in (34.30) ent­

spricht und durch

T -1
n(_n_)

co T
L v (n)n = _-=-n--,-

n=O T -1
l_(_n_)

Tn

n (T -1)
n

I

bestimmt wird. [50,S.202} Die zweite unendl iche Summe in (34.30) ent-

spricht den aufsummierten Wahrscheinl ichkeiten einer Pascalvertei­

lung n-ter Ordnung und ist

co

k v(n) = 1
n=O

unter BerUcksicht~gung von (34.31) und (34.32) wird Gleichung (34.30)

o = n·T
n

Mi t (34.9) folgt

o = DVZ/DT [JK] = [TIME/(TIME/JK)]

Die Umrechnung, der in der Zeiteinheit JK beschriebenen durchschnitt­

1ichen Verzögerung D auf die Zeiteinheit TIME ergibt na~h (34.25)

DT = DVZ [TIME]

womit die DT-DVZ-Invarianz bewiesen ist.

b) Die Bestimmung der Parameter exponentIeller Verweilzeithypothesen
bei Akzeptierung der Infinitesimal- und Diskretzeitprämisse

ba} Parameterbestimmungen im Falle der Akzeptierung der Infinitesimalprämisse

FORRESTER geht offenbar davon aus, daß die Beschreibung der Zu- und

Abflüsse von Leveln unter Verwendung primärer Verwei lzeithypothesen

erschöpfend durch exponentielle Verweilzeithypothesen vorgenommen
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werden kann. Dies erkennt man daran, daß sämtl iche bisher von ihm

und seinen Schülern zur Modell ierung konkreter Systeme verwendeten

primären Verwei Izeithypothesen ausschI ießI ich der Familie der expo­

nentiel len Verweilzeithypothesen entstammen. Neben der gelegentli­

chen Verwendung exponentiel ler Verweilzeithypothesen ersten Grades

benutzt FORRESTER in seinen Systemmodel 1ierungen fast nur die be-

rei ts beschriebenen exponentiel len Verweilzeithypothesen dritten Gra­

des. Exponentielle Verweilzeithypothesen können aufgrund von zwei

Merkmalen eindeutig festgelegt werden: anhand der durchschnittlichen,

Verzögerung DVZ und des Verzögerungsgrades.

ABF(t)'DVZ
unendl icher Ordnung

/
;::--or-.,..-.,..-..,.-..,....-.---'-.p:::.,..,,~ I-..,.---,__,-r-.,..-,.--.--------,1 ,0

0,8
0,6

0,4 -

~' 2 ~-2~~--l.-:l::~t.._JL.L..._.L..._~=:L~:=:::::~§;;i
o 0,5 1,0 1 ,5 2,0

t·DT/DVZ

Abb. 34.3 Verzögerungscharakteristiken exponentieller Verweilzeit­
hypothesen verschiedener Ordnung bei Aufprägung einer Im­
pulsfunktion [53,S.92]

Der Verzögerungsgrad ist von dem Modellentwickler mit Hilfe der in

Abbildung 34.3 dargestellten Kennl inie zu bestimmen, in welcher

ABF(t) die Einheitsimpulsantwort des Verzögerungslevels ist.

Um zu beurteilen, Db der Zu- und Abgang eines bestimmten Levels an­

hand dieser Kennlinien durch eine exponentielle Verweilzeithypothe­

se beschrieben und damit modell iert werden kann, ist es notwendig,

die Gewichtsfunktion der Verweilzeithypothese zu kennen. Denn kennt

man die tatsächl ich zum Tragen kommende Gewichtsfunktion, dann ist

es möglich, mit Hi lfe der in Abbildung 34.3 dargestel lten Transfor­

mationen des Koordinatensystems eine spezifische Kennl inie dieser
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Verwei lzeithypothese zu berechnen und den zu wählenden Verzögerungs­

grad aus dem Vergleich dieser Kennl inie mit den in Abbildung 34.3 an­

geführten Kennl inien zu bestimmen. Die Gewichtsfunktion zwischen dem

Zu- und Abfluß eines Levels ist in der Realität aber nur dann als

zeitl icher Verlauf des Levelabflusses direkt beobachtbar, wenn dem

im Gleichgewicht befindlichen System ein Einheitsimpuls aufgeprägt

wird. Da eine solche Situation in sozialen Systemen fast nie vorliegt,

kann die Gewichtsfunktion eines Systems prinzipiel I nur mit Hilfe sta­

tistischer Methoden aus den beobachteten Verläufen der Zu- und Abflüs­

se ermi ttelt werden. Da FORRESTER solche statistischen Verfahren ab­

lehnt, ist der Modellentwickler darauf angewiesen, aus seiner ISystem­

kenntnis ' heraus, den Verzögerungsgrad subjektiv zu schätzen.

Ähnliche Schwierigkeiten ergeben sich bei der Bestimmung des zweiten

Parameters: der durchschnittlichen Verzögerung. Sie beschreibt die

durchschnittl iche Aufenthaltsdauer eines in den Level eintretenden

Elementes. Auch ihre Bestimmung ist nicht an ein formelles statisti­

sches Ermittlungsverfahren gebunden, sondern sol I anhand einer sub­

jektiven Schätzung erfolgen: Ein solches Vorgehen ist grundsätzlich

nicht zu kritisieren, denn es ist im Prinzip unmaßgeblich, auf wel­

che Weise Hypothesen bestimmt werden, entscheidend ist allein, daß

sie sich empirisch bewähren. Man muß sich allerdings fragen, ob vie­

le Entscheider bei der subjektiven Festlegung dieser Parameter nicht

etwas überfordert sfnd, denn streng genommen mbßten sie in der Lage

sein, die vorhandenen statistischen Verfahren zur Schätzung dieser

Parameter intuitiv korrekt nachzuvollziehen. Dies gilt auch, wenn

diese Modelle als Entscheidermodelle konzipiert werden, denn ein Ent­

scheidermodel I spiegelt zwar nur das subjektive Situationsbild eines

Entscheiders wider, und die von ihm geschätzten Parameter sind ein

Teil dieses Bildes; aber, welcher rationale Entscheider wäre nicht

bereit, sein subjektives Situationsbild zu revidieren, wenn er er­

fährt, daß die Ex-post-Prognose bei einer anderen Parameterwahl zu

einer besseren Ubereinstimmung der Beobachtungsvariablen mit den ent­

sprechenden Modellvariablen fUhrt?
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Aus diesem Grund ist die Ablehnung statistischer Parameterschätz­

verfahren auch im Rahmen FORRESTERs Auffassung, ein System-Dynamics­

Modell als ein Entscheidermodel I anzusehen, nicht zu verstehen.

Die in DYNAMO definierten Makrofunktionen exponentieller Verweil­

zeithypothesen werden in der L:teratur sowohl für geschlossene als

auch für singulär otfene Modelle verwendet. Eine Anwendung dieser

Makros im Rahmen geschlossener, der Prognose dienender Modelle ist

jedoch aus folgenden Gründen problematisch:

In den auf Seite 435 angeführten Definitionen eines DELAY3-Makros

sind die Anfangswerte der drei Level LV1, LV2 und LV3 mit IN*DEL/3

bestimmt. Es wurde bereits festgestellt, daß ein DELAY3-Makro gera-

de diese Anfangswertbedingungen besitzen muß, um ein Systemgleichge­

wicht zu gewährleisten. Anders ausgedrückt: Wenn sich ein dynamisches

Modell in einem Gleichgewicht befindet, dann besitzen die Level LV1,

LV2 undLV3 den Gleichgewichtswert IN*DEL/3, und der Anfangsbestand

des gesamten Levels beträgt damit IN*DEL. Da in einem geschlossenen

Prognosemodell aber vor dem Anfangszeitpunkt der Prognose kein Gleich­

gewicht herrscht, ist es unzulässig, eine Verzögerung zu verwenden,

die von einer derartigen Gleichgewichtsannahme ausgeht. Der Anfangs­

bestand des Verzögerungslevels dürfte kaum den Wert IN.Ol*DEL besit­

zen, sondern ist eine Größe, die die individuelle Vergangenheit des

Systems zum Ausdruck bringt. Erstaunlicherweise finden die auf Gleich­

gewichtsannahmen ausgerichteten DYNAMO-Verzögerungsmakros dennoch

in Prognosemodellen wie beispielsweise dem Weltmodell von MEADOWS

Verwendung. Zur Berücksichtigung der tatsächlich vorhandenen Anfangs-

MACRO DE13A(IN.DVZ,VLA)
A DEL3A.K=~LV3.K*3!DVZ
L $LV3.~=$LV3.J+DT*($PT2.JK-DEL3A.J)

N $IV3=VLA!3
B $RT2.KL=$LV2.K*3!DVZ
L $LV2.X=$LV2.J+DT*($R~1.JK-$RT2.JK)

N SLV2=VLA!3
R $RT1.KL=$LV1.K*3!DVZ
L $LV1.K=$LV1.J+DT*(IN.JX-$RT1.JK)
N $LV1=VLA!3
MEND
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werte kann im Falle von Prognosemodellen die Makrofunktion DEL3A

verwendet werden.

Neben dem Zugang IN und der durchschnittlichen Verzögerung DVZ ist

als weiteres Argument der Anfangsbestand des Verzögerungslevels VLA

angegeben. Es wird dabei die A-priori-Hypothese unterstellt, daß sich

der gesamte Level inhalt VLA gleichmäßig auf die drei im Makro defi­

nierten Level LVl, LV2 und LV3 verteilt. Diese Annahme dürfte ange­

sichts der generellen Forderung FORRESTERs einer subjektiven Schät­

zung der Pa rameter eines Mode 11 s insofern angemessen se in, da sie im

Sinne des Laplace-Prinzips von einer Gleichvertei lung im Falle von

Ungewißheit ausgeht. Eine solche Situation dürfte in diesem Fall wohl

vorliegen, da die kaskadierenden Level ja Fiktionen sind, denen kein

empirisches Äquivalent gegenübersteht. Eine nicht gleichverteilte

Gewichtung ihrer Anfangswerte läßt daher keinen empirischen Ansatz­

punkt erkennen, an dem sich eine subjektive Schätzung dieser Gewich­

te ausrichten könnte.

bb) Parameterbestimmung im Falle der Akzeptierung der Diskretzeitprämisse

Eine Ubertragung des von FORRESTER zur Bestimmung des Verzögerungs­

grades exponentieller Verweilzeithypothesen in Abbildung 34.3 ange­

führten Kennlinleodiagrammes auf den Diskretzeitfall führt im Falle

einer DELAY3-Verzögerung zu Abbildung 34.4. Es dürfte nahezu unmög­

lich sein, daß ein Modellanwender anhand der dort angeführten Kenn­

linien sowie der beobachteten Zu- und Abflußwerte eine Verzögerung

zu identifizieren vermag und damit zu einem Urteil der Art kommt:

die vorliegende Verzögerung kann durch eine exponentielle Verweil­

zeithypothese ~ritter Ordnung mit einer durchschnittlichen Verzöge­

rung des Betrages x beschrieben werden.

Wenn überhaupt eine solche Identifizierung möglich sein sollte; so

müßten dem Systembeurteiler zumindest die Impulsantworten der für

eine Beschreibung in Frage kommenden Verweilzeithypothesen zur Ver­

fügung stehen.
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ABF (t)'DVZ

o 0,5 1,0 1,5 2,0 ~
DVZ

Abb. 34.4 Standardisierte Impulsantworten exponentieller Verweil­
zeithypothesen dritter Ordnung bei variierender durch­
schnittlicher Verzögerung DVZ und DT=l

Da FORRESTER fast nur exponentielle Verwei lzeithypothesen dritter

Ordnung verwendet, wollen wir uns im folgenden nur auf diesen Typ

konzentrieren. Abbildung 34.5 zeigt eine Zusammenstellung ihrer Ein­

heitsimpulsantworten mit unterschiedlich durchschnittlicher Verzöge­

rung. Man erkennt, daß sämtl iche Verweilzeithypothesen dieses Typs

eine Totzeit von drei Perioden besitzen. Es I iegt auf der Hand, den

Anwendungsspielraum der ModelIierung zu erhöhen, indem man die ex­

ponentiel len Verwei lzeithypothesen so erweitert, daß auch die Tot­

zeit variiert werden kann. Betrachtet man die in (34.24) definierte

Gewicht5funktion für den Fall einer exponentiel len Verweilzeithypo­

these dritter Ordnung, d.h. n=3, 50 wird mit (34.9) T
3

=D/3. Es zeigt
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sich, daß diese Tei lklasse mit der Klasse der Gewichtsfunktionen

(23.62) für T=3 übereinstimmt.

Strebt man eine Variationsmöglichkeit der Totzeit T zur ModelIierung

von primären Verwei lzeithypothesen an, dann kann dies durch Verwen­

dung der Gewichtsfunktionsklasse (23.62) erreicht werden.
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Abb. 34.5 Einheitsimpulsantworten exponentieller Verweilzeithypothe­
sen dritter Ordnung mit variierenden durchschnittlichen
Verzögerungen DVZ

Auch im Hinbl ick auf dieses erweiterte Repertoire exponentieller

Verweilzeithypothesen dritter Ordnung mit Totzeit stellt sich die

Frage, ob eine in der Realität beobachtbare Verzögerung durch eine

parametrisch-singuläre Verweilzeithypothese dieser Hypothesenkla~se

in adäquater Weise beschrieben werden kann.
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Die Bestimmung einer parametrisch-singulären Verwei lzeithypothese

mit Hilfe einer von FORRESTER geforderten subjektiven Schätzung dürf­

te kaum zu einem befriedigenden Ergebnis führen, wenn man den Erfolg

einer Ex-post-Pr9gnose als Beurteilungskriterium mit heranzieht.

Es soll daher ein Verfahren beschrieben werden, mit welchem die Pa­

rameter der durch (23.56) gekennzeichneten Klasse von Verwei lzeit­

hypothesen im Lichte der Beobachtungswerte der Zu- und Abgänge sowie

des Levelanfangsbestandes geschätzt werden.

Es wird von der Zielfunktion

Z
N 2
~ [A(t)-AB(t)] ~ Min

t=O

ausgegangen. Sie besagt, daß während eines Betrachtungszeitraumes

von N Perioden die quadratische Abweichung zwischen den beobachte­

ten Abgängen AB und den vom Modell errechneten Abgängen A zu mini­

mieren ist. Die Aktionsvariablen der Minimierung, welche den Verlauf

von A beeinflussen, sind nicht nur DVZ und T. Die Tatsache, daß der

Levelanfangswert L(O) ebenfalls als Beobachtungswert LB(O) zur Ver­

fügung steht, führt zu zwei weiteren Aktionsvariablen.

Um dies zu zeigen, wandeln wir (23.56) unter Verwendung von (23.61)

in die folgende Kaskadenform um.

L. (r) L. (t-1) + Z. (t} - A. (t}
I I I I

A. (t} 3L. (t-1 )/(DVZ-T+3)
I I

Z,(t) E(t-T)

A( t} = A
3

(t)

i =, ,2,3

Dieser Ansatz (welcher wegen des unverzögerten Zuflusses Z. (t) nicht
I

mit den 'kaskadierenden' Levelgleichungen einer DELAY3-Verzögerung

identisch ist) läßt eine Bestandsinterpretation der Anfangswerte

L(0) zu.

Für die exponentielle Verweilzeithypothese (23.56) gilt die Bedin­

gung
CD

~ A(t)=L(O)
t=O
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Definiert man

L.(O) = a.L(O)
I I

L a .=1
I

O~a.~1
I

dann ist Bedingung (34.35) erfüllt; denn die als Bestandsgrößen zu in­

terpretierenden L. entleeren sich geometrisch abnehmend und fließen
1

dem nachfolgenden Bestand zu bis sie über A(t) das System verlassen.

Ebenfalls erfüllt ist auch die Bedingung

A(t} ~ ° für t=O,l ,2,3, ... (34.38)

Da nämlich alle Li(O) und Zl(t} positiv sind, können auch alle Aj(t)

wegen DVZ>T nur positive Werte annehmen.

Die Parameter a., welche durch (34.37) zugelassen sind, bewirken un-
I

ter Einhaltung von (34.35) und (34.38) unterschiedliche Verläufe von

A(t). Ihre Ausprägungen beschreiben daher verschiedene 'Entstehungs­

geschichten' der Level.füllung über E(t-T).

Da wegen (34.3])

bringen die Parameter a 1 , a2 im Rahmen der Bedingung

o~ a 1 ' a 2 ~ 1

°~ a 1 +- a2 ~ 1

diese 'Entstehungsgeschichte' zum Ausdruck.

Die Ziel funktion (34.33) hängt somit von den Parametern DVZ, T so­

wie a 1 und a2 ab. Das im Anhang angeführte FORTRAN-Programm bestimmt

bei vorgegebenem T die Parameter DVZ, a 1 und a2 mit Hilfe eines Such­

verfahrens.

Für die durchschnittliche Verzögerung DVZ wird der Bereich

3 +- T < DVZ < 20 +- T

angenommen.

Das Programm ist mit verschiedenen Totzeiten zu starten und der be­

ste Zielfunktionswert ZIEL ist auszuwählen. Das verwendete Suchver­

fahren garantiert nicht, daß das gefundene (relative) Minimum auch
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ein absolutes Minimum ist.

Im Rahmen von Tests mit verschiedenen I idealen l Beobachtungsrei-

hen konnte jedoch immer das absolute Minimum realisiert werden. Ne­

ben der Totzeit T wird mit N die Anzahl der in der Zielfunktion zu

berücksichtigenden Perioden festgelegt. Entsprechend müssen NT1 Be­

obachtungswerte des Abflusses AB und NT1TT Beobachtungswerte des Zu­

flusses Z eingelesen werden. Die Zeitindizierung (TIME) läuft von

TIME=T,T-1, ... ,-1 ,0,1 ,2, ... ,N.

Die (anhand der unten angeführten Ausgabe ersichtl iche) Eingabe der

Beobachtungswerte von AB und Z führt mit N=20, T=2 und L0=1670 zu

folgendem Ergebnis:

DVZ: 9.45 Al: 0.405
ANFINGSBESTAND: 1670.00

12: 0.370 ZIEL: 0.1742E 03
TOTZEIT: 2

TIME

-2
-1
o
1
2
3
4
:
6
7
8
S

10
11
12
13
14
15
H'
17
18
19
20

IB

180.89
196.09
2Hl.92
218.24
224.79
227.55
225.:31
229.25
222.97
218.48
227.11
222.05
219.:38
210.87
213.89
209.11
204. :39
201.47
200.82
192.10
192.04

1

179.60
198.93
211.84
219.66
223.27
224.76
225.H'
225.04
225.38
224.17
223.16
221.42
218.32
215.03
211.04
207.02
203.07
200.62
198.88
196.9S
196.38

Z

197.70
213.35
226.98
203.99
186.19
227.95
221.78
228.43
247.74
156.30
246.68
180.13
160.84
204.93
160.36
186.96
176.43
232.07
186.83
165.23
241.24
158.59
213.95

LEV

1670.00
1688.10
1702.52
1717.66
1702.00
1664.91
1668.11
1664.79
1668.18
1690.54
1622.67
1646.19
1604.913
1547.42
1537.32
1486.64
1466.S9
1439.95
1471.40
1459.35
1427.63

LEV B

1670.00
1686.81
1704.07
1720.13
1705.88
1667.28
1667.68
1664.15
1663.32
1688.09
1625.91
1645.48
1603.56
1 :45. 02
1539.08
1485.55
1463.40
1435.44
1466.04
1452.05
1425.18

Zur Simulation der Verweilzeithypothese, deren Parameter auf diese

Weise ermittelt wurden, dient die im Anhang angeführte Makrofunktion

DELATO

Es sind Z: ZufluBrate, DVZ) durchschnittl iche Verz6gerung, T: Tot­

zeit, LO: Anfangsbestand des Verz6gerungslevels im Zeitpunkt 0, Al

und A2: Parameter, die die 'Entstehungsgeschichte l von L0 zum Aus-
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druck bringen, Z 1 bis Z 6 sind die Beobachtungswerte des Zuflusses

Z, während der Perioden -1 bis -6. Die Zuflußrate Z muß vom Zeit­

punkt 0 im Rahmen eines Modells endogen erklärt werden oder als exo­

gene Variable zur Verfügung stehen. Bei einer Totzeit von T sind nur

Z_1 , ... ,Z_T (T~6) Beobachtungswerte für die Zuflußrate anzugeben.

Die Werte für Z_T-1 bis Z_6 können in DELATO beliebig gewählt wer­

den, weil sie keinen Einfluß auf A(O),A(l), ... ausüben und daher un­

berücksichtigt bleiben.

3.4.2. Die Verwerfung der generellen Informationslevel­
prämisse und ihre Konsequenzen

Mancher Leser wird sich anfangs gefragt haben, warum das bisher kon~

sequent zur Illustration bestimmter Modellformen verwendete MA-Modell

nicht auch als Anwendungsbeispiel einer System-Dynamics-Modell ierung

diente. Mit der Erkenntnis, daBein System-Dynamics-Model I in die Ka­

tegorie der zeitkontinuierlichen Modelle fällt, wi rd jedoch zugleich

auch deutl ich, daß es grundsätzlich unmögl ich ist, ohne zusätzliche

Informationen aus· einem systemadäquaten zeitdiskreten MA~Modell, ein

dieses System ebenfalls in adäquater Weise beschreibendes zeitkonti­

nuierl iches Modell eineindeutig abzuleiten.

Denn sämtliche Variablen eines MA-Modells sind über eine Periode ag­

gregierte StromgröBen, und diese Aggregate erlauben keine eineindeu­

tigen Rückschlüsse auf ihre infinitesimalen Änderungen während die­

ser Periode. Ers~tzt man die Infinitesimalprämisse durch die Diskret­

zeitprämisse, so lassen sich keine offenkundig berechtigten Einwände

anführen, daß die durch diesen Austausch entstandene modifizierte Sy­

stem-Dynamics-Konzeption nicht mehr zu verwenden sei. Daher wollen

wir im folgenden der Frage nachgehen, ob unter Annahme der Diskret­

zeitprämisse und unter Anwendung der verbleibenden Elemente der Sy­

stem-Dynamics-Konzeption das uns bekannte MA~Modell mit dieser modi­

fizierten Modellierungkonzeption ~um Ausdruck gebracht werden kann.

Eine unter dieser Fragestellung im folgenden durchgeführte Untersu­

chung führt, wie sich zeigen wird, zu einer sukzessiven Verwerfung
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und Ersetzung bestimmter Modell ierungsel~mente des System-Dynamics­

Ansatzes und damit zur Entwicklung des FOLR-Model I ierungskonzeptes.

Unter der Annahme einer durch die Diskretzeitprämisse modifizierten

System-Dynamics-Konzeption greifen wir nunmehr die Frage auf, wie

sich ein MA-Modell in dieser Konzeption darstellen und interpretie­

ren läßt. Der Konsum C kann als Abfluß eines im MA-Modell nicht ex­

pI izierten Levels lG~dbestand' angesehen werden, während I. und
I a

als Zuflüsse eines ebenfalls nicht aufgeführten Levels 'Investitionen'

aufzufassen sind. Da Y weder eine Bestandsdeutung zuläßt, noch als der

Zugang zu einem Bestand interpretiert werden kann, ist es als eine

Hilfsvariable anzusehen. Machen wir uns klar, daß der Wert der Raten­

variablen mit dem Zeitindex JK erst am Beginn der Periode K bekannt

ist, so kann man einer Ratenvariablen auch den Zeitindex K zuordnen.

Verwenden wir die in MZÄ-Modellen übl iche Schreibweise des laufenden

Zeitargumentes, d.h. den Buchstaben t, so ergibt sich die Korrespon­

denz zwischen den Indizes Kund t bzw. J und t-1. Die allgemeine Form

einer Ratengleichung wird unter dieser Festlegung durch die folgende

Beziehung beschrieben:

R(t) = F[L. (t-1) ,A. (t-l)]
I J

i=l ,2, ,n

j=l ,2, ,m

wobei L. eine Level- und A. eine Hilfsvariable symbolisieren. Man er-
I J

kennt, daß zwischen einer Ratenvariablen und den sie erklärenden Va-

riablen stets eine Verzögerung von nur einer Periode auftreten darf.

Führen wir uns angesichts dieser Feststellung die Gleichung der als

Ratenvariablen angesehenen induzierten Investition

I. (t) = 2[C(t)-C(t-1)]
I

(34.40)

vor Augen, dann ist diese im Rahmen von (34.39) nicht formul ierbar,

weil auf der rechten Seite einer Ratengleichung keine unverzögerte

Variable stehen darf.

Auch die modifizierte Investitionshypothese

I. (t) = 2[C(t-1)-C(t-2)]
I

(34.41)
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kann nicht im Rahmen von System Dynamics formul iert werden, weil ei­

ne der erklärenden Variablen um zwei Perioden verzögert ist, sämtli­

che erklärenden Variablen aber nur um eine Periode verzögert sein

dürfen.

Darüberhinaus wäre noch gegen die Verwendung von C anzuführen, daß

es ebenfalls eine Ratenvariable ist, und eine Ratenvariable nie in

eine Ratengleichung als erklärende Variable eingehen darf. [55,S.4-9J

Nach der System-Dynamics-Konzeption hängen alle Raten direkt oder in­

direkt allein von den Vorperiodenwerten bestimmter Levelgrößen ab,

d. h.

(34.42)

Da die Ratengleichungen jedoch die empirischen Hypothesen eines Sy­

stem-Dynamics-Modells repräsentieren, wird die E~nschränkung der Mo­

del I ierungsmögl ichkeiten deutl ich, denn die als Norm aufzufassende

Beziehung (34.39) verbietet,

(1) daß eine Ratenvariable verzögert oder unverzögert von einer an­

deren Ratenvariablen abhängt und

(2) daß eine Ratenvariable von einer Levelvariablen abhängt, deren

Verzögerung mehr als eine Periode beträgt.

Heben wir rein formal diese Restriktionen auf, so gelangen wir zu

der folgenden Klasse von Hypothesengleichungen

R(t) = F[L. (t-v) ,A. (t-j.J) ,Rk(t-a)J
I J

mi t i,j ,k,v,j.J,a E tIl

(34.43)

Mit FORRESTERs Festlegung werden impl izit sämtliche durch (34.43) er­

laubten, aber durch (34.39) nicht zugelassenen Hypothesen verboten.

Ein solches Verbot ist als eine (unüberprüfte) A-priori-Hypothese

aufzufassen, welche besagt, daß die verbotenen Hypothesen keine ad­

äquate Systemmodell ierung zulassen. FORRESTERs Vorgehen verstößt da­

her gegen das Prinzip der uneingeschränkten Hypothesenformulierung,

welches fordert, daß jede (in einer bestimmten Sprache formulierba­

re) Wenn-Dann-Aussage, soweit sie nicht zu bestimmten logischen und

definitorischen Widersprüchen führt, grundsätzl ich als Hypothese zu­

gelassen ist und über ihre Akzeptierbarkeit nur anhand einer empiri-



509

schen Uberprüfung entschieden werden kann. 5 ,6

Betrachten wir unter FORRESTERs Einschränkung die angeführten Inve­

stitionshypothesen (34.40) und (34.41) eines MA-Modells, dann erken­

nenwir, daß sie durch (34.39) verboten, 'durch (34.43) jedoch zuge­

lassen sind.

An diesem Punkt ist es angemessen zu fragen, warum FORRESTER eine so

einschränkende Verwendung von Hypothesen vorschreibt. Der Leser wird

sich erinnern, daß im Rahmen der System-Dynamics-Diagramme die Schäf­

te der Einflußpfeile von den Symbolen der Level- und Hi lfsgrößen zu

den Ratenvariablen durch unterbrochene Linien gekennzeichnet wurden.

Diese als informationel le Verknüpfungen bezeichneten Einflüsse be­

stimmen die Ratenvariablen. FORRESTER unterstellt, daß bei diesem

Prozeß alle aus der Vergangenheit auf die Entscheidung einwirkenden

Informationen in Gestalt von Informationsbeständen zur Verfügung ste­

hen, falls sie nicht direkt auf den Vorperiodenwert eines materiel­

len Bestands zurückgeführt werden können.

Die allgemeine Form der von FORRESTER postulierten Ratengleichungen

(34.4Z) läßt sich daher in folgender Weise differenzieren:

(34.44 )

Die Größen M1 ,M Z"" umfassen Level wie Lager-, Auftrags- und Geldbe­

stände, die sich jederzeit durch direkte oder indirekte Beobachtun­

gen empirisch aufweisen lassen. Die Größen '1 ,I Z"" sind dagegen

Informationslevel , die sich nur als Nichtbeobachtungsvariablen deu­

ten lassen und deren Charakteristikum darin besteht, daß sie alle

Informationen, die aus der Vergangenheit einen Einfluß auf R(t) aus­

üben, in sich 'mitschleppen' und R(t) 'mitteilen'. Die:;es Vorgehen

ist eine konsequente Praktizierung der Level-Raten-Interpretation,

nach welcher alle die (nächste) Zukunft beeinflussenden Variablen

durch laufende Bestandsgrößen ausgedrückt werden.

5 Zu den Formen logischer und definitorischer Widersprüche von Hypo­
thesen siehe Seite 1z6f.

6 Das Prinzip gilt auch für unterschiedliche Sprachen, also auch für
zeitdiskrete und zeitkontinuierliche Modellsprachen. Aus diesem
Grunde wurde hier auch nicht die Infinitesimalprämisse abgelehnt,
sondern es wurde nur behauptet, daß die meisten sozialen Systeme
durch zeitdiskrete Modelle wirklichkeitsnah abzubilden seien.



510

Um FORRESTERs Ansatz mit der allgemeinen Hypothesengleichung (34.43)

zu vereinbaren, müßte sich zeigen lassen, daß alle in ihr auftreten­

den Ratenvariablen sowie alle Levelvariablen mit einem höheren Ver­

zögerungsgrad als 1 als Zu- und Abflüsse bestimmter Informationslevel

gedeutet werden können. Als Folge davon müßte (34.43) mit einem

Gleichungssystem äquivalent sein, welches durch (34.44) und ein Sy­

stem von Informationslevelgleichungen gebildet wird. Eine solche In­

formationsbestandsinterpretation von Hypothesen mit verzögerten er­

klärenden Variablen ist aber in den meisten Fällen nicht mögl ich.

Betrachten wir beispielsweise die Investitionshypothese

I. (t) = 2[C(t-l)-C(t-2)]
I

(34.45)

Sie müßte, um im Sinne von FORRESTER durch einen Informaiionsbestand

ausgedrückt zu werden, auf die folgende, der Hypothese (34.45) äqui­

valente Form transformiert werden können

Ib (t-l) + C(t-l) - '; (t-l)

F[lb(t-l)] (34.46)

Ib wäre damit ein Informationsbestand mit dem Zugang C und dem Ab­

gang li' Gegen diese Interpretationsweise ist jedoch einzuwenden, daß

die Beziehungen (34.46) aus (34.45) nicht abgeleitet werden können.

Bei I inearen Modellen Ist die Umwandlung eines sequentiellen Mpdells

wie (34.45) in eine Bestandsfortschreibungsgleichung sowie eine Er­

klärung der Bestandsabgangsvariablen in Form einer Differenzenglei­

chung ersten Grades nur in Ausnahmefällen mögl ich.

Als Einwand gegen diese Behauptung wird man vorbringen, daß FORRESTER

bestimmte Beispiele von Informationsleveln anwendet und diese Beispie­

le offenbar doch in der Lage sein mü~sen, mehrperiodisch verzögerte

Einflüsse über bestimmte Informationslevel zum Ausdruck zu bringen.

Diesem Einwand ist entgegenzuhalten, daß FORRESTER nur eine einzige

Klasse von InformationsleveIn verwendet, welche eine exponentielle

Glättungsverzögerung beliebiger Ordnung ausdrücken.

Erinnern wir uns an den sogenannten SMOOTH-Makro, mit welchem anhand

der als exponentielle Glättung bezeichneten Prognosemethode die Vor-
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hersage einer als Beobachtungswert aufzufassenden Größe IN vorgenom­

men wird. Bezeichnen wir die zu prognostizierende Variable als SMOOTH,

so kann dieses Prognoseverfahren durch die Levelgleichung

L SMOOTH.K=SMOOTH.J+DT*(IN.JK-SMOOTH.J)!GLF (34.47)

ausgedrückt werden. SMOOlH ist nach FORRESTER eine Levelvariable, die

einen Informationslevel zum Ausdruck bringt.

Dieser Informationslevel wird von FORRESTER fast ausschließlich in

seinen Modellen verwendet. Er räumt jedoch auch die Möglichkeit ein,

Prognosen mit Hilfe einer exponentiellen Glättung höherer Ordnung

durchzuführen. Diese auch in der Ökonometrie verwendete Prognoseme­

thode läßt sich dadurch ausdrücken, daß im Falle einer Prognose n-ter

Ordnung n Glättungen erster Ordnung mit einem Glättungsfaktor GLF/n

miteinander kaskadiert werden. Die letzte dieser zu kaskadierenden

Levelvariablen entspricht dem zu ermittelnden Prognosewert und kann

offenbar nach FORRESlERs Auffassung auch als Informationsbestand auf­

gefaßt werden.

FORRESTERs Anwendung eines Informationsbestandes beschränkt sich auf

die Deutung, daß die mit Hilfe einer exponentiellen Prognose laufend

ermittelten Werte eine fortzuschreibende Bestandsgröße darstellen.

Aber selbst die Deutung dieser (präziser als Prognoselevel zu be­

zeichnenden) Größen als Variablen, durch welche eine Informations­

bestandsfortschreibung vorgenommen wird, ist äußerst problematisch.

Betrachten wir als Beispiel den einfachen und fast nur verwendeten

SMOOTH-Makro, dann ist die Eingangsgröße dieses Levels IN.JK/GLF.

Im Sinne der Bestandsdeutung dürfte es nur IN.JK sein. Die verzöger­

ten I Informationselemente' , welche als Abflußvariablen den Level ver­

lassen, bilden mit SMOOTH.J/GLF eine empirisch nicht zu interpretie­

rende Größe.

Es zeigt sich also, daß selbst die von FORRESTER verwendeten Infor­

mationslevel keine sinnvolle Deutung als Bestandsgrößen mit Zu- und

Abflüssen zulassen.

Berücksichtigt man jedoch, daß der überwiegende lei I aller sequen­

tiellen Hypothesen keine Interpretation als Informations level erlau-
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ben, dann führt FORRESTERs Festhalten an einer konsequenten Level­

Rateninterpretation von Systemen dazu, daß viele reale Systeme sich

einer Modell ierung entziehen.

Für das zu entwickelnde FOLR-Modellierungskonzept wird daher die Gül­

tigkeit der generellen Informationslevel interpretation abgelehnt.

Es 5011 vielmehr möglich sein, beliebige Ratenhypothesen im Rahmen

der durch (34.43) aufgezeigten Möglichkeiten der Differenzenglei­

chungssprache zu formulieren. Da Hilfsvariablen als die Folge der

(vertikalen und horizontalen) Differenzierungen einer Ratenhypothe­

se anzusehen sind, wird auch die ModelIierung von Hilfsgleichungen

nur durch den Rahmen (34.43) begrenzt.

Da das Zeitinkrement DT voraussetzungsgemäß stets 1 gewählt werden

5011, kann eine Levelvariable durch den folgenden DYNAMO-Ansatz be­

schrieben werden.

A LEV.K=Vl(LEV.K,LEV_l)+ZUF.K-ABF.K

Vl(LEV.K,LEV_1) ist eine Makrofunktion', in welcher LEV_l den An­

fangswert des Levels beschreibt. Die Definition einer eigenen An­

fangswertgleichung erübrigt sich damit. Die Raten ZUF und ABF wer­

den nur mit dem Zeitindex K versehen.

Sie unterscheiden sich nicht mehr in der Form, sondern allein in der

inhaltlichen Bedeutung von den Hi lfsvariablen, nämlich dadurch, daß

sie sich als Bestandveränderungsgrößen deuten lassen.

Da Raten- und Hilfsvariablen durch verzögerte Variablen bel iebigen

Grades erklärt werden können, sind bestimmte Makrofunktionen zu

definieren, die die zulässigen Verzögerungen beschreiben. Für Ver­

zögerungen ersten bis dritten Grades können beispielsweise die fol­

genden Verzögerungsmakros definiert werden:

Vl (E,E_1)

V2(E,E_l,E_2)

V3(E,E_l,E_2,E_3)

Ihre Definitionen, die dem eigentlichen DYNAMO-Programm voranzustel­

1en 5 i nd, 1au ten:
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MACRO Vl{E,E 1)
L Vl.K=Vl.J+DT*{$H.J-Vl.J)
A $H.K=E.K
N Vl=E 1
MENI -

*MACRO V2{E,E 1,E 2)
A V2.K=Vl{V1TE.E-l),E 2)
MEND --

*MACRO V3{E,E 1,E 2,E 3)
A V3.K=Vl{V1TV1{W,E I),E 2),E 3)
MEND - - -

Die Größen E_1,E_2,E_3 sind die Anfangswerte der verzögerten Variab­

len E. Beginnt die Berechnung der endogenen Variablen mit TIME=O, so

repräsentiert E_1 den Wert der verzögerten Variablen im Zeitpunkt

TIME=-1; E_2 und E 3 sind in entsprechender Weise die Werte für E

im Zeitpunkt TIME=-2 bzw. -3.

Das am Anfang beschriebene MA-Modell kann im Rahmen der vorgetrage­

nen Konzeption durch den Ansatz

A Y.K=C.K+IA.K+II.K
A C.K=0.5*Vl{Y.K,Y 1)
A II.K=2*{C.K-Vl{C:K,C_1)

dargestel lt werden. Im Falle der in (34.41) beschriebenen Hypöthesen­

modifikation für die induzierten Investitionen ergibt sich die Glei­

chung:

Der Umstand, daß nunmehr beliebige sequentielle Modellhypothesen ver­

wendet werden können, führt dazu, daß die im System-Dynamics-Konzept

ausschl ießI ich verfügbaren exponentiellen Verwei lzeithypothesen nicht

nur durch Verweilzeithypothesen mit bel iebigen primären Gewichtsfunk­

tionen ersetzt werden können, sondern sich auch diese Verweilzeithy­

pothesen als ein Spezialfall eines Model I ierungsrepertoi res sequen­

tieller Hypothesen der Form (23.10) einordnen lassen.
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Eine beliebige sequentielle Hypothese (23.8), d.h.

kann nunmehr unter den getroffenden Voraussetzungen durch die Makro­

funktion SEHS (SEquentiel le ~ypothese ~-ten Grades) beschrieben wer­

den.

MACRO SEHS(G0,Gl, ••••• ,GS,E 1,E 2, .••. ,E S,E.K)
A SEHS.K=G0*$Z0.K+Gl*$Zl.K+G2*$Z2.K+ •••• :+GS*$ZS.K
A $Z0.K=E.K
A $Zl.K=V1($Z0.K,E 1)
A $Z2.K=Vl($Zl.K,E=2)

.
A $ZS.K=Vl($ZS 1.K,E S)
MEND --

Diese Makrofunktion deckt aber zugleich auch den Spezialfall einer

finiten Verwei lzeithypothese ab.

Werden beispielsweise die Beziehungen zwischen der Entstehung von

Geldforderungen G und dem lahlungseingang dieser Forderungen l an­

hand der Verweilzeithypothese

l(t} = O,2G(t} + O,6G(t-1} + O,2G(t-2}

beschrieben, dann ist die Gewichtsfunktion nicht durch die mit (23.54)

beschriebene Familie darzustellen, kann aber durch den Ansatz

unter Vorgabe einer entsprechenden Makrofunktion definiert werden.

Die Gewichtskoeffizienten g , gl" .. , g der zu modell ierenden se-o s
quentiellen Hypothese können mit Hilfe statistischer Verfahren be-

stimmt werden (s.[37]) oder im Rahmen von Entscheidermodel len auch

durch subjektive Schätzungen.

E_1 ,E_2, ,E_S beschreiben die Werte der Eingangsvariablen E für

t= -1,-2, ,-5. Sie sind numerisch vorzugeben.
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3.4.3. Die Verwerfung des Geschlossenheitsprinzips und
ihre Konsequenzen

FORRESTERs Ziel ist das Studium geschlossener Systeme. [55,S.4-2]

Als wesentl ich für ein geschlossenes System sieht er die Existenz

einer "boundary across which nothing flows (except perhaps a dis­

turbance for exiting the system so we can observeits reaction)"

[55,S.4-2]. Diese 'disturbance' zum Studium der Systemreaktion ist

nichts anderes als ein Testeingang. Da Testeingänge aber sinnvoller­

weise nur im Rahmen von Testantwortmodel len anwendbar sind, zeigt sich,

daß nach FORRESTER nur Testantwortmodelle (und nicht Prognosemodel le)

eine exogene Zuflußrate enthalten dürfen. Es fragt sich aber, ob der­

artige Testantwortmodelle mehr als eine exogene Zuflußrate besitzen

können. FORRESTER verneint dies nicht ausdrücklich, bemerkt aber:

"As a practical matter we usually are limited to one exogenous non­

noise test input." [53,S.141] Da die Testantwortmodelle FORRESTERs

und seiner Schüler aber stets nur eine exogene Zuflußrate aufweisen,

kann man unterstellen, daß in der System-Dynamics-Konzeption fak­

tisch von singulär offenen Modellen ausgegangen wird.

Als Prognosemodelle dagegen dürfen nur geschlossene Modelle verwen­

det werden. Die beschriebenen Einschränkungen beider Modellformen

kennzeichnen das Forrestersche Geschlossenheitsprinzip.

Im Falle von Testantwortmodellen führt das Geschlossenheitsprinzip

dazu, daß für eine ModelIierung die Systeme ausscheiden, in welchen

mehr als eine Variable nicht endogen erklärt werden kann. Es läge

nahe, diese Einschränkung durch die Einführung multipler offener

Testantwortmodelle aufzuheben. Diese Erweiterung scheitert aber dar­

an, daß es sehr schwer fällt sich eine sinnvolle Auswertungsmethode

derartiger Modelle vorzustellen. Man sollte sich damit abfinden, daß

Testantwortmodel le in ihrem Anwendungsbereich beschränkt sind.

Wir wenden uns daher dem Geschlossenheitsprinzip im Falle von Prog­

nosemodellen zu. FORRESTER würde sich weigern, ein MA-Modell als ein

System-Dynamics-Prognosemodell zu akzeptieren, da I eine exogene Va-
a

riable repräsentiert und somit kein geschlossenes Modell vorliegt.
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Wollte man ein MA-Modell zu einer Prognose verwenden, so wäre es

FORRESTERs Auffassung nach notwendig, eine Hypothese zu finden, wel­

che I als eine Funktion bestimmter endogener Modellvariablen er-a
klärt, d.h. endogenisiert.

FORRESTERs Forderung, keine offenen Modelle als Prognosemodelle zu

akzeptieren hat zur Folge, daß ein großer Teil der heutigen sozio­

ökonomischen Systeme nicht durch System-Dynamics-Prognosemodelle ab­

gebi ldet werden kann, wei 1 es nicht gel ingt, bestimmte exogene Va­

riablen in befriedigender Weise zu endogenisieren.

Das Geschlossenheitsprinzip sollte daher aufgegeben und durch ein

Offenheitsprinzip ersetzt werden, welches die Verwendung exogener

Variablen in Prognosemodel len zuläßt. Unter der Diskretzeitprämisse

ist die mit de~ Offenheitsprinzip zugelassene modellmäßige Beschrei­

bung der exogenen Variablenverläufe ohne Schwierigkeiten durchführ­

bar.

Beispielsweise kann man annehmen, daß der Verlauf der autonomen ln­

vestitionen (lA) eines MA-Systems für acht Perioden durch die Zeit­

reihe (in Milliarden)

1,2.5,3.1,2.8,2.5,2.7,3.2

beschrieben wird. Der Verlauf wird in der DYNAMO-Sprache durch

A !A.X-TABLE(TABE,TIME.K,0,8.1)
T TABE=lE9/2.5E9/3.1E9/2~8E9/2.5E9/2.7E9/3.2E9

ausged rückt.

3.4.4. Die Verwerfung der statistischen Sonderstellung
und ihre Konsequenzen

System-Dynamics-Modelle nehmen insofern eine statistische Sonder­

stel lung ein als FORRESTER die zur Gewinnung und Uberprüfung konven­

tioneller dynamischer Modelle üblichen statistischen Methoden strikt

ab 1ehnt.

Betrachten wir als erstes seine Einwände gegen die Anwendung stati-
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stischer Verfahren zur Gewinnung von Hypothesengleichungen, d.h. die

Anwendung von Parameterschätzverfahren. FORRESTER geht davon aus,

daß System-Dynam~ts-Modellestets Entscheidermodelle sein sollen,

d.h. Modelle, welche - wie er sagt - das Mentalmodell (mental model)

eines Entscheiders zum Ausdruck bringen. Es ist daher nicht notwen­

dig, bestfmmte Modellparameter durch statistische Schätzungen zu ge­

winnen, sondern als Parameter sollen die numerischen Werte des Men­

talmodel ls verwendet werden. Denn ein System-Dynamics-Model 1 ist ja

nicht mehr als die formale Expl ikation des Mentalmodells eines Ent­

scheiders. Die Angreifbarkeit dieser Argumentation liegt in der An­

nahme FORRESTERs, ein Entscheider besäße immer ein parametrisch~sin­

guläres Mentalmodell. Di~se Annahme ist aber in vielen Fällen sehr

unrealistisch. Betrachten wir beispielsweise die vertei lte Verzöge­

r~ng zwischen den Bestellungen (B) und den eintreffenden Lieferungen

(L) in einem Unternehmen. Kaum ein Entscheider wird die nicht direkt

beobachtbare Gewichtsfunktion dieser Verzögerung kennen. Vielmehr

dürfte diese Gewichtsfunktion erst mit Hilfe statistischer Methoden

ermittelt werden können. Ohne die Anwendung statistischer Methoden

wird der Entscheider einfach mitteilen müssen, daß er kein parame­

trisch-singuläres Mentalmodell dieser Verzögerung besitzt. Nehmen

wir jedoch den Fall an, der Entscheider glaubt (aus uns nicht bekann­

ten Gründen), die Beziehung zwischen Bund L sei durch eine DELAY3­

Verzögerung mit einer Durchschnittsverzögerung von DVZ=3 Wochen be­

schrieben, dann besitzt sein Mentalmodell eine parametrisch-singulä­

re Verweilzeithypothese.

Selbst in diesem Fall dürfte sich ein rational handelnder Entschei­

der nicht einer Änderung seines Mentalmodel ls verweigern, wenn sich

zeigt, daß die Beobachtungswerte für Bund L mit einem DVZ von 4 Wo­

chen wesentl ich besser erklärt werden. Besteht der Entscheider aller­

dings auf seinem ursprüngl ich gewählten Parameter, so ist dieser in

das Modell aufzunehmen.

Zusammenfassend kann man feststellen, daß ein Entscheider in vielen

Fällen nur unter Verwendung von Parameterschätzverfahren zu einem

parametrisch-singulären Mentalmodel 1 gelangt und in der Regel auch
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bereit sein dürfte, sein ursprüngliches Mentalmodell im Lichte sta­

tistischer Schätzungen zu revidieren. Hier zeigt sich die Nahtstel le

für die Anwendung statistischer Schätzungen in Entscheider- oder Men­

talmodel len. FORRESTERs strikte Ablehnung von Schätzverfahren bleibt

daher unverständl ich.

Wenden wir uns dem zweiten Ansatzpunkt statistischer Verfahren, der

Modellval idierung, zu. für FORRESTER ist nur der Turingtest als

Val idierungskriterium akzeptabel: das Modell wird akzeptiert, wenn

der Entscheider anhand eines Vergleichs zwischen Beobachtungswerten

und Modellvariablenverlauf zu dem Urteil kommt, Modell 'und System

besäßen dasselbe qual itative Verhalten.

Es ist zu vermuten, daß viele Entscheider sich außerstande sehen, an­

hand der zu vergleichenden Zeitreihen ein solches Validitätsurtei 1

zu fällen, weil ihnen die Merkmale für den Begriff 'dasselbe qualita­

tive Verhalten' fehlen.

Bei deterministischen Modellen läge es nahe, ihre Validität nach

einer Ex-post- oder Ex-ante-Prognose zu beurteilen. Da FORRESTER

solche Verfahren aber ablehnt, muß man sich fragen, ob eine 'gute'

oder 'schlechte' Ex-post- oder Ex-ante-Prognose denn völlig belang­

los im Hinbl ick auf das mit einem System-Dynamics-Modell angestreb­

te Zie I ist.

Damit stellt sich die Frage nach der mit der Entwicklung eines Sy­

stem-Dynamics-Modells verfolgten Zielsetzung. FORRESTER drückt sich

hierüber nicht sehr präzise aus. Er sagt, Ziel eines Modells sei es

lIto understand the real ity better ll [55,S.3-5] oder lIto get a better

intuitive feeling for the time-varying behavior of industrial and

economic systemslI. [54,S.28]

Weiter bemerkt er: lIsome of the most useful insights to come from

industrial dynamics show which pol icies in a system have enough le­

verage so that by changing them one can hope to alter system's be­

havior ll
• [58,S.406]

Soll aber das Ziel einer Modellentwicklung darin I iegen, ein System

zu verstehen und letztlich im Sinne bestimmter Vorstel lungen zu ver­

ändern; dann ist dieser Wunschumso eher realisierbar, je stärker
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Modellprognosen und Beobachtungswerte übereinstimmen. Die Ex-post­

Prognose ist daher durchaus ein Indikator für die Akzeptierbarkeit

eines System-Dynamics-Modells.

3.4.5. Zum Status der FOLR-Modellierung

Nach der Ersetzung der Infinitesimalprämisse durch die Diskretzeit­

prämisse, der Aufgabe der generellen Informationslevelprämisse und

des Geschlossenheitsprinzips sowie der Ablehnung einer statistischen

Sonderstel lung kann man sich fragen, welche konstitutiven Elemente

der System-Dynamics-Konzeption in der sich hiermit ergebenden kon­

zeptionellen Modifizierung noch verblieben sind. Nach Ansicht des

Verfassers bleiben gerade die Elemente erhalten, die man als einen

fruchtbaren Beitrag von System Dynamics zur ModelIierung dynamischer

Systeme bezeichnen könnte: das revidierte Level-Raten-Konzept und

das Feedback-Konzept.

Beide Konzepte können schlagwortartig als unter Umständen fruchtba­

res heuristisches Verfahren der Hypothesengewinnung bezeichnet wer­

den. Diese Einschätzung knüpft an die eingangs erhobene Behauptung

an, für die Entwicklung dynamischer Modelle sei es oft günstig, von

einem bestimmten Definitionssystem auszugehen, in welches man dann

die empirischen Hypothesen 'einhängen' könnte. [Vgl. S. 52]

FORRESTERs Level-Raten-Interpretation geht einschränkend von einer

bestimmten Art von Definitionen aus, näml ich den Definitionen, die

sich empirisch als Bestandsfortschreibungsgleichungen interpretie­

ren lassen. Mit dem durch die Level-Raten-Interpretation vorgesch~ie­

benen Auftrag, in einem zu modell ierenden System die Level- oder Be­

standsgrößen zu identifizieren, wird damit gleichzeitig deutlich,

daß diese Bestände Zu- und Abflüsse aufweisen, deren Erklärung durch

eine empirische Hypothese zu erfolgen hat. Durch die Identifizierung

der Level- und Flußraten sowie ihrer Repräsentation in einem spezi­

ellen Flußdiagramm wird eine Art definitorischer Basis geschaffen,

von der aus es vielen Personen offenbar leichter erscheint, die in
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den Ratenvariablen zum Ausdruck kommenden Hypothesen zu entwickeln.

In diesem Sinne erweist sich die Level-Raten-Interpretation als ei­

ne fruchtbare Heuristik zur Hypothesengewinnung und damit zur System­

modelIierung. Ähnl iches gilt fUr die Feedbackdeutung eines Systems

und die mit ihr verbundene Entwicklung eines Feedback- und kompara­

tiven Kausaldiagrammes.

Offenbar scheint die tei lweise nur latent vorhandene Systemkenntnis

von Modellentwicklern durch derartige Interpretationsweisen eines

Systems so ausgeschöpft zu werden, daß es mögl ich wird, positive und

negative Feedbackkreise zwischen den als Leveln, Raten und Hilfsva­

riablen interpretierten Systemgrößen zu erkennen und in einem Fluß­

diagramm festzuhalten. Damit ist neben der Level- und Ratenidentifi­

zier-ung auch ein (noch relativ empirisch gehaltloses) Hypothesensy­

stem der Abhängigkeiten zwischen den Variablen aufgestellt. Die nu­

merische Konkretisierung der Hypothesen als der entscheidende Schritt,

von dem letztlich die empirische Relevanz des Modells abhängt, steht

auf dieser Stufe allerdings noch aus. Das Konzept der Level-Raten­

Interpretation und die Feedbackheuristik als ein Verfahren zur Ge­

winnung komparativ kausaler Schaubildmodel le auf deren Grundlage man

durch eine Verschärfung der Hypothesen zu einem parametrisch-singu­

lären Modell gelangt, ist nach Ansicht des Verfassers ein äußerst

verdienstvoller Beitrag FORRESTERs zur ModelIierung komplexer Syste­

me. Beide Prinzipien sind in der hier entwickelten modifizierten Ver­

sion entha"lten, die als 'i.eedbackorientierte offene Level-Raten-Mo­

dellierung' oder abgekürzt FOLR-Modellierung bezeichnet werden soll.

Mit der Ersetzung der Infinitesimalprämisse durch die Diskretzeitprä­

misse wurde zu einer mathematischen Darstellungsform übergewechselt,

die in vielen Fällen geeigneter ist, konkrete Systeme in adäquater

Form zu repräsentieren. In einem weiteren Schritt wurde auf die For­

derung FORRESTERs verzichtet, verzögerte Einflüsse auf Ratenvariab­

len durch eine Informationslevelinterpretation erklären zu wollen;

denn eine solche Bestandsinterpretation versagt für den Großteil so­

genannter informationeller Verzögerungen. Da das Beharren auf einer

strikten Level-Raten-Interpretation im Falle informationeller Verzö-
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gerungen damit erkauft wird, daß ein Großteil denkbarer sequentieller

Modellhypothesen im System-Dynamics-Konzept nicht verwendet werden

kann, erwies sich die Level-Raten-Interpretation von Informationsbe­

ziehungen als unhaltbar. Auch das von FORRESTER geforderte Geschlos­

senheitsprinzip wurde aus denselben Gründen durch das Offenheitsprin­

zip ersetzt, um auch Systeme modellieren zu können, in welchen sich

bestimmte Variablen nicht endogen erkären lassen. Die FOLR-Modellie­

rung gestattet wegen der eindeutigen Periodenzuordnung des ieitindi­

zes die Verwendung sämtl icher einschlägiger Parameterschätztechniken,

die für rekursive Differenzengleichungsmodelle im Rahmen der Ökono­

metrie entwickelt wurden.

Insgesamt erweist sich die FOLR-Model lierung als eine Konzeption,

durch welche (eventuell) fruchtbare Modellgewinnungs- und Interpre­

tationsprinzipien der System-Dynamics-Konzeption auf klassische MZÄ­

Modelle übertragen werden, ohne daß damit das Modell ierungspotential

dieser Modellformen eingeschränkt wird.




