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2. Formen und ErschlieBungsmethoden
dynamischer MZA-Modelle

Wahrend bisher die allgemeinen Fragen des Aufbaus, der Analyse sowie

der empirischen Akzeptierbarkeit dynamischer Modelle behandelt wur­

den, wendet sich dieses Kapitel denspez.iellen Typen dynamisch~r Mo­

delle zu. Ausgehend von bestimmten polaren Begriffspaaren dynamischer

Modelle, werden die formale Struktur dieser Modelltypen, ihre empi­

rische Interpretation, die speziellen Verfahren ihrer Impl ikatio­

nenaufdeckung und die Existenz typenspezifischer Impl ikationen er-

1autert.

2.1. Lineare und nichtlineare Modellformen

Die Unterscheidung zwischen linearen und nichtlinearen Modellen re­

sultiert a.us dem Umstand~ daB beide Mod~llformen sowohl verschie?e­

ne Methoden der Hypothesengewinnung durch statistische Schatzungen,

als auch"der l~plikationenerschlieBungverlangen. Die Klassifizierung

ist auch insofern fruchtbar, als sich fur beide Model 1formen typen­

spezifische empirisch interpretierbare Implikationen aufweisen las-

sen.

Die Abgrenzung zwischen linearen und nichtlinearen Modellen fUhrt

zur Teilklasse der linearen Modelle, fUr die eine geschlossene Theo­

rie der Impl ikationenaufdeckung zur Verfugung steht. Diese Theorie

1inearer dynamischer Modelle wird in dem folgenden Abschnitt einge­

hend erortert. Ihre Darstellung 1iefert grundlegende Einsichten Ober

die VerknGpfung zwischen Modellpramissen und Modell impl ikationen. So­

wohl die forme1maBige Aufweisung dieser VerknOpfungswege, als auch

die formale Prazisierung der Model limplikationen, schafft eine pra­

zise und eindeutige Basis fOr die konkrete DurchfOhrung, aber auch

genere1 1e Bewertung dynamischer Modellanalysen.
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Die wesentlich kOrzeren AusfOhrungen Ober nichtlineare dynamische Mo­

del Ie charakterisieren die Formen nichtlinearer Hypothesen und versu­

chen, eine Ubersicht uber den Stand der Verfahren zur deduktiven Im­

pI ikationenaufdeckung zu geben.

2.1 .1. Lineare Modellformen

In cler Algebra spricht man immer ciann von einer 1inearen Funktion,

wenn sich die abhangigeVariable aus der Summe der mit einem konstan­

ten Wert multiplizierten unabhangigen Variablen und einer Konstanten

ergibt. Als Beispiel sei der Ausdruck

Y = O,5X + 0,32 + 10

angefuhrt.

In analoger begrifflicher Verwendung konnte man unter einem 1 inearen

dynamischen Modell einen 2usammenhang verstehen, in dem aIle endoge­

nen Variablen durch eine Linearkombination der 'zeitveranderlichen en­

dogenen und exogenen Variablen bestimmt werden. Als Beispiel sei auf

den Ansatz

Yl(t}=O,5y ,(t-l) + O;7E(t-l) + Y2(t-2) +100

YZ(t) = 0,3Y
2

(t-2) + 1, lY 1(t-1)

verwiesen. Diese begriffliche Fassung der Linearitat ist jedoch fur

dynamische Modelle zu einschrankend. 1m vorliegende~ Fall handelt es

sich vielmehr um die a1 1erdings wichtigste Tei1klasse linearer Model­

le: den linearen Modellen mit konstanten Koeffizienten. Zu den 1inea­

ren Model1en zah1en jedoch ebenfa1ls die 1inearen Mode11e mit zeit­

variab1en Koeffizienten.

Das angefUhrte Beispiel wUrde in, diese Modellklasse Ubergehen, falls

die Gleichung von Y2 durch

Y2 ( t) = 0, 3t y 2 ( t - 2) + 1, 1Y 1( t-1)

ersetzt wUrde. Der Koeffizient vor YZ(t-Z) verandert sich in diesem

Fall mit der Zeit, d.h. es hande1t sich urn einen zeitvariablen Koef­

fizienten. Wahrend wir uns den I inearen Model len mit zeitvari'ablen
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Koeffizienten nur relativ kurz zuwenden, werden die linearen Model Ie

mit konstanten Koeffizienten intensiv erortert, da sie in groBem Um­

fang zur Modellierung sozialer Systeme verwendet werden.

A. Lineare Modellformen mit zeitvariablen Koeffizienten

Modelle dieses Typs werden relativ selten zur Beschreibung sozialer

Zusammenhange verwendet.

Als Beispiel sei das bereits beschriebene Modell von VIDALE und WOLFE

angefDhrt. Es wurde durch folgende Beziehung beschrieben. 1

U(t) = rW(t~1) - [rW(~-1)+~-lJU(t-1)

Man erkennt, daBes sich um eine Differenzengleichung ersten Grades

mit einem zeitvariablen Koeffizienten handelt. Denn die Werbeausga­

ben W(t-l) andern sich in der Zeit.

Nach der Einordnung des Modelltyps stel It sich zum einen die Frage,

welche wunschenswerten Impl ikationen es in diesem Ansatz aufzudecken

gibt, und zum anderen, welche Methoden der Erschl ieBung von Modell­

impl ikationen fur diesen Modelltyp. zur Verfugung stehen.

Von praktischem Interesse durfte der Einsatz unterschiedlicher Werbe­

strategien auf den Umsatz sein. Man kann beispielsweise die prozyk-

1ische Werbepol itik

W(t) = aU(t-1) a>O

mit der antizykl ischen Pol itik

W(t) = b[W-U(.t-l)] b>O, W>O

oder der zyklusneutralen Pol itik

W(t) = A A>Q

vergleichen.

Als Impl ikation ist daher vor al lem der Zeitverlauf des Umsatzes U

von Interesse. Damit stellt sich die Frage, ob es magI ich ist, eine

Funktionslosung I inearer Modelle mit zeitvariablen Koeffizienten zu

enty.J i'cke In.

1 Siehe Seite 25
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Generel1 laBt sich sagen: Fur Differenzengleichungen ersten Grades

mit variablen Koeffizienten gibt es einen al Igemeinen Ansatz zur Be­

stimmung einer Funktionslosung. Fur Differenzengleichungen hoheren

Grades existiert keine·generel Ie Methode zur Ermittlung von Funktions-

1" 2osungen.

I
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Abb. 21.1 Zeitverlauf des Umsatzes bei verschiedenen 5attigungs­
niveaus 51 bis 53 im FaIle einer prozyklischen Werbe­
po 1 i t i k W\ t) =0,1 *U (t -1 )

2 Vgl. [83,S. 59]
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Wir wollen uns mit dieser generellen Methode nicht befassen, da sie

wegen ihrer Beschr~nkung auf Gleichungen ~rsten Grades fOr ~rakti­

sche Anwendungen nahezu bedeutungslos ist.

Bei derartigen Modellformen sollte man daher von vornherein versuchen,

den Zeitpfad mit Hilfe von Regressionslosungen zu ermitteln. Gehen

wir von den von VIDALE und WOLFE ermittelten Werten fOr die Parame­

ter von r=O,5, 5=5000 und r=O,l aus und unterstellen einen Anfangs­

wert von U(O)=500, so ermittelt sich die Regressionslosung nach

Die Sensitivitat des Zeitverlaufes von U bezOglich des 5attigungsni­

veaus 5 zeigt Abbildung 21.1. 3

Man erkennt, daB die Umsatzentwicklung eine starke Sensitivitat be­

zUglich des Sattigungsniveaus aufweist. Nach diesem Beispiel wollen

wir uns nunmehr den linearen Model len mit zeitkonstanten Koeffizien­

ten zuwenden.

B. Lineare Modellformen mit zeitkonstanten Koeffizienten

Dieser ModelltYD muB aus zwei GrUnden sehr ausfUhrl ich behandelt wer­

den. Zum einen gehoren viele der heute verwendeten Model Ie diesem

Typ an. Auch unser 5tandardbeispiel eines MA-Model Is fal It, wie man

leicht erkennt, in diese Modellkategorie. Zum zweiten steht, wie er­

wahnt, fUr diesen Modelltyp eine geschlossene Theorie der Impl ika­

tionenaufdeckung zur VerfDgung. Dies ist von genereller Bedeutung,

wei I prinzipiel I jedes nichtl ineare Modell durch ein lineares Modell

approximiert werden kann, so daB Einsichten Uber den Charakter linea­

rer Model le auch fUr die Beurteilung nichtl inearer Model Ie von Inter­

esse sind.

Es ist heute Mode geworden, unter Verwendung einfach zu lernender 5i­

mulationssprachen komplexe nichtl ineare dynamische Modelle zu simul ie­

ren, ohne dabei Ober Kenntnisse des strukturel len Aufbaus und der Ana­

lysemethoden derartiger Model Ie zu verfUgen. Nach Ansicht des Verfas-

3 Zur Simulationstechnik siehe Seite 522ff.
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sers ist unter diesen Umstanden ein ernsthaftes Arbeiten mit dynami­

schen Simulationsmodel len kaum moglich. Auch wenn im Rahmen der heu­

te vorwiegend praktizierten Simulationen dynamischer Modelle die im

weiteren zu erorternde Theorie nicht unmittelbar zur Anwendung kommt,

so liefert ihre Kenntnis dennoch fruchtbare Leitlinien und Beurtei­

lungsprinzipien fur das Arbeiten mit dynamischen Modellen. So erha1­

ten Konzepte und Begriffe, wie G1eichgewichtszustand eines Systems,

Stabi1 itatstypen, Multipl ikator oder Verhaltensweisen von Systemen,

erst durch ihre Expl izierung im Rahmen eines KalkUls die Prazision,

die zu einer klaren Beurteilung ihre~ Stel1enwertes von Bedeutung

i st.

Oa die Bestimmung des Zeitverlaufes einer endogenen Variablen d)e

Ausgangsbasis fOr die Aufdeckung fast samt1 icher relevanter Mode11­

implikationen darstellt, wollen wir uns im folgenden ausfuhrlich mit

der Ermittlung der Funktionslosung einer endogenen Variablen beschaf­

tigen. ,Anhand einer I inearen Endgleichung zweiten Grades werden die

verschiedenen Typen von Funktionslosungen hergelei'tet und auf den

Fal I einer Endgleichung beliebigen Grades verallgemeinert. Auf die­

ser Basis erfolgt eine Erorterung mathematisch eindeutig beschreib­

barer type.nspezifischer Implika.tio~en linearer Modelle. AbschlieBend

wird die Theorie I inearer Systeme unter Verwendung der Operatoren­

und Ma tr i zen rechnung' in e inem umfassenden Rahmen behande It.

a) Zeitpfaderrnittlung durch Funktionslosungen

Die Bestimmung der Funktions1osung einer endogenen Variablen Y er­

f01gt wie erwahnt anhand ihrer Endg,leichung. Fassen wir die Kompo­

nenten der exogenen Variablen in (12.10) mit E(t) zusammen, d.h.

s
E(t) = L 9 n E(t-n)

n=O ,

dann erhalten wir die Erklarungsform

Y(t) = ~lY(t-1) + wzY(t-Z) + ... + wnY(t-n) + E(t)

und die Standardform

(21.1)

(21 .2)
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welche uns im folgenden als Ausgangsbasis dienen 501 len. Man bezeich­

net (21.2) und (21.3) als Endgleichungen n-ten Grades, wenn a bzw.n
dieser Festlegung ist die Endgleichung derw :f: 0 sind. Entsprechend

n
Variablen Y in (12.9) eine Endgleichung 2-ten Grades. Wie erwahnt,

ist es oft notwendig, erst die Endgleichung einer Va~iablen zu er-
• 1 4ml tte n.

Es bieten sich verschiedene Verfahren an. Das sogenannte Einsetzungs­

verfahren wurde bereits zur Berechnung der Endgleichung von Y, (12.9),

angewendet. 5 Seine Anwendbarkeit dUrfte aber wahl zumeist auf Madel-

le mit nicht mehr als vier bis funf Variab1en beschrankt b1eiben,

da der Rechenaufwand mit wachsender Variablenzahl stark ansteigt.

Betrachten wir beispielsweise das anfangs bereits kurz erwahnte, noch

recht ei nfache Modell der Anspruchsn iveauanpassung von SIMON. und MARCH,

welches zuvor kurz beschrieben werden 5011 [128,S.48J.

Das Modell beschreibt die Beziehung zwischen den fUr das Verhalten

einzelner Organisationsteilnehmer relevanten psychischen Variablen:

Zufriedenheitsniveau (2), Anspruchsniveau (A), Suchintensitat (5) und

erwartete Belohnung (B). Die das Modell konstltuierenden Hypothesen

werden durchfo l~·ende Satze'gekennze i chnet:

(1) Je niedriger das Zufriedenheitsniveau (Z) einer Verha1tensein­

heit, um so starker wird ihre Suchintensitat (S) nach neuen Al­

ternativen sein.

(2) Je hoher die Suchintensitat (S), um so hoher ist die erwartete

Belohnung (B).

(3) Je hoher die erwartete Be10hnung (B), um so hoher das Zufrieden­

he its nivea u (Z) .

(4) Je hoher die erwartete Belohnung (B), urn so hoher wird das An­

spruchsniveau (A).

(5) Je h6her das Anspruchsniveau (A), um so h6her das Zufriedenheits­

n i veau (2).

4 Zur exakten mathematischen Kennzeichnung linearer Systeme, von de­
nen eine Endgleichungsform berechenbar ist, siehe Seite 244

5 Vgl. Seite 37 f.
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Dieses verbal logische Aussagensystem wird durch folgende Gleichungen

f I ·, 6orma ISlert:

Satz 1: S(t) = B[Z-Z(t)] mit Z>O, 13>0 (21. 4)

Z stel It das Sattigungsniveau der Zufriedenheit dar, bei dessen Er­

reichen die Suchintensitat zum Erl iegen kommt.

Satz 2: B(t+1) - B(t) = y[S(t)-b-cB(t)] mit y>O, b~O, c>O (21.5)

Aus d~r Beziehung erkennt man, daB eine bestimrnte Suchintensitat in

H5he von [b+cB(t)] erforderlich ist, urn die ~rwartete Belohnung ko~­

stant zu halten.

Satz 3 und 5: Z(t} = B(t) - A(t)

Satz 4: A(t+1) - A(t) = a[B(t)-A(t)+a] ct>o, a>O

(21 .6)

(21.7>

In dieser Gleichung kommt die zusatzl iche Hypothese zum Ausdruck, daB

zur Aufrechterhaltung. des Anspr~chsniveaus eine erwartete Belohnung

in H5he von [A(~)-a] erforderlich 1st.

Wie man sich Dberzeugen kann, ist die Ermittlung der Endgleichung

von A(t) durchaus kein trivialer EinsetzungsprozeB. Die Gleichungen

(21.5) und (21.7) werden zuerst auf die Erklarungsforrn

B(t)

A( t)

[1-cyJ~(t-1) + .y?(t-1) - yp

[1-ct]A(t-1) + aB(t-1) + aa

(21 .. 8)

(21 .9)

DberfDhrt.

(21.6) in (21.4) ergibt:

S(t) = BZ I3B ( t) + fA ( t) (21.10)

Verschiebt man das Zeitargumentin (21.10) urn eine Per10de und setzt

den S(t-1)" erklarenden Ausdruck in (21.8) e1n, so ist d~s System auf

die Gleichungen (21.9) und (21.11) reduziert.

B(t) = [l-cy]B(t-1) + ySZ - yI3B(t-l) + ySA(t-1) - yb

Forrnt man (21.9) um, so ergibt sich

"1 1B(t-1) = - A(t} + -[a-1]A(t-l) - act ct (21.12)

6 Das Modell wurde von SIMON und MARCH in stetiger Form entwickelt
und ist im folgenden in Differenzengleichungsform umgewandelt.
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Wenn der Zeitindex von B(t) eine Periode nach vorne geschoben wird,

so ergibt sich aus (21.12)

B(t) = 2. A(tt1) t 2.[a-l]A(t) - Cl (21.13)
a a

Setztman (21.12) und (21.13) in (21.11) ein, so folgt

2. A(tt1) t 2.[a-1]A(t) - a = [l-cy][2. A(t)+2.[a-1]A(t-1)-a] t y8Za a a. a
1 . 1

- y8[- A(t)+-[a-:-1]A(t-1)-a] t y8A(t-1) - yb
a a

oder

A(ttl) + [a-l]A(t) - aa = [1-cy][A(t)t[a-1]A(t-1)-aa) t yBal -

- y8[A(t)+[a-1]A(t-l)-:-aa] tyBaA(t-1) - ayb

oder

A(tt1) t [a-1 ]A(t) A(t) t [a-1]A(t-l) - cyA(t) - cy[a-1]A(t-1) t

t aa cy t a ByZ - y BA (t) - YS[a-1 ]A( t -1) t

t aayS t yBaA(t-1) - ayb

faSt man die Gl ieder nach Verzogerungen von A(t) zusammen, ergibt.

sich

A(ttl)

t aayS - ayb

·Eine Verschiebung des Zeitargumentes urn eine Periode liefert die Er­

klarungsform der Endgleichung

A(t) = [2-a-cy-y8]A(t-l) t [a-l-cyatcytyB]A(t-2) + aacy t aSYZ +

t aayS - aYb

Das beschriebene Einsetzungsverfahren ist im allgemeinen nur fur die

Ermittlung von Endgleichungen ersten und zw~iten Grades zu empfehlen.

In anderen F~l len ist es zu umstandl ich und sollte durch Verfahren,

welche mit Operatoren arbeiten, ersetzt werden. Diese Verfahren wer­

den jedoch erst spater besprochen, wei 1 .weitere mathematische Voraus­

setzungen zu ihre~ Verst~ndnis erforderlich sind. Da wir uns im fol-
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genden ausschl ieBI ich mit der Funktionslosung von EndgJeichungen er­

sten und zweiten Grades befassen, reicht das Einsetzungsverfahren

furs erste aus.

Zur Ermlttlung der FunktlonsJosung einer endogenen Vari.ablen 1st es

wlchtig, zwischen homogenen und inhomogenen Endgleichungen zu unter­

schelden~ Eine homogene Endgleichung liegt vor, wenn E(t) in (21.2)

oder (21.3) den Wert E(t)=O(t=O,l, ... ) annlmmt. Wlrd E(t) dagegen

durch elnen Zeitpfad beschrieben, der nicht standig Null ist, dann

spricht man von einer Inhomogenen Endgleichung. Der Ausdruck

A( t) = 0, SA (t - 1) + 0, 3A( t - 2)

ist damlt eine homogene Endglelchung, wahrend

A(t) = O,SA(t-1) t O,3A(t-2) + lOt

eine inhomogene Endgleichung darstel It.

aa) Funktionslosung von Endgleichungen ersten Grades

~) Funktionslosung homogener Endgleichungen ersten Grades

(21.14)

(21 .1S)

E-ine homogene Endgleichung ersten Grades nlmmt mit n=l, w
1

=a und

E(t)=O (t=O,l, ... ) in (21.2.) die Form

yet) = aY(t-l)

an. Unterstel len wir, es sel beispielsweise die Gleichung

yet) = O,3Y(t-l)

(21.16)

(21.17)

mit dem Anfangswert Y(D)=100 gegeben. Die Regressionslosung von (21.17)

I~Bt sich recht einfach ermitteln. Wir wollen aber yet) alseine Funk­

tion eines geschlossenen Forme1ausdruckes F(t), d.h.

yet) = F(t) (21.18)

beschreiben, mit der Folge, daB man durch Einsetzung von beispiels­

weise t=lD in die rechte Seite von (21.18) einen numerischen Wert fur

Y(lD) erhalt.

Zu diesem Zweck betrachten wir das folgende Schema
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Y(1) = 0,3Y(o) = 0,3 1y(0)

Y( 2) = 0, 3Y(1) = 0, 32y (0)

Y(3) = 0,3Y(2) = 0,33 y(0)

in welchem die Variablenwerte zu den verschiedenen Zeitpunkten durch

sukzessive Einsetzung der jeweils Ober jeder Zei le stehenden Glei­

chungen auf Y(O) zurOckgefuhrt werden.

Das Schema fuhrt zu der Funktionslosung

t=0,1 ,2, ... (21.19)

Fur Y(O) konnen wir den unterstel lten Wert 100 einsetzen und erhal­

ten die Funktionslosung

Y(t) = 100*0,3 t (21.20)

Man erkennt, daB fur 100 jeder beliebige Anfangswert Y(O) hatte ge­

wahlt werden konnen, ohne die Gultigkeit der Losung zu verletzen. Er­

setzt man in dernentwickel ten Schema den Wert 0,3 durch die einen be­

Hebigen Wert repr~rsenfierende lahl a, so zeigt slch, daBdfe Herlei­

tung auch fur die Vera.llgemeinerung gilt und zu der allgemeinen Lo­

sung von:(21.16)

(21.21)

fuhrt.

Die vorangegangene Betrachtung legt es nahe, zwischen zwei Arten von

Funktionslosungen einer Endgleichung zu unterscheiden: den generel­

len und den speziel len Losungen.

Die spezielle Losung einer Endgleichung beschreibt den numerisch kon­

kreten Verlauf einer endogenen Variablen Y{t). Das ist stets nur dann

mogl ich, wennn die Parameter und Anfangswerte der Endgleichung fOr Y

riumerisch konkretisiert sind. (21.20) ist eine spezielle Losung. Wir

erkennen, daB in diesem Fall sowohl die Anfangswerte als auch die Ko­

effizienten der Endgleichung einen numerischen Wert besitzen.
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Generel Ie Losungen kann man nach anfangswertgenerellen und parameter­

generel len Losungen unterscheiden.

In anfangswertgenere1 len Losungen werden die Anfangswerte nicht durch

Zahlen, sondern durch Buchstaben definiert. Sie umfassen damit den

gesamten Bereich alternativ mogl icher Anfangswerte. Gleichung (21.19)

ist hierfDr ein Beispiel~

Parametergenerelle Losungen zeichnen sich dadurch aus, daB auch die

neben den Anfangswerten in der Losung auftretenden weiteren Parame­

ter durch Buchstaben reprasentiert werden. Eine parametergenerelle

Losung umfaBt daher die Gesamtheit aller moglichen Einzellosungen.

Mit diesen Unterscheidungen zeigt sich schon der Vortei I einer Funk­

tionslosung gegenDber einer Regressionslosung.

Mit einer Regressionslosung kann man nur den Zeitverlauf ermitteln,

der durch eine speziel Ie Funktionslosung beschrieben wi rd. Mit einer

parametergenerellen Losung wie (21.21) kann man gewissermaBen auf ei­

nen Bl ick die Eigenschaft des Systems beurteilen. So wird beispiels­

weise im FaIle \al<1 das System gegen Null konvergieren. Bei einer

Untersuchung des Systems anhand von Regressionslosungen ware es da­

gegen nicht moglich, die5en Konvergenzbereich durch bel iebig viele

Regressions lOsungerrzwingend anzLrleiteJi.

s) Funktions15sung inhomogener Endgleichungen ersten Grades

Wahlen wir in (21.2) n=l, E(t)*O (t=0,1, ... ) und setzen w1=a, dann

erhalten wir die inhomogene Endgleichung ersten Grades

Y(t) = aY(t-l) + E(t) (21.22)

Unser Ziel 1st es, die parametergenerelle Funktionslosung von (~.22)

zu gew i nnen.

Folgendes Verfahren fDhrt zu einer ersten Gliederung des Losungsan­

satzes:

Wir unterstellen die Existenz einer speziellen Losung der inhomoge­

nen Gleichung und wollen sie als V(t) bezeichnen .. FDr Y(t)=0,5Y(t-1)+

+50 ist beispielsweise V(t)=100 eine spezielle Losung.

Die Subtraktion der Komponenten der speziellen Losung Y von dem An­

satz (21.22)
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Y(t) = aY(t-l) T E(t)

-[Y(t) = aY(t-l) + E(t)]

Y(t) - Y(t) = a[Y(t-1)-Y(t-l)] (21.23)

ist deswegen statthaft, weil ex definitione auf jeder Seite der Glei­

chung die gleichen Werte subtrahiert werden.

Definiert man

und setzt (21.24) in (21.23) ein, dann folgt:

Y(t) = aY(t-l)

·Gleichung (21.24) nach Y(t) aufgel5st ergibt:

(21.24)

(21.25)

(21.26)

Setzen wir fur Y(O)=C, dann bestimmt sich die Funktions15sung von

Y(t) na ch (21. 21) mit

(21.27)

Mit (21.27) in (21.26) folgt:

/V(t) := Cat + Y(t)l- (21.28)

Gleichung (21.28) 1 iefert eine generelle Information Uber die Form

der Funktions15sung einer inhomogenen Endgleichung ersten Grades,

nam 1 i ch:

Satz 21.1: Die parametergenerelle Funktionsl5sung einer Endgleichung

ersten Grades bestimmt sich aus der Summe der parametergenerellen

Funktions15sung ihrer homogenen Form Cat und einer speziellen L5sung

Y( t) .

Ein offenes Problem bleibt lediglich, eine speziel Ie Funktionslosung

zu finden. Es sei schon vorweggenommen, daB Idie Kunst l
, eine belie­

bige inhomogene Differenzengleichung zu losen, darin besteht, eine

sie befriedigende speziel Ie Losung zu bestimmen. Da derartige spe­

zielle L5sungen bereits von anderen gefunden wurden, ist es Uberflus­

sig, hier die Auffindung dieser Losungen im einzelnen zu erOrtern.

Wir wollen uns lediglich exemplarisch mit dem Spezialfal I einer inho­

mogenen Endgleichung
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befassen. Die spezielle L5sung gewinnt man, wenn man von der gedank­

lichen Vorstel lung ausgeht, das System bef§nde sich auf einem Ni­

veaugleichgewicht, d.h. es sel Y(t)==Y(t-l)=Y(t) und damit

Y(t) == aY(t) + E

womit sich Y(t) nach

-( EY t) ==-I-a

ermittelt. Setzen wir die spezielle L5sung in Gleichung (21.28) ein,

so erhal ten wi r

( t EY t) == Ca +--­I-a (21 .29)

Es handelt sich um eine parametergenerelle L5sung, in der der Ein­

fluB eines bestimmten Anfangswertes Y(D) in (21.29) jedoch nicht ex­

pI izit zum Ausdruck kommt. Da der Anfangswert Y(O) der L5sung (21.29)

jedoch durch die Wahl von C bestimmt wird, geschieht die Explikation

von Y(O) auf folgende Weise: In der O-ten Periode muB die Beziehung

Y(O) = CaD + E/(I-a)

gelten. Die Auflosung -dieser Glei-chung .. liefert

C = Y(D) - [E/(1-a)] (21.30)

Die Ein5etzung von (21.30) in (21.29) -I iefert die parametergenerelle

Losung

tY(t) == [Y(O)-E/(1-a)]a + E/(1-a)

Lediglich im FaIle a=1 versagt das geschilderte Verfahren. In diesem

Fal I bestimmt sich die spezielle Losung aus:

Y(t) = Et

Die ZuruckfUhrung des Parameters C in Gleichung (21.28) auf die Koef­

fizienten und Anfangswerte ergibt

Y(O) = CaD + E*O

d.h.
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c = Y(O)

und damit die Losung

Y( t) = Y(0) + E*t

Zusammenfassend gilt: Satz 21.2: Die Funktions15sung der inhomogenen

Endgleichung Y(t)=aY(t-1)+E, bestimmt sich nach

{.

[Y(O)-E/(1-a)]a t + E/(l-a)
Y(t) =

Y(O) + Et

Als Beispiel sei die inhomogene Gleichung

fur a =1= 1

fO r a=1

Y(t) = 0, 5Y ( t -1) + 100 mit Y(0)=50

angefGhrt. Entsprechend Satz 21.2 ergibt sich die Funktions15sung:

Y(t) = -150*0,St + 200

Regressionlosung Funktions l5sung

t Y(t) 0,5Y(t-l) 100 Y(t-1) Y(t) -lS0*0,St 0,5 t 200

a 50 - - - 50 -150 1 200

1 125 25 100 50 125 -75 o,5 200
. . ..." ~- ".- .... ..._-

2- 16-Z-;S - --- ----62,5- ..-...__ .,- .
100 125 162,5 -32,5 0,25 200

3 181 ,25 81 ,25 100 1~2,5 181 ,25 -18,75 0,125 200

4 190,625 I 90,625 100 181,25 190,625 -9,375 0,0675 200

Tab. 21.1 Regressions- und Funktionslosung einer inhomogenen Diffe­
renzengleichung ersten Grades

Die Ubereinstimmung der Funktionslosung mit der entsprechenden Re~

gressionslosung bis zur vierten Periode zeigt die Tabelle 21.1.
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ab) Funktionslosung von Endgleichungen zweiten Grades

a) FunktionsJosung homogener Endgleichungen zweiten Grades

aa) Funktionslosung homogener EndgJeichungen zweiten Grades mit un­

gleichen Wurzeln

Wahlen wir in (21.3) E(t)=O (t=O,l, ... ) und n=2, so erhalten wir die

homogene Endgleichung zweiten Grades

(21.31)

Von dieser Gleichungsform 5011 die parametergenerel Ie Funktionslo­

sung gefunden werden. Die Aufgabe besteht also darin, einen Ausdruck

zu finden, der die Endgleichung (21.31)identisch Null macht.

Dieser Ausdruck kann, wie es sich gezeigt hat, nach folgendem Verfah­

ren gefunden werden:

Definieren wir a1=a sowie a2=b, dann folgt

Y(t) + aY(t-1) + bY(t-2) o (21.32)

In einer ersten Einschrankung unterstellen wir, daB der Formelaus­

druck

(21.33)

(21.34)

eineFunktionslosung von (21.32) sei. Die Einsetzung von (21.33) in

(21.32) ergibt

~t + a~t-1 + b~t-2 = 0

Es zeigt sich, daB nicht jedes bel iebige A die Gleichung (21.31) be­

friedigt, sondern nur die Werte, die auch Gleichung (21.34) befrie­

dige~. Urn diese ~-Werte zu ermitteln, ~ividieren wir Gleichung (21.34)
t-2durch ~ . und erhalten die sogenannte charakteristische Gleichung

>.,z + a~ + b = 0

Es lassen sich fUr A zwei Werte, A1 und A2 , finden, die

teristische Gleichung (21.35) befriedigen und sich nach

a ja2 I

A1 ,2 = - '2 ± 1+-b

(21.35)

die charak-

(21.36)

ermitteln. A1 und A2 werden auch als die Wurzeln der charakteristi-
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schen Gleichung bezeichnet. Man erhalt damit (im FaIle ungleicher

Wurzeln) zwei Funktionslo5ungen:

und

t
Y(t) = ~'1 (21.37)

(21.38)

Demonstrieren wir das Auffinden der zwei Funktionslosungen an einem

Beispiel: Mit a=l,S und b=-1 erhalten wir die homogene Endgleichung

Y(t) + 1,SY(t-l) - Y(t-2) = 0 (21.39)

Anhand von .(21.36) bestimmen sich die Wurzeln ~1=O,S und ~2=-2. Set­

zen wir die Losung Y(t)=O,st in Gleichung (21.39) ein, 50 zeigt sich

mi t

t t-1 t-2
O,S + 1,5*0,5 - 0,5 = 0

(0,5 2 + 1 ,5*0,5-1)0,5 t - 2 = 0

(0)0,5 t - 2 = 0

daB Y(t)=0,5 t eine Losung von Gleichung (21.39) darstellt. Dasselbe

gilt fOr ~2=-Z, Ermittelt man eine Regressionslosung von Gleichung

(21.39), so erkennt man, daB der Zeitverlauf durch,die Fest!egu~g von

Y(O) und Y(1) eindeutig bestimmt ist. Es I iegt nahe, nach den Anfangs­

werten der Losungen Y(t)=O,5 t und Y(t)=-zt zu fragen. FOr die erste

ist Y(0)=1, Y(1)=0,5, fur die zweite Y(0)=1, Y(1)=-Z.

Nunmehr wird deutl ich, daB die zwei Funktionsl8sungen spezielle Funk­

tionslosungen reprasentieren, d.h. nur bezOglich bestimmter Anfangs­

werte gel ten.

Da wir jedoch eine anfangswertgenerelle Funktionslosung von G1eichung

(21.32) gewinnen wollen, ist es notwendig, eine FunktionslOsung zu

finden, in der die beiden Anfangswerte in allgemei ner Form, d.h. durch

Buchstabensymbole ausgedruckt werden.

Es gilt: Satz Z1.3: Sind Af und A~ zwei speziel Ie Funktionslosungen

der Endgleichung Y(t)+aY(t~1)+bY(t-2)=0, so ist die Linearkombina-

. t ion

ihre anfangswertgenerel Ie Funktionslosung.
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Da die Gleichungen

A~ + aA~-l + bA~-Z = 0

und

t t-l t-2
AZ + aA Z + bAZ = 0

die Endgleichung befriedigen, gilt dies auch fur die Multipl ikation

aller Gl ieder der Gleichungen mit beliebigen Konstanten C1 und C2 , d.h.

t-1
;.: aC 1Al

t-l
+ aCZA Z

t-Z
+ bC1Al = 0

t-2+ bC ZAZ = 0

Die Addition beider Gleichungen 1iefert den Ausdruck

t t t-l t-1 t-2 t-Z(C 1A1+C ZAZ) + a(C 1A1 +C 2AZ ) + b(C 1A1 +CZA Z ) = 0

Definiert man

(21.40)

(Z1.41)

so erkennt man, daB die Einsetzung dieses Ausdrucks in (zl.40) zur

Endgleichung (21.32) ftihrt, d.h. Gleichung (Z1.41) stellt ebenfalls

eine Funktionslo~ung von (Zl.32) dar. Es fragt sich jedoch, ob (21.41)

auch die anfangswertgenerel le Funktionslosung reprasentiert. Unter-
~ _. . . ~.

stellen wir, daB dies der Fall sei, so erfolgt die numerische Konkre-

tisierung von C1 und C2 anhand der Anfangswerte yeO) und Y(1) auf-

grund der Beziehung

y(0) 0 0= C1A, + CZA2
1 1 (21.42)

y(1 ) = C1Al + CZA2

Man erkennt, daB die geeignete Wahl von C1 und Cz alle moglichen An­

fangswertkombinationen yeO), Y(l) zum Ausdruck bringt, Gleichung

(21.41) also tatsachl ich die anfangswertgenerelle Funktionslosung

bildet. Sind die Anfangswerte yeO) und Y(l) im Einzelfall vorgegeben,

so gelangt man durch die Auflosung des Gleichungssystems (Zl.4Z) zur

Konkretisierung von C1 und Cz

(Zl.43)
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(21.44)

Die parametergenerel Ie Funktion~15sung einer homogenen Endgleichung

zweiten Grades mit ungleichen Wurzeln bestimmt sich demnach durch

(21.45)

Bisher wurde (ohne Begrundung) einschrankend angenommen, daB das be­

schriebene Verfahren von ungleichen Wurzeln ausgeht. Es I iegt damit

die Frage nahe, ob diese Einschrankung nicht aufhebbar ist. Dies ist

jedoch nicht m5g1 ich. Vielmehr erweist sich diese Einschrankung nun­

mehr auch als zwingend notwendig, urn das Gleichungssystem (21.42)

15sbar zu machen. Denn stets nur im FaIle A1=~2 ist (2'.42) nicht

auf lOsbar.

rtf)) Fu nkt ions 15sung homogener Endg 1e ichungen zwe i ten Grades mit

gleichen Wurzeln

In diesem Fall ist als parametergenerelle Funktionslosung ein ande­

rer Ansatz zu wahlen.Uberlegungen haben gezeigt, daB der Ansatz

. t
Y(t) = [C,+tC 2]\

die parametergenerel le Funktionslasung liefert . .Die Prazisierung der

Koeffizienten C, und C2 anhand der Anfangswerte ergibt somit

Y(O) [C 1+o*C 2]AO

Y( 1) [C 1+' *c 2] A1

Die Auflosung nach C1 und C2 liefert

C
1

= Y(O)

C
2

= Y(1)/~ - Y(O)

Die parametergenerelle Funktionslosung einer homogenen Endgleichung

zweiten Grades mit gleichen Wurzeln ergibt sich damit aus

(21.46)
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ay) Numerische Beispiele von Funktionsl5sungen homogener Endglei­

chungen zweiten Grades

1m folgenden sollen drei Beispiele zur Ermittlung der Funktionsl5sung

einer homogenen Differenzengleichung zweiten Grades beschrieben wer-

den. Sie sind so gewah 1t, daB folgende FaIle zur Anwendung kommen:

Fall 1 : Wurzeln sind reel 1 und versch ieden, d.h. a2/4>b

Fall 2 : Wurzeln sind konj ug iert kompl ex, d.h. 2a /4<b

Fa 11 3: Wurzeln sind ree 11 und gleich, d.h. 2a /4=b

Der Begriff konjugiert komplexer Wurzeln wird spater er5rtert. Es ge­

nugt, vorlaufig zu wissen, daB sich in diesem Fall fOr A1 und A2 zwei

Ausdrucke finden lassen, die man als konjugiert komplexe Wurzeln be­

zeichnet.

(1) Beispiel zum Fall gleicher Wurzeln

Es ist die Funktions15sung der Gleichung

Y(t) + 4Y(t-l) + 4Y(t-2) = 0 (21.4])

mit Y(O)~50 unq Y(1)=100 zu bestimmen. Die Wurzeln der charakteri­

stischen Gleichungen werden durch

A = A1 = A
2

= -2 ± V4=Il = -2

ermittelt. Mit der parametergenerellen Funktionslosung (21.46) er­

gibt sich:

Y(t) [SO+t[(100/-2)-50]][-2]t

und damit

Y(t) = [SO-100t][-2]t

Tabel le 21.2. zeigt den Zeitverlauf der Variablen Y fOr 5 Perioden

in Form der Funktions- und Regressionsl5sung
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Funkt ions losung Regressionslosung

_2 t Y\ t) = Y(t) =
t 50-lOOt [50-100t](-2)t -4Y(t-l)-4Y(t-2) -4Y(t-1) -4Y (t-2)

0 50 1 50 50 - -
1 -50 -2 100 100 - -
2 -150 +4 -600 . -600 -400 -200

3 -250 -8 2000 2000 2400 -400

4 -350 +16 -5600 -5600 -8000 2400

Tab. 21.2 Funktions- und Regressionslosung einer homogenen, 1 inearen
Differenzengleichung zweiten Grades mit gleichen Wurzeln

(2) Beispiel zum Fall reeller und verschiedener Wurzeln

Wir betrachten die Gleichung

Y(t) + 1,5Y(t-1) - V'(t-2) = 0

Ihre Wurzeln bestimmen sich durch

j 2 i

1.. 1 = -0,75 + ~ +1 = +0,5

j 1 52 i

A1'=-0,7-5 -- ... -4-'- +1 =- -2,0

mit V(0)=50 und Y(1)=100

Funktionslosung Regressionslosung

t 80(0,5) t -30(-2)t V( t) Y(t) -1 , 5Y ( t-1) V(t-2)

a 80 -30 50 50 - -
1 40 60 100 100 - -
2 20 -120 -100 -100 -150 +50

3 10 240 250 250 150 100

4 5 -480 -475 -475 -375 -100

Tab. 21.3 Funktions- und Regressionslosung einer homogenen, 1 inearen
Differenzengleichung zweiten Grades mit ungleichen Wurzeln

Da 1.. 1 ungleich 1.. 2 1st, und 1.. 1 und 1.. 2 reell sind, g·ilt die parameter­

generelle Funktionslosung (21.45), d.h.
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= -2*50-100(0 5)t 0,5*50- 100(_2)t
-2-0,5 ' + 0,5+2

und damit

Y(t) = 80(O,5)t - 30(-2)t

Aus Tabelle 21.3 ergibt sich der identische Zeitverlauf im Falle ei­

ner Funktions- und Regressionslosung.

(3) Beispiel zum Fall konjugiert komplexer Wurzeln

Als Ausgangspunkt wahlen wir die Endgleichung

y(t) - 4Y(t-1) + 13Y(t-2) =0 mit Y(0)=50 und Y(1)=100 (21.48)

Die Wurzeln dieser Endgleichung bestimmen sich mit

A1=2+~=2+3R

A2 = 2 -~ = 2 - 3v::T

Bezeichnen wir zur Abkurzung yCT=i, so folgt

~1=2+3i un9 A2 = 2 - 3 i

Man spricht in diesem Fall von konjugiert komplexen Wurzeln. Ent­

sprechend der parametergenerellen Funktionslosung (21.45) ergibt sich

durch Einsetzen die spezielle Funktionslosung der Endgleichung (21.48)

oder

Y(t)

und damit

= (Z-3i)50- 100(Z 3·)t (2+3i)50- 100(Z_3·)t
(2-3j)-(Z+3i) + I + (Z+3i)-(Z-30 I

(-2+3i)5 0+10 0(Z 3·)t (Z+3i)50- 100(Z_3,)t
= 6i + I + 6i I

Zur Berechnung von Y(t) ist es notwendig, eine P6tenzierung von i

durchzufuhren.

Mit i 1=H wird j2=_1, j3=_i, j4=1, j5=i. Anhand dieser Beziehun­

gen laBt sich die Funktionslosung in Tabelle 21.4 ermitteln.
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(2+3i)t 25(2+3i)t (2-3i) t 25(2-3i)t
Y1t) =

t 25(2+3i)+25(2-3i)

0 1 25 1 25 +50

1 2+3i 50+75i 2-3i 50-75i 100

2 -5+12i -125+300i -5-12 i -125-300i -250

3 -46+9i -1150+225i -46-9i -1150-225i -2300

4 -119-120i -2975-3000i ;"119-120i -2975+3000i -5950

5 122-597 i 3050-14925i 122+597i 3050+14925i 6100

Tab. 21.4 Funktions15sung einer homogenen; 1inearen Differenzenglei­
chung zweiten Grades mit konjugiert komplexen Wurzeln

Die entsprechende Regressionsl5sung zeigt Tabel Ie 21 r 5

Y(t) ;:::
t 4Y(t-l) -13Y (t-2) 4Y(t-l)-13Y(t-2)

0 - - 50

1 - - 100

2 400 -650 -250

3 -1000 -1300 -2300

4 -9200 T32S0 -5950-

5 -23800 +29900 +6100

Tabelle 21.5 Regressions15sung einer homogenen, linearen Differen­
zengleichung zweiten Grades mit konjugiert komplexen
Wurzeln

Man erkennt, daB die Funktions- und Regressionslosungen miteinan-

der ubereinstimmen. Angesichts der beiden Losungen liegt die Frage

nahe, welche Vorteile in diesem Fal 1 eine Funktionslosung gegenOber

ihrer entsprechenden Regressionslosung aufweist. Denn die Funktions­

losung (21.49) ermoglicht wegen des Auftretens von i keine uberschau­

bare Beurteilung des Zeitverlaufes von Y(t).

1m Falle von Endgleichungen, in deren Wurzeln der Ausdruck i auf tritt,

wird diese Uberschaubarkeit wiederhergestellt, wenn man die Funktions­

l6sung in ihre sogenannte trigonometrische Form Oberfuhrt. Es I~Bt
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s'ich vorausgreifend beispielsweise zeigen, daB die Funktionslosung un­

seres Beispiels, d.h.

auch durch die Funktion

beschrieben werden kann. Diese Darstel lungsform erlaubt eine besse­

re Beurteilung des Systemverhaltens. Daher wollen wir uns im nach­

sten Abschnitt mit dem Problem der Bestimmung der trigonometrischen

Formen von Funktionslosungen befassen.

ao) Trigonometrische Form der Funktionslosung homogener Endgleichun­

gen zweiten Grades mit konjugiert komplexen Wurzeln

Stellt man bei der Analyse einer Endgleichung zweiten Grades fest,

daB b>a2/4, dann erhalt man als Wurzeln der charakteristischen Glei­

chung AusdrGcke wie zum Beispiel

A1 2 + 3 i

A2 = 2 - 3 i

Der-ar-Eige"AusafUcke bezeichnet man als ko-mplexe zahTen. Kompfexe- Zah­

len setzen sich aus zwei Komponenten zusammen: einem.Realteil, d.h.

einer reel len Zahl und einem imaginaren Teil, d.h. einer mit i multi­

plizierten reellen Zahl. Zwei komplexe Zahlen werden als k9njugiert

komplex bezeichnet, wenn sie sich nur 1m Vorzeichen ihres Imaginartei­

les unterscheiden. 1st eine komplexe Zahl die Wurzel einer charakte­

ristischen Gleichung, so ist ihr konjugiert komplexes Gegenstuck stets

auch eine Wurzel dieser charakteristischen Gleichung. Komplexe Zahlen

lassen sich geometrisch auf der sogenannten GauBschen Zahlenebene dar­

stellen. Diese GauBsche Zahlenebene wird durch ein rechtwinkliges Ko­

ordinatensystem beschrieben, dessen Abszissenwerte die Realteile ei­

ner komplexen Zahl beschreiben, wahrend die Ordinatenwerte die Achse

der imaginaren Zahlen bilden. Jeder komplexen Zahl mit einem bestimm­

ten Real- und Imaginarteil entspricht daher ein bestimmter Punkt in

der GauBschen Zahlenebene.
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lMAGINARTEIL

- - - - - - - X 0+(3 i

REALTEIL

_ _ _ _ _ _ _ ~ 0-(3 i

Abb. 21.2 Darstellung eines Paars konjugiert komplexer Wurzeln in
der GauBschen Zahlenebene

Bezeichnen wit eine"konjugiert komplexe Wurzel milA1 2=c;L"±13i, so isf,
der geometrische Crt beider Wurzeln aus Abbild~ng 21.2 zu erkennen.

Komplexe Zahlen konnen in der GauBschen Zahlenebene auch durch ande­

re MaBsysteme als das bisher beschriebene kartesische Koordinatensy­

stem gekennzeichnet werden.Als ein weiteres System zur Kennzeich­

nung der Lage komplexer Zahlen bietet sich das Polarkoordinatensy­

stem an. Eine komplexe Zahl kann in einem Polarkoordinatensystem er­

schopfend durch die Lange eines vorn Nullpunkt ausgehenden Fahrstrah­

les und dem Winkel ~ dieses Fahrstrahles mit der positiven Halbach­

se dargestel It werden.

Abbi ldung 21.3 zeigt eine derartige Polarkoordinatendarstellung einer

komplexen Zahl. Der Winkel des Fahrstrahles wird auch Abweichung ge-

nannt.
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a

Abb. 21.3 Kennzeichnung einer komplexen Zahl in einem Polarkoordi­
na tensys tem

Die GroBe r bezeichnet man als den Modul oder Absolutbetrag der kom­

plexen Zahl. Er berechnet sich nach dem Satz des Pythagoras aus:

r ::; J0.2+ S2' (21.50)

Weiterhin bestehen die Beziehungen

und

sin'P
(3= -r (21. 51)

0.coslfJ = ­r.
Die konjugiert komplexen Wurzeln

1.1 ::; a. + 13 i

und

1.2 ::; a. - Si

werden mit (21.51) und (21.52)

1. 1 r(coslfJ+isinlfJ)

1.2 r(coslfJ-isinlfJ)

(21.52)
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Nach dem Satz von Mo i vre gil t fUr die Potenzen von A1 und A2 :

At (a,+Bi ) t t ( ..)= r COSip t+ IS I nip t1 fur t=l ,2,3, ... (21.53)
At (a-Bi)t t ( ..)= = r co sip t - I 5 I niP t

2

Setzen wir die AusdrUcke fUr A~ und A~ in die allgemeine Funktions­

lOsung (21.41) ei n, dann folgt

yet) C
1

(a,+Bi)t + C
2

(a,-Bi)t

oder

oder

(21 .54)

Unter Verwendung der Definition von C1 und C2 in (21 .4~ und (21.44)

folgt

AZY(O)-Y(l)
A2-A1

+ A1 Y(O)-Y(1)
A1-A 2

und

(21.55)

_ A1 Y(O)-V (1 ))i
A,-A Z

Y(o)C1 + C2 =

(C
1

-C
Z
)i in

(C.l-~C2)_i -==

(21. 54) gil t

( A2~~O_~~Y(1)
2 1

mi t :\, 2=a,± Bi fo 1gt,und

Fti r

(21.56)

Beide Koeffizienten vor den trigonometrischen Funktionen sind daher.
reel1. Mit (21.55) und (21.56) in (21.54) erhalten wir die Funktions-

losung

(21 .57)

Definiert man

A = yeO) und B = aY(O)+ZY(l)

2)1*2- bI'

undaa, = --
Z

und berDcksichtigt man, daB
/~Z---.,

B = y't~ - b I



191

gilt, dann folgt

Y(t) = r t (Acos<p t+Bcos<p t)

Der Winkel <p berechnet sich wegen (21.52) mit

a. -a
<p = arccos(-) = arccos(--2)r r

Zur Erh5hung der Ubersichtlichkeit w~re es wOnschenswert, eine Funk­

tions15sung von Y(t) zu gewinnen, die im Gegensatz zu (21.57) nur von

einer trigonom~trischen Funktion abh~ngig ist. Das ist auf folgende

Weise m5g1 ich. Setzen wir

C1 + Cz Dcosw

C1 - Cz = Dsinw

so erhalten wir mit (21.54)

Y(t) = rt(Dcoswcos<Pt+Dsinwsi~t)

oder

Y(t) = rtD(coswcos<ptTsinwsin<pt)

(21.58)

(21 .59)

Unter Verwendung des elementaren trigonometrischen Zusammenhanges

coswcos<Pt + sinwsin<pt = cos(<pt-w)

f6lg1aUs (Zl:S9)

Y(t) = rtDcos(<pt-w) (21 .60)

Die Parameter D und w in (21.60) bestimmen sich aus (21.58) mi t:

und

sinwtanw = -­cosw
C,-C2
C1+C Z

(21.61)

(21.62)

Man erkennt, daB die Cosinusfunktion dieselben Werte fur t=0,2n,4rr

usw.annimmt. Da sich die Funktion aIle Zn/<p Zeiteinheiten wiederholt,

stellt sie eine periodische Funktion mit einer Zykluslange von 2n/<p

Zeiteinheiten dar. Als Beispiel ziehen wir die auf Seite 185 ange­

fOhrte Endgleichung

Y(t) - 4Y(t-l) + 13Y(t-2) 0



jedoch mit den Anfangswerten Y(0)=20 und Y(1)=50 heran. Sie besitzt,

wie bereits festgestellt, die konJugiert kompJexen Wurzeln

A12 =2±3i,
Der Modul r berechnet sich nach (21.50) aus

r = .h2+3 2' = 3,60555

Nach (21.51) wird

si~ = 3:6 = 0,832

Anhand einer trigonometrischen Tabel Ie bestimmen wir den Winkel ~ mit

1p~56018 I.

Mit (21.55) und (21.56) werden

C1 + C2 = 20

und
. . 10

{C 1-C Z)i = (50-2*20)/3 =:f
Unter Zugrundelegung von Gleichung (21.54) ergibt sich

Y(t) = 3,60555t[20COS56°18It+1~sin56°18It]

Zur Ermittlung der nur von einer trigonometischen Funktion abhangi­

gen Losung del" EridgTeichUlig 5 i lid w undA z'U erlilittelh. Es i 5tgemaB

(21.62)

tanw

Aus einer trigonometrischen Tabelle ermitteln wir: w~90281.

Nach (21.61) wi rd

j ,..------,:'2----2::-l1
D = 2 2[ (3{) +(¥) ]

d.h.

D = 20,276

Die Funktionslosung lautet mit (21.60)

Y(t) = 3,60555t*20,276cos(56°18It-90281)
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Zum besseren Verstandnis des dynamischen Verhaltens eines Zeitverlau­

fes, welcher durch die Gleichungen (21.57) oder (21.60) beschrieben

. wird, ist es sinnvoll, die Sinus- und Cosinuskomponenten im Hinbl ick

auf ihren Beitrag zum Zeitverlauf etwas eingehender zu untersuchen.

Die Cosinus- und Sinusfunktion sind Funktionen, deren Ordinatenwer­

te in Abhangigkeit von dem Winkel ~ bestimmt werden.

Man erkennt, daB es sich urn periodische Funktionen mit einer Periode

von 3600 Grad handelt, die sich zwischen 1 und -1 bewegen.

In Gleichung (21.54) treten die AusdrOcke cos~t und si~t auf. Der

Ausdruck ~t charakterisiert ein bestimmtes WinkelmaB. 1st ~ beispiels­

weise 600
, so beschreibt cos60t mit t=O,l ,2, ... die Ordinatenwerte

der Sinusfunktion bei den'Abszissenwerten 0°, 60°, 120° usw .. Gra­

phisch gesehen wird aus der Cosinusfunktion in gleichbleibenden Ab­

szissenabstanden ein Ordinatenwert entnommen. In Abbildung· 21.4 sind

diese Ordinatenwerte durch Punkte gekennzeichnet .

.0

- 1

,f

o 1 2 3 4 5 6 7 t

Abb. 21.4 Ordinatenwerte einer Cosinusfunktion in den Punkten ~=60t

fOr t=O,l ,2, ...



Analoges gilt fOr die Sinusfunktion. Die AusdrOcke cos~t und si~t

besitzen daher einen zwischen +1 und -1 fluktuierenden Verlauf. Ihre

Multiplikation mit den Konstanten yeO) bzw. [Y(1)-aY(O)]/8 in Glei­

chung (21.57) vergroBert oder verkleinert die Amplitude ihres weI len­

formigen Verlaufes. Der Ausdruck in der geschweiften Klammer der Glei­

chung (21.57) reprasentiert somit eine Uberlagerung von zwei Schwin­

gungen mit begrenztem Schwingungsau55chlag. Entscheidend fOr die zeit­

liche Entwicklung erweist sich damit der Modui r. 1st r>l, so explo­

diert das System, wah rend es im Falle r<l gegen Null konvergiert.

8) Funktionslosung inhomogener Endgleichungen zweiten Grades

Eine inhomogene Endgleichung zweiten Grades, d.h.

yet) + aY(t-l) + bY(t-2) = E(t) (21.63)

besitzt eine Funktionslosung, die sich wie im FaIle inhomogener End­

gleichungen ersten Grades aus der Summe der speziellen Losung von

Gleichung (21.63) und der Funktionslosung der entsprechenden homoge­

nen Endgleichung von (21.63) zusammensetzt.

Der Beweis 'ergibt sich analog zum Fall einer Endgleichung ersten Gra­

des undwirddaherku rz-gefaBt.

1st yet) eine spezielle Losung von (21.63), so folgt aus

yet) + aY(t-;) + bY(t-2) = E(t)

yet) + aY(t-l) + bY(t-2) = E(t)

durch Subtr~ktion der unteren von der oberen Gleichung

yet) - Vet) + a[Y(t-1)-Y(t-l)] + b[Y(t-2)-Y(t-2)] = a

Definiert man

yet) = yet) - Vet)

so folgt mit (21.64)

yet) + aY(t-l) + bY(t-2)=O

(21 .64)

(21.65)

(21 .66)

Die allgemeine Losung von yet) ist im Fal Ie ungleicher Wurzeln

(21.67)



Aus Gleichung (21.65) folgt daher

Y( t) = C, A~ + C21, ~ + Y(t)

195

(21.68)

1m FaIle gleicher Wurzeln ergibt sich unter Berucksichtigung der in

diesem FaIle zu verwendenden Funktions16sung der homogenen Glei­

chung:

(21.69)

1m FaIle ungleicher reeller Wurzeln werden die Konstanten C1 und C2
durch:

Y(O) = C1 + C2 + Y(t)

Y(l) = C1A1 + CZAZ + Y(t)

auf die Anfangswerte und die spezielle L6sung zurUckgefUhrt und be­

stirnmen sich mit

und

C,

C· =
2

[Y (0) -Y( t)]A2-Y (1) +Y( t)
A2-A 1

- [Y ( 0) - Y(t))A , +Y ( , ) -V(t)
A2-A 1

(21.70)

LmFa.lle g.le-i.cher.Wurzeln bestimmen sichC, undC 2 aus demGleichungs""'

system:

Y(o) = C, + Y(t)

Y(l) = (C,+C 2)A + Y(t)

d.h.

und

C, = Y(O) - Y(t)

(21.71)

C =Y(l)-Y(t) - Y(O) + Y(t)
2 t-

Die speziel Ie Losung Y(t) 5011 nur fUr den Fall E(t)=E=konst. be­

trachtet werden. Sind die Wurzeln un~leich, so ist'als speziel Ie L6­

sung der Ansatz

Y( t} - E
- l+a+b

zu wahlen. Bei gleichen Wurzeln dagegen ist auf den Ansatz

(21.72)
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4E

(a+2) 2
zurOckzugreifen.

Ein Beispiel 5011 das geschilderte Verfahren abschlieBen. Zu ermit­

teln ist die Funktions15sung der inhomogenen Endgleichung

Y(t} + 1,5Y(t-1) - Y(t-2) = 120

mit den Anfangswerten Y(0)=30 und Y(1)=80. Die Wurzeln ihrer charak­

teristischen Gleichung bestimmen sich nach (Zl.36) mit A,=0,5 und

A2=-2,0. Da die Wurzeln ungleich sind, wird die spezielle L5sung ent­

sprechend Gleichung (Zi.72) bestimmt, d.h.

Y(t) 120 120 80
'+',5-1 =1;5=

Die Funktions15sung bestimmt sich nach Gleichung (21.68) durch
,

Y(t) = C,(O,S)t + C
2

(-2)t + 80

Unter weiterer Spezifizierung von C, und C2 gemaB (21.70) folgt

Y(t) = -40(0,S) t - 10(-2)t + 80

Funkt LQns 1QstJ.n9_ ... - ..- Reg ress..ions.l cisung. ...

o,st (-2) t -40(0,S)t
. t 80 y( t) Iv (t) -1,5y(t-1) v (t-2) 120t -10(-2)

0 1 , -40 -10 80 30 30 - - -,, 0', S -2 -20 20 80 80 80 - - -
2 0,25 4 -10 -40 80 30 30 -120 30 120

3 0,125 -8 - 5 80 80 155 155 - 45 80 12(

4 0,062S .16 - ~,5 -160 80 -82,5 -82,5 -Z32,5 30 12C

Tab. 21.6 Funktions- und Regressionslosung einer inhomogenen, li­
nearen Endgleichung zweiten Grades mit E(t)=120

Tabelle 21.7 liefert eine zusammenfassende Ubersicht der verschiede­

nen parametergenerellen Funktionslo5ungen der homogenen Gleichung.

Den Fall einer inhomogenen Endgleichung mit einer exogenen Variablen

E(t)=E (E=konst.) zeigt Tabelle 21.8
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Beding- 'Wurzeln der Bestimmung der Parameter generelle
ung charakt. Glei- Kon.s tan ten Funktionslosung

chung

'a'0
. A'Y(O)-Y(l)

A1=-2+ 4- b C = 2
Z 1 A

Z
-A

1 t t
b <.!- Y(t) =C 1A1+CZA'2

4 a~I.Z= - '2 - 1+ - b Y(l)-A
1
Y(O)

C =
Z AZ-A,

Z 1. 1=- ~ + iVlt-bl' A = yeO) Y(t)=r
t

[AeoslpttBs i ncptJ
b > 2..-

A1=-I- i~It--bl B = aY(O)+ZY(l) "f =a reeos (-.!-)4
Zr

2~f-bl' !/aZ
'la

2-4b(r= r + 4

2 C1
= Y(O)

a
A =A "A=-~ Y(t}=[C 1+tC

2
]A

t
b= "4 122

C
2

= !.ilL -Y(O)
A

Tab.' 21.7 Parametergenere 11 e Funkt ions lOsungen der homogenen End­
gleichung zweiten Grades Y(~)+aY(t-~)+bY(t-2)=O

Bedin- Wurze1n cler Spezie11e Konstante C, und Cz Parametergenerelle
gung Endgleichung L5sung Funktions15sung

a~ C = (Y(0)-Y(t))1.2-Y(l)+Y(t)
2 A,=-'2+ "4- ba - ) E , A2-A 1 t t -

b < 1+ Y(t =l+a+b Y(t)=C,A,+CZAZ+Y(t)

a~ CZ=Y(O)-C,-V(t)1. 2=-2'- "4- b

i a ;.J aZ ' A=Y{O)-V(t} Y(t)=rt[Aeoscpt+Bsincpt]1. 1=- '2+ i Iq:- ~ bI
, 2 - E Ca

a a~ Y(t) =, +a+b B=a(V(t)-Y(0))-2Y(1)+2Y(~)
cp=a reeos zr)

b >T AZ=-2- i 1"4 -bl VaZ i t a2 \a
Z
-4b I'-2 11~--bl r= 1I+-q-

a2 a
lV(t)= 4E C,=Y (0) -V( t)

) t 4E
b = :z;- 1.=- '2

(at2)2 C _Y(l)-Y(t) -Y(O)tY(t)
Y(t)=(C,+C 2 A + Z

2 A (a+2)

Tab. 21.8 Parametergenerelle Funktions1osungen der inhomogenen End­
gleichung zweiten Grades Y(t)+aY(t-1)tbY(t-2)=E
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ac) Funktionslosung von Endgleichungen n-ten Grades

Das fUr Endgleiehungen ersten und zweiten Grades besproehene LBsungs­

verfahren gilt im Prinzip auehfOr Endgleichungen bel iebigen Grades:

Aus der homogenen Endgleichung n-ten Grades

Y(t) + a 1Y(t-l) + ... + anY(t-n) = a

gewinnt man durch Substitution von Y(t_i)=;,.n-i die eharakteristisehe

Gleichung

n n-1
A + alA +... t an_,A t an = 0

Naeh dem GauBschen Hauptsatz der Algebra besitzt ein derartiges Po­

Iynom n-ten Grades genau n Wurzeln A, ,A 2 , .. ,An . Der auszuwahlende LB­

sungsansatz hangt yon der Art der Wurzeln abo FOr die Teilmenge der

reel len und verschiedenen Wurzeln ist der LBsungsansatz

t t t + C it
C';"1 t C2 ;"2 t .... t Cn_, \ .... 1 nAn

aufzunehmen.

1m FaIle einer s-faeh auftretenden gleiehen Wurzel ist der Ausdruek

( 2 s-1 tc,+C 2ttC 3t t ... tCst );,.

in dLeLQsung m-it elnzufUgen.

Fal Is ein Paar konjugiert komplexer Wurzeln s-mal Yorliegt, ist der

Ausdruek

t· 2 s-l 2 s-,
r [(A,+A2t tA3t -1: ••• +Ast )eosl,Ot + (B,tB 2ttB 3t t ... tBst }sinl,Ot]

in den LBsungsansatz einzufOgen. In einer Endgleiehung n-ten Grades

treten demnach n Konstante auf, die unter Vorgabe der Anfangswerte

Y(O),Y(1), ... ,Y(n-1) bestimmt werden kannen.

1m Fal Ie der inhomogenen Endgleiehung

Y(t) + a,YCt-1) + ... tanY(t-n) = E(t)

setzt sich die FunktionslBsung stets aus einer speziellen Lasung Y(t)

.und der entsprechenden Funkt ions 1asung der homogenen Endg lei chung

y (t) zu sammen .

Besteht der die exogene Variable besehreibende Formelausdruek aus el­

ner linearen Kombination der Terme at, sinet, coset, t P, dann ist
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zur Auffindung der speziellen Lasung ein als IMethode der unbestimm­

ten Koeffizienten' bezeichnetes Verfahren anwendbar. [83,S.32f]

Endgleichungen, deren Grad h5her als drei ist, lassen sich allerdings

nicht mehr in Form parametergenereller Funktionslasungen darstelJen ..

Nach einem Theorem von GALOI ist es nicht magl ich, die Wurzeln von

Polynomen vierten Grades und haher als Funktionen ihrer Koeffizien­

ten auszudrtlcken. [162,S.92f]

Die Wurzeln der charakteristischen Gleichung sind in diesen Fal len

nur durch Naherungen zu bestimmen. Es stehen dazu leistungsfahige

EDV-Programme zur Verfugung. Die wohl aufwendigste Bestimmung der

Wurzeln einer charakteristischen, Gleichung wurde von HOWERY durchge­

fOhrt. 1m Rahmen der Linearisierung eines dynamischen Modells der

amerikanischen Wirtschaft untersuchte er eine charakteristische Glei­

chung 56sten Grades und bestimmte ihre 56 Wurzeln~ [92,5.654J

b) Empirische Kennzeichen linearer Systeme

Mit den Verfahren zur Ermittlung von Funktions15sungen haben wir ei­

ne Grundlage geschaffen, um bestimmte typenspezifische Impl)kationen

1inearer Systeme zu erartern.

WLe_.~rw_ahTlt, \Xj rd dQsS.tlJdi lJIIuiymlJuis.4her s.ys.t.eDJe. oJt .L1ntec Verwell-:­

dung des Prinzips eines schwarze~ Kastens vorgenommen. Als Eingangs­

und AusgangsgroBen dieses schwarzen Kastens konnen die unverzogerten

exogenen und endogenen Variablen angesehen werden. Viele empirisch

relevante Implikationen eines dynamischen Systems lassen sich dadurch

ermitteln, daB man unter Festlegung bestimmter Eingange (d.h. Ver­

laufe derexogenen Variablen) di~ Ausgange (d.h. die Verlaufe der

endogenen Variabl'en) betrachtet.

-• -
-... -

~- --- Y (t)
m

Abb. 21.5 Dynamisches System in der Deutungsweise eines schwarzen
Kastens
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In der Regelungstechnik werden derartige Ein- und Ausgangsuntersu­

chungen am System selbst durchgeführt. Wie erwähnt, ist dies in den

wirtschafts- und sozialwissenschaftl lehen Systemen aus praktischen

Gründen nicht möglich. Man kann jedoch eine Schwarze-Kasten-Betrach­

,tung am Modell durchführen. d.h. ein Model I eines Systems wird hin­

sicht! ich der Beziehungen zwischen seinen Ein- und Ausgangsgrößen un­

tersucht.

Die artspezifischen Kennzeichen des Transformationsmechanismus zwi­

schen Ein- und Ausgängen 1inearer dynamischer Systeme lassen sich in

Form zweier Postulate fas'sen, die als das Postulat der ungestörten

'Uberiagerung und das Postulat der Adäguanz von Ursache und Wirkung be­

zeichnet·werden können ..

Das Postulat der ungestört~n Uberlagerung besagt, daß der durch eine

bestimmte Eingangsgröße bewirkte Zeitverlauf einer Ausgangsgröße un­

abhängig von anderen Eingängen bestimmt werden kann. Der resultieren­

de Ausgangsgrößenverlauf bestimmt sich dabei aus der Addition der iso­

liert ermittelten Ausgangsgrößenverläufe bezüglich einer Eingangsgrös­

se. Der Zeitverlauf der endogenen Variablen Y)t) kann daher in fol­

gen Komponenten zerlegt werden

v (t} • oV (t} [E
1

] + OV (t)[E
2

] +... + OV (tHE ]
v v . v v v

Hierbei ist AY (t}[E.] die Komponente, die durch die exogene (Ein-
v J 7

gangs)-Variable E. bewirkt wurde.
J

Zur Verdeutl ichung des .Prinzips der ungestörten Uberlagerung. wird die

Endgleichung eines MA-Systems

herangezogen.

Eine Endgleichung wird im Rahmen der Schwarze-Kasten-Betrachtung als

Ubergangsfunktion des schwarzen Kastens bezeichnet. Abbildung 21.6

zeigt die Deutung des Zusammenhanges zwischen den Variablen Y und I•
eines HA-Modells in Form eines schwarzen Kastens:

7 Es wird unterstellt, daß sich das System im Gleichgewicht befindet.
Andernfalls müßte in die Gleichung ein weiteres Glied eingeführt
werden, welches den Einfluß der Anfangswerte zum Ausdruck bringt.
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_I_'C_t_)__....~I ......YC t)

Abb. 21.6 Interpretation eines HA-Systems als ein schwarzer Kasten

Als Eingangsgrößenverlauf sei die Sprungfunktion la(t)=100 gewählt.

Das System soll sich, wie erwähnt, im Gleichgewicht befinden. Wir

wählen aus Einfachheitsgründen Y(O)=O und y(t)=O. Nach dem Postulat

der ungestörten Uberlagerung kann Y(t) beispielsweise dadurch ermit­

telt werden, daß man die Zeitverläufe der Sprunganworten von einem

Eingangsverlauf"E,(t)=25 und E2(t)=75 ermittelt und aufsummiert. Es

wird damit behauptet, daß die Summe der beiden endogenen Variablen

VI(t) und Vz(t)

Vj(t) • (aTaß)Vj,(t-l) - aßV1(t-Z) + 75

VZ(t) : (a+aß)Vz(t-l) - aßVZ(t-Z) + Z5

dem Zei tpfad der Differenzengleichung

V(t) =. (a+aß)V(t-l) - aßV(t-Z) + 100

entspricht. Dieser Fall liegt genau vor, denn durch die Einsetzung. .
von Yj (t)TY 2(t)=Y(t) gelangen wir zu der gewünschten Gleichung. Das

Prinzip der ungestörten Uberlagerung ermöglicht eine wesentliche Ver­

einfachung der Analyse 1inearer Systeme, da die Einflüsse der exoge­

nen Variablen isoliert voneinander betrachtet werden können.

Durch das Postulat der Adäquanz von Ursache und Wirkung wird ein wei­

teres Kennzeichen der Beziehungen zwischen Ein- und Ausgängen eines

linearen Modells beschrieben.

Vergegenwärtigen wir uns den beliebigen Verlauf einer Eingangsg~öße

E(t). Dieser Eingangsgrößenverlauf bewirkt wegen des Postulats der

ungestörten Uberl~gerung einen bestimmten isoliert zu betrachtenden

Ausgangsgrößenverlauf Y (t). Das Postulat der Adäquanz von Ursache
e

und Wirkung besagt, daß eine k-fache Erhöhung (Verminderung) des Ein-
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gangsgrößenverlaufes kE(t) stets eine k-fache Erhöhung (Verminderu~)

des Ausgangsgrößenverlaufes, cl.h. kYe(t). zur Folge hat.

Oie Gültigkeit bei der Postulate bringt zum Ausdruck, daß ein 1inea­

res dynamisches System eine ganz bestimmte von der Höhe der Eingänge

unabhängige IMaschinerie ' besitzt, die Eingangsgrößen und Ausgangsgrös­

sen umwandelt. Hit diesem durch die bei den Postulate bereits näher

gekennzeichneten Transformationsmechanismus eines 1inearen dynami­

schen Systems wollen wir uns im folgenden ausführlicher beschäftigen.

ba) Übergangsverhalten linearer Systeme

a) Allgemeine Kennzeichnung des Ubergangsverhaltens

Kennzeichnend für ein Hneares dynamisches System ist, wie gesagt,

sein Transformationsmechanismus, d.n. die Art und Weise, mit der ei­

ne bestimmte Eingangsg~öße in eine Ausgangsgröße umgewandelt wird.

'Die bisher erörterten Prinzipien der ungestörten Uberlagerung und der

Adäquanz von Ursache und Wirkung 1 iefern eine Information über typi­

sche Kennzeichen aller linearen dynamischen Modelle. Im Hinblick auf

ein einzelnes System stellt sich jedoch die Frage nach der Art des

Transformationsmechanismus in diesem speziellen Fall. Zur Einzelkenn·

zeichnung linearer Systeme verw~ndet man sogenannte Testantworten.

Einem System, welches sich in einem Niveaugleichgewicht befindet,

wird eine standardisierte Eingangsgröße aufgeprägt, die auch als Test­

funktion bezeichnet wird.

Als Testfunktionen werden am häufigsten der Einheitsimpuls und der

Einhei tssprung verwendet.

Ein Einheitsimpuls kennzeichnet eine Eingangsgröße, die im Zeitpunkt

t=D Eins beträgt und für alle sonstigen Zei tpunkte Null ist, d.h.

E*(t) = {J f~r t=O
D fur t= ... -2,-1,1,2, ...

Ein Einheitsprung wird gekennzeichnet durch:

E**(t) c {' f~r t:~,1~2,~..o fur t- 1, 2, 3, ...

Der von einem Einheitsimpuls (bei einem Niveaugleichgewicht von Null)
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hervorgerufene Verlauf der Ausgangsgröße wird als Einheitsimpulsant­

wort Y*(t) bezeichnet. Entsprechend leitet sich die Einheitssprung­

antwort Y**(t) her, welche auf Seite 64 kurz gekennzeichnet wurde.

Die graphische Darstel lung der beiden Testfunktionsverläufe zeigen

Abbi Idung 21.7 und 21.8.

1

o
-2 -) o ) 2 3

Abb. 21.7 Einheitsimpuls als Testgröße eines dynamischen Systems

)

oL-.~~__-l-----i_-+-----I-_':--_
-3 -2 -) o ) 2 3 4

Abb. 21.8 Einheitssprung als TestgröBe eines dynamischen Systems

Lineare Systeme zeigen sehr verschiedene Arten von Testantworten.

Da im Prinzip unendl ich viele Testantworten linearer Systeme mögl ich

sind, ist es notwendig', in einem ersten Uberblick bestimmte Teilmen­

gen dynamisch 1inearer Systeme zu unterscheiden, die dasselbe gual i­

tative Verhalten aufweisen. Um solche Teilmengen zu isolieren, be­

trachten wir die Funktionslösung der Impulsantwort einer Endgleichung
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zweiten Grades. Die entwickelte Klassifizierung versuchen wir daran

anschließend auf eine Endgleichung bel iebigen Grades zu übertragen.
Eine Einheitsimpulsantwort kann bei entsprechender Wahl der Anfangs­

werte durch eine homogene Endgleichung beschrieben werden. Im Falle

der Endgleichung

Y(t) = -oY(t-l) - bY(t-2) + E*(t) Y(-l)=Y( -2)-0 (21.74)

ergeben sich die Werte Y(O}=l und Y(l)=-a. Setzt man Y(O)=Z(O) und

Y(l)=Z(l), so beschreibt die homogene Endgleichung

2(t) - -oZ(t-l) - bZ(t-2)

mit Z(O)=l und Z(l)=-a die ~inhejtsimpulsantwort.welche durch (21.74)

bewirkt wird.

Bei Wahl dieser Anfangswerte erhält man entsprechend Tabelle 21.7 die

Funktionslösung der Einheitsimpu!santwort

a) im Falle reeller und ungleicher Wurzeln

Z (t) = (21.75)

b) im Falle reeller und gleicher Wurzeln

Z(t) = (1+t),t

und

c) ;m Fa 11 e konjugiert komplexer Wurzeln

Z( t) • rt[cost,Ot- ~SifllPt]
0 2

2 h,-~

(21.76)

(21.77)

Als Beispiel soll die Einheitsimpulsantwort des Volkseinkommens Y im

Rahmen des HA-Modells ermittelt werden. Die Endgleichung von Y lautet

gemäß (12.9)'

Y(t) = (.+.ß)Y(t-l) - aßY(t-2) + I (t)
o

Die Wurzeln der charakteristischen Gleichung berechnen sich entspre­

chend (21.36) mit

j 2 '), a+aß + Ja+aB) _ ß
'.2""-2-- • a
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Fa 11 1

Z(t)=1.36(O.75)t-O.36CO.2)t
Z(t)=O.95 Z(t-l)-0.15 Z(t-Z)+E*(t)

t

Z

2
0 0

AAÄÄA o •

0 \ /\ 15t"

YV~ VV10V \I \/ t
0•

0
-2

Fa 11 2

t
Z(t)=(O.1874) Icos(O.7044· t)+1.1767sln(O.7044·0J
Z(t)=1.2 Z(t-l)-0.6201 Z(t-Z)+E*Ct)

Z

1,2

o
-0,4

z

.... 0-0 ... 0 ..

Fall 3

15 t

Fa 11 1+

2,3

1

Zet)=Cl+t)(O.8ö)t
Z(·t)=l. 72 Z(t-l)-0.13"96 Zet-Z)+E-C

o
5 10 15 t

Abb. 21.9 Typische Einheitsimpulsantworten im Falle eines gedämpften
Systemverhaltens
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Mit a=O.72 und 6=0,25 werden A1=O.3 und AZ=O,6. d.h. die Wurzeln sind

reell und ungleich. Gemäß (21.75) ergibt sich die Funktionslösung der

Einheitsimpulsantwort

z(,) = Z(O,6)' - (0,3)'

Oie Einheitsimpulsantwort einer SystemvariabJen läßt einige Rück­

schlüsse auf das dynamische Systemverhalten zu.

Sind in den Einheitsimpulsantworten (21.75) und (21.76) die Absolut­

werte der Wurzeln IA,I<1 und IA21<1. dann weist das System ein.2!­

dämpftes oder stabi les Verhalten auf. Dasselbe gi lt für r<l im Falle

von Gleichung (21.77). Z(t) konvergiert hierbei gegen Null. Sind in

den Fäl Jen (21.75) und (21.76) die Wurzeln Al und A2 positiv und klei­

ner Eins, d.h. O<A l 2<1, dann zeigt das System ein monoton gedämpf-
. ,

tes Verhalten. Typisch für diese Verhaltensweise, die durch den Fall

in Abbildung 21.9 beschrieben wird, ist die fluktuationsfreie Annä­

herung des Zeitpfades an den Nullpunkt. Das Achsenkreuz mit dem Ein­

heitskreis kennzeichnet die Gaussche Zahlenebene, aus welcher je~

weils die Werte der Wurzeln zu erkennen sind,

Sind in den Einheitsimpulsantworten (21.75) und (21.76) die Wurzeln

negativ und größer minus Eins, d.h. O>Al 2>-1, dann ist das System, .
fluktuierend gedämpft, da die Werte der ·Wurzeln im Zeitverlauf stän-

dig ihre Vorzeichen wechseln. Ein Beispiel eines derartigen fluktuie­

rend gedämpften Verhaltens zeigt Fall 2 in Abbildung 21.9.,

Sind die Wurzeln dagegen konjugiert komplex, so liegt ein oszillato­

risch gedämpftes Verhalten mit einem Schwingungszyklus von 2Tf/..p vor.

wie es durch Fall 3 beschrieben wird.

Ein System mit gleichen Wurzeln A1=A 2=O,86 wird durch Fall 4 beschrie­

ben. Einheitsimpulsantworten dieser Art zeichnen sich durch einen ein­

gipfel igen Verlauf aus.

Im Falle eines instabilen oder ungedämpften Verhaltens sind zumin­

dest die Absolutwerte einer Wurzel in (21.75) und (21.76) oder der

Modul r in (21.77) größer als Eins. Auch hier kann man, wie aus Ab­

bildung 21.10 ersichtlich ist, analog zu dem vorher Gesagten zwischen

monoton ungedämpftem (FallS) und oszi llatorisch ungedämpftem Ver­

halten (Fall 6 und 7) unterscheiden.
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Fa 11 5

Z(t)=2.75(1.1)t- 1 . 1S (O.7)t
Z(t)=l.B Z(t-l)-0.77 Z(t-Z)+E*(t)
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t15
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Z(t)=(1.118) Icos(O.46365·t)+2sin(O.4636· t)]

Z(t)=2 Z(t-l)-1.25 Z(t-Z)+E*Ct)

Z
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-b

Z(t)=-2.61(-O.8)t+ 3 . 61 (-1.I)t

" I ~ V'0y ~ 15 t

2
12

°

• fall 7

•

Abb. 21.10 Typische Einheitsimpulsantworten im Falle eines unge­
dämpften Systemverhaltens
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Für Systeme höherer Ordnung bestimmen sich die Funktionslösungen der

Einheitsimpulsantworten aus den Komponenten der auf Seite 198 angege­

benen allgemeinen Lösungsansätze. Man erkennt daher: Ist zumindest

eine Wurzel oder ein Modul größer als Eins, so ist das System unge­

dämpft. Sind dagegen sämtl iche Wurzeln und Module kleiner als Eins,

so ist das System gedämpft.

ß) Stabilität als Spezialfall des Ubergangsverhaltens

Die Typisierung bestimmter Verhaltensweisen I inearer Systeme steht

in enger Verbindung zu dem bereits erörterten Stabilitätskonzept dy-
8namischer Systeme. 1m Sinne dieses Konzeptes kann man einen auf das

System wirkenden Einheitsimpuls als eine Störung interpretieren und

den Variablenverlauf Y(t) für t=0;1, ... , der ohne die Aufprägung

des Einheitsimpulses real isiert worden wäre, als ungestörten Zustand

oder Gleichgewichtspfad bezeichnen.

Jede endl iche Störung eines Systems läßt sich als eine Summe von Ein­

heitsimpulsen interpretieren. Wegen des Postulats der ungestörten

Uberlagerung setzt sich die durch die Störung bedingte Systemantwort

aus der Ordinatensurrme der Einheitsimpulsantworten zusammen. Ist daher

die Einheitsimpulsantwort begrenzt, so ist ~uch jede endliche Störung

begrenzt, d.h. das betrachtete System ist stabil. Da ein System im

Falle von Wurzeln und Moduln, deren Absolutwerte kleiner als Eins

sind, eine gedämpfte Einheitsimpulsantwort besitzt, ist es stets un­

ter diesen Bedingungen auch stabil. Diese Stabil itätseigenschaft ist

unabhängig von der Höhe der Störung, was zur Folge hat, daß ein li­

neares System im Fa'1le von Stabilität stets global stabil ist. Wei­

terhin ist diese Stabilität stets asymptotisch, denn die gedämpfte

Einheitsimpulsantw.ort strebt, wie .man zum Beispiel aus den Funktions­

lösungen (21.75) bis (21.77) erkennt, stets gegen Null.

Der Begriff eines stabilen Systems verlangt die Existenz eines Gleich­

gewichtspfades, und es stellt sich die Frage, wie in der Funktionslö­

sung einer 1 inearen Differenzengleichung ein derartiger Gleichgewichts-

pfad zum Ausdruck kommt. Die Funktio!" ung einer inhomogenen Diffe-'

renzengleichung
8 Vgl. Seite 75ff
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Y(t) + a
1
Y(t-l) + ... + anY(t-n) = E(t) (21.78)

setzt sich bekanntlich aus der generellen Funktionslösung ihrer ent­

sprechenden homogenen Gleichung Y(t) und einer speziellen Funktions­

I äsung V(t) zu salTlTlen, d. h.

Y(t} = y(t} + V(tl

Die generelle Funktionslösung Y(t} besitzt hierbei die Form

(21. 79)

-( tY t) = e11
1

+... +

5011 das durch (21.78) beschriebene System stabil sein,

(21.80)

so darf eine

Störung- der Höhe S, der das System ausgesetzt wird, nur zu einer 5y­

stemantwort führen, deren aufsummierte Abweichungen vom Gleichgewicht

einen endlichen Wert e;geben. Man kann in diesem Fall von einer end­

lichen Systemantwort sprechen. Analog zur funktionellen Beschreibung

einer Einheitsimpulsantwort läßt sich die Störantwort eines Systems

durch die Funktionslösung seiner homogenen Endgleichung beschreiben,

wenn man als Anfangswerte

Y(O) =

wählt.

5/-a
n

und Y(l) = Y(2) = = Y(n-1) = 0

Diese Darstellungsmöglichkeit aber macht deutlich, daß die Höhe der

Störung S nur in den Koeffizienten Cl bis C zum Ausdruck kommt, wäh-
n .

rend die Frage, ob eine endliche.Systemantwort gegeben ist, allein

von den Werten der Wurzeln At bis An abhängt. Da die generelle Funk­

tionslösung Y(t), die die Systemstörung zum Ausdruck bringt, stets

gegen Null konvergiert, wird der Gleichgewichtspfad des Systems stets

durch die spezielle Lösung Y(t) beschrieben. welche jedoch entschei­

dend von dem Verlauf der exogenen Variablen E(t) bestimmt wird.

Besitzt die exogene Variable beispielsweise einen Verlauf der Form

tPa t
, 50 kann die spezielle Lösung bzw. der Gleichgewichtspfad des

Systems durch einen Ausdruck der Gestalt

t ( 2 p)a AO+AlttAzt +... +Apt

beschrieben werden. Die Koeffjzienten A
O

bis A
p

kreten Fall in Abhängigkeit von den numerischen

bestimmen sich im kon­

Werten der Parameter a
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sowie a, bis an in (21. 78).9

Für lineare Systeme zeigt sich damit, daß'ihr Systemgleichgewichtspfad

primär exogen bestimmt wird. Diese Erkenntnis läßt an der befriedigen­

den Anwendbarkeit 1inearer Modelle Zweifel aufkol1ll1en, wenn gerade das

zentrale Element eines linearen Modells, sein Gleichgewichtspfad. kei­

ne endogene Erklärung zuläßt. Hier deuten sich die Grenzen der Lei­

stungsfähigkeit 1inearer Modelle im Hinblick auf eine adäquate Wirk­

.1ichkeitsbeschreibung an.

y) Multiplikatoren als Maßzahlen des Ubergangsverhaltens

Der Begriff des Multiplikators kann durch folgende Uberlegung verdeut­

1icht werden:

Wird einem System bei Null werdenden Anfangswerten in Periode 0 ein

Einheitsimpuls E* aufgeprägt, so hat dieser - wie erwähnt - eine be­

stimmte Impu]santwort Y(O), Y(l) I'" zur Folge. Die aufsummierten
00

Werte der Impulsantwort werden durch die unendliche Summe L Y(T) be­
'=0schri eben.

Falls das betrachtete System stabil ist, besitzt diese unendliche Su­

mme einen endl ichen Grenzwert. Dieser Grenzwert wird als Multiplika­

tor oder präziser als Totalmultiplikator von Y bezüglich, E bezeichnet.

Er beschreibt. anschaulich formul iert, die für die gesamte Zukunft

aufsummierten I'w'i rkungen l einer IUrsache t in Höhe von Eins. Bezeich­

net man die Einheitsimpulsantwort eines stabilen Systems mit y*(t),

dann bestimmt sich sein Multipl ikator M mit

(21.8ll

Als Interimsmultiplikator bezeichnet man die Komponenten Y*(-r) der

Einheitsimpulsantwort. Ihre Zahl ist unendlich. Von Interesse sind

jedoch vorwiegend die Interimsmultiplikatoren der ersten Periode, weil

sie darüber informieren, wie schnell ein Systan auf einen Eingang rea­

giert. Die lnterimsmultipl ikatoren werden durch die Funktionslösung

einer Einheitsimpulsantwort beschrieben. Besteht ein Systffil aus posi-

9 Die Anpassung dieser Koeffizienten erfolgt anhand der Methode der
unbestimmten Koeffizienten, siehe Seite 198f.
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tiven Interimsffiultiplikatoren, so beschreibt die Halbwirkungszeit ei­

nes Systems die Zeitperiode, in der die aufsummierten Interimsmulti­

plikatoren die Hälfte des totalen Multiplikatorwertes erreichen.

Nach der Definition des Multiplikators durch Gleichung \21.81) setzt

seine Ermittlung die Lösung einer unendlichen Summe voraus. Es ex;s­

tiert jedoch ein einfacheres Verfahren zu seiner Bestimmung. Wir ge­

hen von der Annahme aus, einem stabilen System mit Anfangswerten des

Betrages Null werde ein Einheitssprung aufgeprägt.

Abbildung 21.11. zeigt einen derartigen Fall. in dem der Zeitpfad der

Einheitssprungantwort einem Gleichgewichtspfad M zustrebt. Denkt man

sich das System im Gleichgewicht, so befindet sich auch die Eingangs­

größe vom Betrag Eins im Gleichgewicht mit der Ausgangsgröße vom Be­

trag M. M ist damit der Totalmultiplikator des Systems. Der Gleich­

gewichtspfad der Höhe Mwird jedoch durch die speziel le Lösung der

Endgleichung'

Y(tl + a
1
Y(t-T) +... + anY(t-n) • E-(tl

beschrieben und ergibt sich analog (21.72) durch

M • (21.82)

Da, wie wir später sehen werden~ die Ungleichung
n
~lTaT>O

T-l

eine notwendige Bedingung für die Stabilität eines linearen Systems

bi Idet, muB M im Falle von Systemstabilität stets positiv sein, cl.h.

ein stabiles System besitzt nur positive Totalmultiplikatoren. 10

Die entwickelten Begriffe sollen am Beispiel eines HA-Systems verdeut­

1icht werden:

Wir wählen 0:=0,9861 und 8=0,7894. Unter der Annahme, daß la(t) durch

einen Einheitsimpuls beschrieben wird, erhalten wir die Endgleichung

der Einheitsimpulsantwort

Y(t) = 1,7647Y(t-l) - O,7785Y(t-2)

mit Y(O)=1 und Y(I)=a+aß

10 Zur angeführten Bedingung siehe Seite 215
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Abb.21.11 Uberlegung zur Bestimmung des Totalmultiplikators eines
dynamischen Systems
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Der Totalmultiplikator M bestimmt sich nach (21.82) mit

M _ 1 1
- l-a(l+ß)+C1ß "" 1-a

womit M den Wert M=72 annimmt.

Die Interimsmultipl ikatoren werden durch. die Einheitsimpulsantwort

des Systems beschrieben, welche gemäß (21.76) und mit Al=A2=O.8~26

die Funktionslösung

Y*(t) • (1+t)O,8826 t

besitzt. Der Verlauf der Interimsmultiplikatoren wird durch Abbil­

dung 21.12 beschrieben, aus der auch die Halbwirkungszeit des Systems

zu erkennen ist.
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6) Koeffizientenkriterien des Ubergangsverhaltens

Zur Gewinnung der Funktionslösung einer Endgleichung ist es stets not­

wendig, die Wurzeln der charakteristischen Gleichung zu ermitteln.

Bei Endgleichungen höher als dritten Grades ist, wie erwähnt, die Er­

mittlung der Wurzeln nur noch mit Hilfe iterativer Verfahren möglich.

Hat man einen Rechner zur Han~. 50 ist dies kein Problem, denn es ste­

hen eine Reihe leistungsfähiger Programme zur Errechnung der Polynom­

wurzeln zur Verfügung. So ist es beispielsweise mit den heute ge­

bräuchlichen Programmen möglich, auf einer mittleren Anlage Polynome

lOten Grades in weniger als einer Sekunde Rechenzeit zu lösen, wenn

al le Wurzeln reell sind, während man etwa zwei Sekunden benötigt,

wenn die meisten Wurzeln komplex sind. [12]

Für eine schnelle Beurteilung der Stabi lität eines linearen Systems

bieten sich jedoch auch Verfahren an, mit denen man allein an hand der,

Koeffizienten einer Endgleichung zu einem Urteil gelangt.

Diese sogenannten Koeffizientenkriterien, die die Erfüllung bestimm­

ter aus den Koeffizienten gebildeter Ungleichungen fordern, sollen

im folgenden erörtert werden. Wir wollen zwischen zwei Typen unter­

scheiden: vollständigen und unvollständigen Koeffizientenkr'iterien.

Vollständige Koeffizientenkriterien geben die notwendigen und hin­

reichenden Bedingungen für die Stabi 1 ität eines Systems an. Unvoll­

ständige Bedingungen kennzeichnen dagegen nur entweder notwendige

oder hinreichende Bedingungen.

Die knappsten und übersichtlichsten Bedingungen wurden von JURY ent­

wickelt und stellen eine wesentliche Vereinfachung der Schuhr-Cohn­

Kriterien dar, die heute noch in der wi rtschaftswissenschaftl ichen

literatur verwendet werden. (Siehe zum Beispiel [15])

Ein System mit der Endgleichung

ist dann und nur dann s~abil, wenn die folgenden Ungleichungen er­

füllt werden. [104]

n ::: 2 I) 1- '1 1- '2 > 0

2) '1 1- '2 > 0

3) . - 1 < 0
2
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n = 3

n • 4

11 1 + a1 + a2 + a3
> 0

2) 1 - a1 + a2 - a > 0
3

3) la31 < 1

4) a2 - < 3
3

a
1

- a23
1) + a1 + a2 + 3

3
-t a4 > 0

2) - a + a2 - a + a~ > 01 3
31 - a~ + a-4 3 1 - a > 0

3
4) 1 an - 3 43 1 + 3

3
> 0

5) 3 2 2 2a4 + 2a43 2 + 3
3

a 1
- a4 - a - alta t - a4·- a4 3 2 -2

2
- 33 + a4a331 t 1 > 0

JURYs Kriterien sind für Endgleichungen beliebigen Grades formuliert.

Wir beschränken uns jedoch auf den Fall von Endgleichungen zweiten

bis vierten Grades, da im Falle von Endgleichungen höheren Grades die

Zahl der Ungleichungen stark zunimmt und die Ausdrücke so unübersicht­

lich werden, daß sich eine praktische Anwendung nicht mehr empfiehlt.

Notwendige Stabil itätsbedingungen sind für das Vorhandensein von Sta­

bilität erf~rderlich, garantieren jedoch keine Stabilität. Systeme.

die die Notwendigkeitsbedingungen nicht erfüllen, sind aber auf je­

den Fall instabil. Die Bedingungen 1) und 2) des Jury-Kriteriums füh­

ren verallgemeinert zu den folgenden notwendigen Stabil itätsbedingun­

gen einer Endgleichung n-ten Grades:

a) +a
t

+a
2

+... +a n >O
n .

b) 1 + i~1(-1)lai > 0

Besonders a) gibt einen ersten Eindruck Cber das Modellverhalten.

Weitere notwendige BedingunQen für die Stabilität einer Endgleichung

lauten' [1,5.215-219]

n. 2 la21 < 1, la 11 < 2

n = J la31 < 1, -1 < a2 < 3, la, I < 3
n = 4 la41 < 1, la J I < 4, -2 < a2 < 6. la 1I < 4

Eine hinreichende Stabilitätsbedingung 1iefert:

1 > la 1I + la21 +... + lanl
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In den Wirtschaftswissenschaften werden manchmal Modelle in der Er­

klärungsform einer homogenen Endgleichung, d.h .

.verwendet, wobei w"wZ."" positive Werte sein sollen. Eine hinrei­

chende Stabilitätsbedingung für diesen Typ ist: [197,S.104ff.]

> w > 0
n

d.h. das System ist stab i J, wenn die Koeffizienten mit zunehmender

Verzögerung der endogenen Variablen abnehmen.

bb) Verhaltensdiagramme linearer Systeme

Die Wurzeln einer Endgleichung bestimmen sich aus ihren Koeffizien­

ten. Im Falle von Endgleichungen zweiten Grades mit den Koeffizien­

ten a
1

und a 2 1iegt es nahe, ein Verhaltensdiagramm dieses Endglei­

chungstyps aufzustellen. In einem derartigen Verhaltensdiagrarrrn wer­

den die Koeffizientenausprägungen als Ordinaten- bzw, Abszissenwerte

definiert. Indem die Bereiche unterschiedl ichen Systemverhaltens durch

Ungleichungen mit a, und a2 beschrieben werden können, erhält man im

a,/a2 Koordinatensystem bestimmte Flächenbereiche unterschiedl ichen

Verha I ten s.

Abbi Idung 2'.'3 zeigt das Verhaltensdiagramm der Endgleichung

Y(t) + ",Y{t-l) + a
2
Y(t-2) • E(t)

Die Gleichungen a,=a 2+', a 2=-a,-1 und a 2=1 folgen aus JURYs Koeffi­

zientenkriterien auf Seite 214. Die schraffierten Flächen beschrei­

ben den Bereich stabilen Verhaltens. Es ist jedoch eine wesentlich

differenziertere Klassi fizierung des Systemverhaltens möglich. Man

"kann 14 Flächenbereiche unterscheiden, in denen unterschiedl iche Ver­

haltensweisen auftreten. Als Beispiel seien die ersten fünf Bereiche

angeführt ;

Oszillatorisches stabiles Verhalten (Wurzeln konjugiert kom­
plex, Modul kleiner als Eins)

I1 Oszi llatorisches instabiles Verhalten (Wurzeln konjugiert
komplex, Modul größer als Eins)

111 Monoton stabiles Verhalten (beide Wurzeln positiv und klei­
ner als Eins)
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IV Monoton instabiles Verhalten (beide Wune In positiv, eine
größer, eine kleiner als Eins)

V Monoton instab i 1es Verhalten (beide Wurzeln positiv und grös-
ser als Eins)

usw.

a 1

VI I I

1

VI

1-+-+---__ 1 1 ..-

-1 11

IV

Abb. 21.13 Verhaltensdiagramm einer linearen Endgleichung zweiten
Grades

Manche Flächenbereiche wie IV und V fallen in dieselbe Klassifizie­

rungskategorie.

Die Ermittlung der verschiedenen Verhaltensbereiche hat sich an der
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Wurzelgleichung

, = -a, ± J~La2'
1,2 2 T

(21.83)

zu orientieren.

Der Fall gleicher Wurzeln wird du-reh af=4az beschrieben. Im Falle kon­

jugiert komplexer Wurzeln muß die Ungleichung Br<4a z erfüllt sein.

Diese Bedingung gi It damit für die Flächen I und I I.

Es empfiehlt ~ich. zur weiteren Klassifizierung anhand von· Gleichung

(21.83) Ausdrücke zu finden, in denen a, und aZ cl! rekte Funktionen

von Al und AZ darstellen. Aus Gleichung (21.83) folgt

A, + A2 = -a,
oder

Hit

(2' .84)

fo 19'

"'2 = a 2 (2'.85)

Anhand von (21.84) und (21.85) kann man auf relativ einfache Art die

Bereichsabgrenzungen finden. indem man von typischen Wertebereichen

der Wurzeln ausgeht. Beispielsweise woll~n wir den Bereich des Sta­

bilitätsdiagrammes, für den das System ein monoton stabiles Verhal­

ten aufweist, ermitteln.

Wir wissen bereits, daß nur die Flächen 1II,VI,Xli !Jnd IX inFrage kom­

men. Für den Fall monotoner Stabilität gilt, daß' beide Wurzeln posi­

tiv und kleiner als Eins sind. Daher muß im Falle positiver Wurzeln

auch ihr Produkt },1},Z >·0 sein. Gleichung (Z1.85) erfordert deshalb:

a
Z

> 0

Damit kommen nur noch die Flächen VI und I r I in Frage. Da beide Wur­

zeln positiv sein sollen, muß gemäß (zl.84) a{O sein. Es zeigt sich

also, daß allein die durch Fläche I I I gekennzeichneten KDordinaten­

werte von a1 und aZ ein monoton stabi les Verhalten aufweisen.

Abbildung 21.14 zeigt einige ausgewählte Impulsantworten verschiede­

ner Verhaltensberelche.
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FALL A FALL B

2

10 $
t t

5 15

- 10
- 2

FALL C

"

B'/ $1

'A t
10 15

FALL F FALL E

1 10

t
L-__--_-__ t

5 10 15 5 10 15

Abb. 21. l~ Einheitsimpulsantwort und Lage der Wurzeln der charakteri­
stischen Gleichung für ausgewählte Beispiele einer Endglei­
chung zweiten Grades
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Abb. 21.15 Verhaltensdiagramm eines HA-Systems mit ausgewählten Ein­
heitssprungantworten

Die Entwicklung von Verhaltensdiagrammen ist besonders dann ange-
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bracht, wenn das betrachtete Modell genau zwei strukturelle Parame~

ter enthält. In diesem Fall ist es sehr instruktiv, .ein Verhaltens­

diagramm zu entwickeln, dessen Koordinaten durch die (empirisch in­

terpretierbaren) strukturellen Parameter gebi Idet werden. Denn man

erkennt, wie die Veränderungen dieser Parameter zu unterschiedlichen

Verhaltensweisen führen. Im Beispiel eines HA-Systems kann anhand der

Endgleichung

Y(t) = (.+.B)Y(t-1) - aBY(t-2) + I.(t)

das in Abbildung 15.6 auf Seite 92 bereits angeführte Verhaltensdia­

gramm für die Parameter a und ß entwickelt werden.

Abbildung 21. 1S zeigt das Verhaltensdiagramm eines HA-Systems ein­

schließlich der Impulsantworten ausgewählter Parameterkombinationen.

Jeder Impulsantwort ist das Koordinatensystem einer Gaußschen Zahlen­

ebene mit einem Einheitskreis zugeordnet. Es beschreibt die Lage der

Wurzeln der charakteristischen Gleichung im Falle der betreffenden

Parameterkombination.

Die Entwicklung derartiger Verhaltensdiagramme zeigt die Sensitivi­

tät des Modells bezüglich der Parameter a und ß und liefert damit

wichtige Hinweise für seine Gültigkeit.

c) Höhere Analysemethoden linearer Systeme

ca) Verwendung von Operatoren in linearen Systemen

Zur Untersuchung von Differenzeng4eichungssystemen ist es oft sehr

vorte i 1haft, mit sogenann.ten Versch iebungsoperatoren zu arbe i ten.

Ein Verschiebungsoperator kann als ein Symbol angesehen werden, mit

dessen Hi lfe verzögerte Variable jn einer anderen Schreibweise aus­

gedrückt werden. Mit dem Ausdruck K-n kann die verzögerte Variable

X(t-n) durch

(21. 86)

ersetzt werden.
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Die Differenzengleichung

Y(t) • O,SY(t-l) • O,3Y(t-Z) = E(tl .I,IE(t-l)

würde unter Verwendung dieser Operatorenschreibweise die Gestalt

Y(t) • O,SK-1Y(t) • O,3K-ZY(t) ~ E(t) • 1, lK- 1E(t)

annehmen. Der Ausdruck K wird als Verschiebungsop~ratorbezeichnet.

Die Einführung einer derartigen Schreibweise der verzögerten Variab­

len ist deswegen sinnvoll, weil sich zeigen läßt, daß der Verschie­

bungsoperator verschiedenen Regeln der Algebra gehorcht. Man kann mit

K-n daher Operationen wie mit einer Zahl durchführen.

Die Gültigkeit der wichtigsten algebraischen Regeln sei an hand von

Beispielen aufgezeigt:

(1) Es gilt das Kommutativgesetz, d.h. der Fall a+b=bta wird erfüllt.

So ist die Beziehung

zulässig, weil auch die entsprechende Differenzengleichung

Y(t-3) • Y(t-Z) = Y(t-Z) • Y(t-3)

gültig ist.

(2) Ebenso gilt im Falle einer Multipl ikation das Kommutativgesetz,

d.h, a'b=b·a

Dies erkennt man an dem Beispiel

[K-3 (K-Z)JY(t) = [K-Z(K- 3)]Y(t) = K-SY(t)

Der Ausdruck [K- 3(K-2)]Y(t) entspricht Y(t-S). Denn es ist

K-ZY(t)=Y(t-Z) und damit K-3Y(t-2)=Y(t-S). Für den Ausdruck [K-2 (K-3)]Y(t)

ergibt sich mit K- 3Y(t)=Y(t-3) die Gestalt [K- 2(Y(t-3»] und damit

[K-2 (Y(t-3»)]=Y(t-S)

(3) Ferner ist sowohl für die Additionen als auch Multipl ikationen

das Assoziativgesetz anwendbar, cl.h.

a • (b.c) = (a.b) • c

a(bc) ~ (ab)c .
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Als Beispiel sei die Beziehung

K- 1 [K- 1.l)Y(t) ~[K-2TK-l lY(t)

angeführt. Wie man durch schrittweise Rückumwandlung der GI leder auf

beiden Seiten der Gleichung erkennt, ist die Beziehung gültig.

Auf die Verwendung von Operatoren werden wir später noch mehrmals

stoßen. Als erster Anwendungsbereich sei auf die vereinfachte Ermitt­

lung der Endgleichung linearer Systeme verwiesen. Die Ermittlung der

Endgleichung im Falle des dynamischen Modells der Anspruchsniveauan­

passung wurde auf Seite 1]1 beschrieben. Die Verwendung von Verschie­

~ungsoperatoren vereinf~cht das Verfahren wesentlich.

Hit der Einführung des Verschiebungsoperators K-nX(t)=X(t-n) erhält

man aus (21.6) bis (21.9)

S(t) • a["Z-Z(t»)

B(t) = y[K-'S(t)-b)/[1-K- 1.YCK-')

Z(t) • B(t) - A(t)

A(t) • a[K-'B(t).al/[1-K- 1.aK- 1)

Man kann mit den sich ergebenden Gleichungen wie in einem linearen

Gleichungssystem A(t) berechnen. Durch sukzessives Einsetzen und Frei­

stellen von A(t) gelangt man zu der Gleichung:

-1 -2 -
A(t) = [2-a-cy-yB]K A(t) + [o.-l-cycr.tcy+yß]K A(t) t aaey + aByZ +

+ a.arS • ayb

Die Rücktransformation X(t-n)=K-OX(t) führt schließlich zu der uns

bereits bekannten Endgleichung

A(t) • [2-a-cy-yB]A(t-l) + [a-l-cyaTty.yB]A(t-2) + aacy • aByZ •

+ aayS - ayb

Den durc~ eine Transformation der Form (21.86) in die Gleichungen ein­

gebrachten Operator nennt man einen Rückwärtsoperator. da er negati­

ve Hochzahlen besitzt. Oft wird jedoch auch mit Vorwärtsoperatoren

gearbeitet, d.h. Operatoren mit pOsitiven Hochzahlen. Seide Darstel­

lungsfonmen sind ineinander überführbar. Die Differenzengleichung

Y(c) • 0.5Y(t-l) • 0.3Y(t-2) = E(t) .1.1E(t-l)
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führte bei Anwendung eines Rückwärtsoperators zu der Form

(21.8]) .

Bezeichnet man mit n den höchsten Verzögerungsgrad einer Endgleichung,

dann ist in diesem Fall 0=2. Die Multipl ikation von Gleichung (21.87)

~it K2 führt zur Darstellung der ursprünglichen Differenzengleichung

in Form von Vorwärtsoperatoren, d.h.

.(21.88)

Verallgemeinernd kann man feststellen, daß in diesem Fall von der

Transformation

ausgegangen wird. Diese Darstellungsweise hat den Vorteil. daß das

sich ergebende Operatorenpolynom dieselbe Form wie die charakteri­

stische Gleichung der zugrunde liegenden Differenzengleichung besitzt.

Sie ist immer dann empfehlenswert. wenn schon die Endgleichung eines

Systems vorliegt, weil n dann als numerischer Wert zur Verfügung

steht.

Bevor wir uns dem generellen Fall der Ermittlung von Endgleichu~gen

unter Verwendung von Operatoren im Rahmen der Matrizenrechnung zuwen­

den, wollen wir kurz auf bestimmte Verfahren eingehen, die es gestat­

ten, Endgleichungen anhand der sukzessiven Umgestaltung von graphi~

schen Systemdarstellungen zu ermitteln.

cb) Endgleichungsbestimmung anhand graphischer Systemdarstellungen

Der Leser wird sich erinnern, daß wir bei der Behandlung der graphi­

schen Darstel lung von Systemen die Beschreibung dynamischer Systeme

anhand von Block- und Signal flußdiagrammen erwähnten. Es wurde an die­

ser Stelle darauf hingewiesen, daß Signalfluß- und Blockdiagramme, in

denen Operatorendarstellungen der Ubergangsfunktion verwendet werden,

allein dem Zweck dienen, die Endgleichung des betrachteten Systems

auf einfache Weise zu ermitteln. 11 Die hier zur Anwendung kommenden

Methoden sollen im folgenden behandelt werden.

11 Vgl. Seite 65
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a) Endgleichungsbestimmung anhand von Blockdiagrammen

Abbildung 21.16 zeigt noch einmal die Darstellung eines HA-Systems

im Rahmen der beiden Diagrammtypen. Die Operatorenform der Ubergangs­

funktion ergibt sich durch die Einführung des Rückwärtsoperators

K-nX(t)-X(t-n) .

/x +

+" ./

O. BK-1 2-2K -1

C(,)

[ . ( , ),

y(,)

2-2K -1

C( [ )

Abb. 21.16 81ock- und Signalflußdiagramm eines HA-Systems unter Ver­
wendung eines Rückwärtsoperators

Im Falle der Hypothese der induzierten Investition

I. (tl. 2[C(t)-C(t-l)]
I

wird mit (21.86)

I. (t) - 2[C(t)-K- 1C(t)],
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oder

I.{t) = [2-2K- 1)C(t),
Der Ausdruck 2-2K- 1• welcher die beiden unverzögerten Variablen C und

I miteinander verknüpft, wird als Operatorenübergangsfunktion von C

nach I bezeichnet. Es ist üb] ich, sie in den entsprechenden Block

des Diagrammes einzutragen oder über der entsprechenden Strecke des

Signalflußdiagrammes anzuführen.

Bezeichnet man die ermittelte Operatorenübergangsfunktion mit G(K).

d.h.

-1
G(K) = 2-2K

dann läßt sich die Investitionshypothese durch

I. (t) = G(K)C(t)
I .

beschreiben.

Eine Beziehung zwischen einer Ein- und Ausgangsgröße. welche durch

die Standardform der Endgleichung (12.10)

beschrieben werden kann, besitzt daher unter entsprechender Verwen-

dung eines Rückwärtsoperators eine Operatorenübergangsfunktion der

Form

G(K) =

Im folgenden sollen Verfahren beschrieben werden, mit denen unter Zu­

grundelegung der Operatorenüb~rgangsfunktionvon Verhaltensgleichun­

gen die totale Ubergangsfunktion eines Modells ermittelt werden kann.

Diese Ermittlung vollzieht sich anhand der sukzessiven Umgestaltung

bestimmter Block- und Signal flußdiagramme.

Die zu beschreibenden Verfahren sind primär im Rahmen der Regelungs·

theorie für stetige Systeme entwickelt worden, lassen sich jedoch ana­

109 auch fü r ze i td i s kre te Sys terne ve rwenden. Ihre Anwendung bes teht

darin, daß b~stimmte Blöcke eines Blockdiagrammes unter Berechnung

der neuen Ubergangsfunktion durch einfache Vorschriften zu einem ein­

zigen Block zusammengefaßt werden. Man kann drei Grundtypen der Zu-
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sammenfassung von Blockdiagrammgliedern unterscheiden.

Erstens: die Zusammenfassung von Parallelgliedern. Hier gi It die Vor­

schrift

V(,)E(,)@-v(,)
GI(K)

~1
E(,)

1GZ(K)

Abb. 21.17 Ermittlung der Ubergangsfunktion eines linearen dynami­
schen Systems im Falle paralleler Glieder

Die Gültigkeit dieser Zusammenfassung wollen wir uns anhand des Glei­

chungssystems

Y1(t) = 0, 5Y 1 ( '-1) +. E( t} + 1,' E(,-1)

Y2 (t} • 0.2Y
2

(<-1) + O,3E{t}

y{,) = Y,(t} + Y
2

(t} (21.89)

klar machen, welches bei Einführung eines Rückwärtsoperators durch

Y, (t}[I-0,5K- 1] • [1+I,IK-']E(')

Y
2

{'}[1-0,2K-'j = O,3E{t}

(zl.90)

(21. 91)

E(tlY(tl -

beschrieben wird.

Die Auflösung der Gleichungen (21 :90) und (21.91) nach Yl und Y2 und

ihre Einsetzung in Gleichung (21.89) liefert:

-1
1+I,1K E(t) + 0,3
1-0,5K- 1 1-0.2K-'

Y(t) • r,+I,'K-
1

+ 0,3] E(t)
[1-0.5K-' 1-0,2K-'

Der erste und zweite Ausdruck in.den Klarrmern sind jedoch mit der Ope-

oder
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G(K)= 0.3
2 1-0 2K- 1

•
und

ratorenübergangsfunktion G1 (K) und GZ(K)

-1
G (K) = 1+1 ,1K

1 1-0.5K-1

identisch. Denn es sind

G(K) =

Die Addition von' G,{K) und G
2

(K) liefert die totale Ubergangsfunk­

t ion
. -1 -2

1,3+0.75K -0.22"

1-0.7K- 1+O.1K- 2

und mit der Rücktransformation des Operators ihre entsprechende End-

gleichung

Y(t) - 0.7Y(t-1) + 0.lY(t-2) = 1.3E(t) + 0.75E(t-1) - 0.22E(t-2)

Die zweite Vorschrift bezieht sich auf die Zusammenfassung kaskadie­

render GI ieder. Es 9i le das Reduktionsschema:

E( t~ I...._G_,_.(_"_)-JI Y, ( t ~ IL_G_2_(_K_)_I Y( t ~
Y(t)

Abb. 21.18 Ermittlung der Ubergangsfunktion eines 1inearen dynami­
schen Systems im Falle kaskadierender GI ieder

Die Richtigkeit dieser Reduktion. kann leicht aus der Verallgemeine­

rung des folgenden Beisp'ieles erkannt werden. Zwei kaskadierende Sy­

steme können durch

Y(t) = 0.3Y(t-1) t Y
1

(t)

Y
1
(t) = 1.lY 1 (t-1) + 1.3E(t-l)

beschrieben werden. G
1

(K) und G
2

(K) ergeben sich mit

1.3K- 1
G1(K)- 1

1-1.1K-

1
G2 (K) - 1-0,3K- 1

Die Operatorentransformation von (21.92) und (21.93) liefert

(21,92)

(21.93)

(21. 94)



229

. -1
Y\t)[1-0,3K 1· Y

1
(t)

Y
1

(t)[1-1 ,lK- 1 j • 1,3K- 1E(t)

oder

Mi t (21.96) in (21.95) folgt:

Y(t) 1 1 ,3K- 1
[(t)•

1-0,3K- 1 1-1,lK-1

121.95)

(21.96)

(21.97)

E(t)

Anhand der Definition von G, (K) und G2 (K) erkennt man, daß (21.97) mit

Y(t) = G,(K)G
2

(K)E(t)

identisch ist. Aus Gleichung (21,97) folgt

l,3K- 1
Y(t) = --'-'~--~-1 -2

1-1,4K +O,JJK

und damit die Endgleichung

Y(t) - , ,4Y(t-l) + O,33y{t-2) • 1,3E(t)

Die dritte Reduktionsvorschrift bezieht sich auf die Zusammenfassung

von K~eisschaltungen. Sie behauptet die Äquivalenz der Schemata in

Abbildung 2".19.

Y1(t) Y(t)
GI (K)

+

G
z
(<) .

YzCt)

E(t) GI (<) Y(t)

1 GI (<)GZ(K)

Ahb. 21,19 Ermittlung der Ubergangsfunktion eines linearen dynami­
schen Systems im Falle einer Kreisschaltung



Die lulässigkeit dieses Reduktionsverfahrens soll im Gegensatz zu den

vorangegangenen zwei Verfahren in allgemeiner Weise nachgewiesen wer­

den. Die in Abbi ldung 21.19 dargestellte Kreisschaltung wird durch

die Gleichungen

Y(t) : G,(K)Y
1

(t)

Y
2

(t) = G
2

(K)Ylt)

Y,It) = E{t) + Y
2

(t)

beschrieben. Hit Gleichuryg (21.99) in (21.100) folgt

(21.98)

(21.99)

(21.100)

Y,(t) • E(t) + G
2

(K)Y(t)

Gleichung (21.101) in (21.98) liefert dann

(21.10')

oder

und

Y(t)['-G,(K)G
2

(K)] = G,(K)E(t)

damit G (K)

Y(t): G (~lG (K) E(t)
1 2

d.h. die in Abbildung 21.19 aufgezeigte Ubergangsfunktion.

Durch die sukzessive Anwendung dieser drei Reduktionsvorschriften

kann die totale Ubergangsfunktion und damit zugleich auch die Endglei­

chung·ei~es Systems auf übersichtliche Art ermittelt werden.

Als 'Beispiel sei das Blockdiagramm eines HA-Systems angeführt.

I . ( t ),

I (t)
a;,/.-\" +

\.

~
HI(K) H2(K)

C( tJ

Y( tl

Abb. 21.20 Blockdiagramm eines HA-Systems
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C(t)-H
1

(K)Y(t) beschreibt die Konsumfunktion und I; (t)-HZ(K)C(t) die

Investitionsfunktion. Ermittelt werden sol I die Ubergangsfunktion

zwischen Ja und Y.

Aufgrund der Vorschrift über die ZusalTVllenfassung von Parallelgl ie­

dern folgt:

I (t)a
+

/ " +

" ~

C(t)
H

1
(K) l+HZ(K)

Y(t)

Abb. 21.21 Reduziertes Blockdiagrarrrn eines HA-Systems durch Zusammen­
fassung von Parallelgliedern

Unter Beachtung der Reduktionsvorschrift für kaskadierende GI ieder

folgt die weitere Reduktion:

I (t)
a

+

~ +

" ./

H1(K)[1+HZ(K))

Y(t)

Abb. 21.22 Reduziertes Blockdiagramm eines HA-Systems durch Zusam­
menfassung kaskadierender GI leder



Schließlich wi rd die Kreisreduktionsvorschrift angewandt, die zur to­

talen Ubergangsfunktion führt

1 Y( t)

Abb. 21.23 Reduziertes Blockdiagramm eines MA-Systems durch Zusammen­
fassung von parallelen, kaskadierenden und Kreisgl iedern

Da im Falle eines HA-Systems die Operatoren durch

-I
H1(K)=aK

und
-I

H (K) = ß - BK
2

konkretisiert werden, ergibt sich mit der Einsetzung dieser Ausdrük­

ke für H1(K) und H2 (K) in die totale Ubergangsfunktion die Fassung:

1
H(K) = -I -2

1- (c1+aß) K +a;ß K

und damit· die uns schon bekannte Endgleichung:

Y(t) - (a+aB)Y(t-l) + aBY(t-2) = I (t)•
ß) Endg.leichungsbestimmung anhand von Signalflußdiagrammen

Am Beispiel eines MA-Systems wurde deutl]ch, daß die Bestimmung der

Ubergangsfunktion anhand der Reduktion von Blockdiagrammen sehr müh­

sam sein kann. Eine andere Methode, die daher bei größeren Systemen

zur Anwendung kommt, ist die Reduktion von Signalflußdiagrammen. Sig­

nalflußdiagramme liefern wie die Blockdiagramme eine bildhafte Dar­

stel Jung der Systemzusammenhänge, auf deren Grundlage ein effekti­

veres Vorgehen bei der schrittweisen Lösung der Operatorengleichungen
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bewirkt werden 5011.

Der grundsätzliche Aufbau von Signal flußdiagrammen wurde bereits be­

schrieben. Ihr Unterschied zu einem Blockdiagramm besteht darin, daß

die Blöcke in einem Signalflußdiagramm durch gerichtete Strecken er­

setzt und die Eingangs- und AusgangsgröBen in Knotenpunkte überführt

werden. Diese Knotenpunkte werden zugleich als Summationspunkte de~

finiert mit der Folge, daß sich der Wert einer Knotenpunktvariablen

aus der Summe der auf einen Knotenpunkt führenden Variablen bestimmt.

Den Zusammenhang zwischen der SignalfluB- und Blockdiagrammdarstellung

einer Ubergangsfunktion zeigt Abbildung 21.24

G(K)

E(t) I
----4..~ ~ (K)

Y(t)..

Abb. 21.24 Ubergangsfunktion eines linearen dynamischen Systems in
einer Signalfluß- und Blockdjagrammdarstellung

Analog zu den Blockdlagrammdarstellungen lassen sich bestimmte Reduk­

tionsvorschriften angeben.

(1) Additionsvorschrif[

Parallele Strecken können zu einer Strecke zusamrnengefaBt werden, de­

ren Ubergangsfunktion sich aus der Summe der Ubergangsfunktionen der

Parallelstrecken ergibt.
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'_-' I-G_l_C_K_)_+_G_2_C_K"')~8

Abb. 21.25 Reduktion von parallelen GI iedern linear dynamis~her Sy­
steme in einer Signalflußdiagrammdarstellung

(2) Hultiplikationsvorschrift

Eine Kette von Knotenpunkten kann durch eine Strecke ersetzt werden,

deren Ubergangsfunktion sich aus dem Produkt der Ubergangsfunktion

2wi sehen den Knotenpunkten der Ketten best immt.

\--G_2_CK_)_-t ....._" l-_G.:.3_CK_)_,8

ist dem Signalflußdiagramm

äquivalent.

Abb. 21.26 Reduktion von kaskadierenden G1 jedern 1inear dynamischer
Systeme in einer SignalfluBdiagr.ammdarstellung

(3) Schleifenreduktion

Für die Reduktion einer Schleife gilt die Vorschrift
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=

G(K)

Abb. 21.27 Reduktion von Kreisgliedern linear dynamischer Systeme in
einer SignalfluBdiagrammdarstellung

Die Gültigkeit dieser Beziehung erkennt man anhand des Gleichungssy-

sterns

V
2

(t) = VI (t) + G(K)V
2

(t)

V
3

(c) = V
2

(t)

Die Auflösung von Gleichung (21.102) nach Y2{t) liefert

und

V
2

(t) -V,(t)/(I-G(K»)

Mit Gleichung (21.103) folgt

(21.102)

\21.103)

d.h. die Ubergangsfunktion zwischen Y3(t) und V, (t).

Die Reduktion von Systemgliedern und damit die Gewinnung der Uber­

gangsfunktion eines Systems soll anhand eines durch ein SignalfluB­

diagramm beschriebenes HA-Systems demonstriert werden.

Ein solches Signal flußdiagramm wird unter Verwendung der bereits im

Rahmen der Blockdiagrammdarstellung angeführten Operatoren H1 und H2
durch die folgende Abbildung dargestellt:
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1

1 H (K)

Aufgrund der Multiplikationsvorschrift

1

folgt

1

1

Die obere und untere Schleife von Y(t} über Clt) kann nach der Addi­

tionsvorschrift zusammengefaßt werden. Es ergibt sich damit

1 H1(K)

1 (t) C(t)•

1+H
2
(K)

Nach der Multipl ikationsVOfschrift kann die Kette Y(t)-C(t)-Y{t)

reduziert werden durch

I (t)•
1 Y(t)

Die Schleifenreduktion führt zu dem nachfolgenden zweigl ledrigen 5i9­

nalflußdiagramm
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1

und damit zu der totalen Ubergangsfunktion eines HA-Systems, die be­

reits mit Hilfe der Blockdiagrarrrnreduktion ermittelt wurde.

cc} Analyse linearer Systeme anhand von Matrizen

Eine umfassende Analyse linearer dynamischer Systeme ist nur mit Hi 1­

fe der Hatrizenrechpung möglich. In diesem Abschnitt werden sowohl

die Grundlagen der Matrizenrechnung erörtert als auch die daran an­

knüpfenden Verfahren der Analyse linearer Systeme.

a) Grundbegriffe der Matrizenrechnung

Eine Matrix ist ein rechteckiges Schema von Zahlen oder Elementen und

Wi rd mi t runden oder eckigen Klarrtnern

all

a
21

M •

versehen. Die horizontalen Reihen werden Zeilen, die vertikalen Rei~

heo Spalten genannt. Die Elemente werden hinsichtlich ihrer Stellung

durch Indizes gekennzeichnet. Der erste Index benennt die Zeile. in

der sich das betreffende Element befindet, während der zweite Index­

die Spalte charakterisiert. Das Element a .. steht daher in der i-ten
, J

Zeile und j-ten Spalte. In abgekürzter Schreibweise kann man eine Ma-

tr ix auch durch

:1.2 •...• n

j:::l.2.··· t ffi
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ausd rücken.

Wir betrachten im folgenden einige wichtige Typen von Matrizen:

Die Matrix

wird als Diagonalmatrix bezeichnet, da a11e nicht auf der Hauptdia­

gonalen (i=jl 1 legenden Elemente Null werden. Sie ist zugleich eine

quadratische Matrix, weil die Anzahl der Zeilen und Spalten Uberein­

stimmt.

Quadratische Diagonalmatrizen werden oft durch folgende Schreibweise

dargestellt:

H = [0
11

"'0
0

]o mm

Einen Sonderfall unter den Diagonalmatrizen bi ldet die Einheitsma­

trix, welche mit dem Buchstaben I bezeichnet wird. Als Beispiel sei

folgende Matrix angeführt:

Verallgemeinernd ist eine Einheitsmatrix eine Diagonalmatrix, deren

Hauptdiagonale nur mit Einsen besetzt ist.

Eine einspaltige Matri~ wird als Spaltenvektor b~zeichnet, während

eine einzeil ige Matrix Zei lenvektor genannt wird.

So ist beispielsweise die 2x1 Matrix [~] ein Spaltenvektor. während

die 1x2 Matrix [3.4] als Zeilenvektor bezeichnet wird.

Folgende Definitionen und Rechenoperationen sind für die nachfolgen­

den Betrachtungen von Belang:

a) Gleichheit zweier Matrizen

Zwei nxmMatrizen

i ,j gi 1t: a .. =b ..
I J I J

A::[a .. ] und B=[b .. ] sind gleich,
I J I J

i=l ,2, ... ,n j";'l ,2, ... ,m

wenn für alle
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b) Summe zweier Matrizen

Oie Sumne zweier n xm Matrizen A und B bi ldet eine n xm Matrix C,

die sich aus der Addition der entsprechenden Elemente ergibt. d.h.

C • A + B • [c .. l
I)

bestimmt sich mit

C
ij

Bei spiel:

:c a ..
I J

+ b ..
1 J

i::l,2, ... ,n; j=l,2, ...•m

c) Multiplikation einer Matrix mit einer Konstanten

Werden in einer bel iebigen Matrix A al le Elemente mit einer beliebi­

gen Zahl c multipliziert, so wird die sich ergebende Matrix mit cA

bezeichnet. Für das Rechnen mit Matrizen gelten analog zum Rechnen·

mit Zahlen die folgenden Sätze:

A + B "" B + A

(C1tCZ)A • c lA + CZA

Cl (AtB) • c lA t c 1B

d) Multiplikation von Matrizen

Be~or wir uns der Multiplikation von Matrizen zuwenden. sei die Mul­

tiplikation eines Zei len- mit einem Spaltenvektor erklärt. U sei ein

Zeilenvektor und Wein Spaltenvektor mit n Komponenten, d.h.

w•

(Z1.104)

w
n

Das Produkt UW des Zei lenvektors U mit dem Spaltenvektor W ist eine

lxl Matrix, die damit aus einer Zahl besteht, deren Wert sich nach

n
UW : j:1 W

j uj ~ w1u 1 + w2u2 +... + wnu
n

ermi ttel t.
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Als Beispiel sei das Produkt von zwei Vektoren

nJ[),-Z] • z·) + 1(-Z) .4
angeführt.

Nehmen wir an, es sei das Matrizenprodukt der nxm Matrix A mit der

mxk-Matrix B zu bestimmen.

Die Matrix A kann durch
A

1

A
A

Z
[a .. ]= =

I J

A
n

i =-1 •..•• n j::l , ... ,m

beschrieben werden. A. ist hierbei ein Zeilenvektof, der die i-te
I

Zei Je der Matrix beschreibt, d.h.

Ai = [ail'ai2.· .. ,ajm]

In ähnlicher Weise läßt sich di.e Matrix B durch

(i=1.2 •...• m)
(j=l ,2, ... ,k)

beschreiben. wobei

B. '"
J

den Spaltenvektor der j-ten Spalte der Matrix B repräsentiert. Das

Vektorprodukt des Zei lenvektors A. mi t dem Spal tenvektor B. ergibt
I J

sich analog (21.104) aus

m

A.B.= ~a'lb1'
I J 1:1 I J

(Z1.105)

Das Matrizenprodukt AB wird nunmehr folgendermaßen definiert:
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A, B, A, B2 A,Bk
A

2
B

1
A

2
B

2
A

2
B

k
(21.106)AB -

AnB l
A

n
B

2 AnBk

Die Matrizen A und B sind, wie man aus dieser !estlegung erkennt, nur

dann miteinander multipl izierbar, wenn die Zahl der Spalten von Ader

Zahl der Zeilen von B entspricht.

Als Beispiel betrachten wir

A = [: B •

Entsprechend (21.104) .ergeben sich die Elemente A.B. der Produktma­
I J

trix aus

A,B 1 = "2 '.(-3)(-1) = 5

A
2
B

1 = 2,2.4(-1) = 0

A
2

B2 = 2" .4'3 = 14

A,B 2 • '·1.(-3)3~-8

und damit

AB = [~ -8]
14

e) Inverse Matrix

In der Zahlenalgebra hat jede Zahl (außer Null) einen Kehrwert. Ei­

ne Zahl b ist der Kehrwert von a. wenn ab=1 ist. In der Matrixalge­

bra kann eine dem Kehrwert analoge Matrix definiert werden:

1st A eine beliebige n xn-Hatrix und läßt sich eine Matrix B finden,

daß

AB - I

wobei I die Einheitsmatrix ist, so wird B als inverse Matrix von A

beze j chne t.

Die inverse Matrix A- 1 bildet mit der adjungierten Matrix A* und der
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Determinante lAI von A die folgende Beziehung

-1 A*
A - TAT (21.107)

Die Determinante IA] ist eine nach bestimmten Vorschriften aus den

Elementen a .. zu ermittelnde Zahl. Die adjungierte Matrix kann auf
I J

folgende Weise ermittelt werden:

Streicht man in einer nxn-Matrix die i-te Zeile und j-te Spalte, so

erhält man eine (n-l)x(n-l)-Matrix, deren Determinante man als Unter­

determinante A.. der Determinante lAI bezeichnen kann. Setzt man vor
. I J . .

diese Unterdeterminante das Vorzeichen (_l)ITJ, 50 erhält man bei ent-

sprechender Anordnung der Elemente die Matrix

~. [(-I)i+jA .. ]
I J

Durch Vertauschen der Zeilen und Spalten dieser Matrix erhält man ih­

re sogenannte transponierte Matrix, welche die adjungierte Matrix A*

von A darstellt, d.h.

A* • AT _ [(_I)i+jA .. ]
J'

oder

A*-[A~.]
'J

mi t * ()i +jA.. • -1 A..
I J J I

(21.108)

Die Oeterminante lAI kann nach dem Entwicklungssatz für Determinan­

ten durch

lAI • ailA~j + ai2A~j + ... + ainA~j (i-j) (21.109)

entwickelt werden. lAI ergibt sich somit aus der Summe des Produktes

der jewei ls miteinander korrespondierenden Werte der Elemente einer

Zeile von A und einer Spalte von A*. Das Gesagte sei a~ einem Bei­

spiel verdeutl icht. Die Matrix

führt zu den Unterdeterminanten
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-2 0 3 0 3 -z
All • • -4 AI2

: - = -6 Al3 - = 13
3 2 2 Z 2 3

3 -1 I~
-1 3

A
2l = - = -9 AZ2

: = 4 A23 -- = 3
3 2 2 2 3

~:
-I -1

I:
3

A31 - = -2 A =- = -3 A33 - =0 -11
0 32

3 0 -Z

Man erhält die Matrix

[-4
-6

13]-9 4

-I~-2 -3

deren Spiegelung zu der adjungierten Matrix

führt. Die Determinante liefert nach der ersten Zeile entwickelt:

IA!.1{-4) '3(-6) -1·13=-35

Im Falle der Entwicklung nach der zweiten Zeile ergibt sich ebenfalls:

lAI = 3{-9) - 2·4 • 0·3 : -35

Die inverse Matrix berechnet sich daher unter Beachtung von (21.107)

4 9 Z
35 35 35

-1 6 4 3A = 35 -35 35
13 _.2- 11-- 3535 35

Auf die Techniken der Berechnung von Determinanten und inversen Ma­

trizen bei groBen Matrizen 5011 hier nicht eingegangen werden, zumal

sie von interessierten Anwendern ohne Schwierigkeiten mit Standard­

EOV-Programmen ermittelt werden können. Für die sich anschließenden

Betrachtungen ist es wichtig festzuhalten. daß die Berechnung der De-
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terminanten adjungierter und inverser Matrizen ausschließl ich auf

Additionen, Subtraktionen, Multiplikationen und Divisionen beruht.

Diese Feststellung ist von Bedeutung, wenn wir uns mit Polynomma­

trizen beschäftigen. In einer Polynommatrix werden die Elemente ei­

ne~ Matrix nicht durch Zahlen, sondern durch Polynome dargestellt.

Da beim Rechnen mit Operatoren Additionen, Subtraktionen und Multi'­

pl ikationen zugelassen sind, so ist es auch für den Sonderfall einer

aus Operatorpolynomen bestehenden Polynommatrix nicht unsinnig, ei­

ne Determinante oder inverse Matrix zu ermitteln.

ß)Endgleichungsbestimmung an hand von Polynommatrizen

Die Ermittlung der Endgleichungen linearer Systeme wurde bisher mehr-,
mals erörtert und an Beispielen demonstriert. Es handelt sich jedoch

um Verfahren, in denen die generelle Systematik einer Endgleichungsbe­

stimmung nicht klar zum Ausdruck kommt.

Ein solcher genereller Ansatz zur Endgleichungsbestimmung soll im foJ­

gengen beschrieben werden.

Die Differenzengleichung

Y
1

(t) + 2Y,(t-') - 3Y,(t-3) = E,(t)

kann bei Verwendung des Rückwärtsoperators Y(t-n)=K-nY(t) in die Form

(2'.1'10)

überführt werden.

Definiert man G(K)=1+2K- 1-3K- 3 , so wird (21.110) zu

Dieselbe abkürzende Schreibweise ist auch bel Differenzengleichungs·

systemen mögl ich.

Das Mode 11

2Y,(t) + 0,4Y,(t-z) + 3YZ(t) + 0.Z5Y2(t-') = E,(t)

0.5Y, (t) + O.'Y, (t-') + 2YZ(t) - O"YZ{t-I) = EZ(t)

kann in die Form
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PlI (K)Y I (t) + P
I2

(K)Y
2

(t) = EI (t)

P
21

(K)Y
I

(t) + P
22

(K)Y
2

(t} E
2

( t)

mi t

PlI (K) = 2 t o 4K- 2
P12 (K) = 3 t O,25K- 1,

-1 o I K- I
P21 (K) = 0,5 + 0,1 K P

22
(K) = 2 - ,

überführt werden.

Ein beliebiges Differenzengleichungssystem kann daher in der folgen­

den allgemeinen Form beschrieben werden:

........................ , .

P
11

(K)Y
I

(t)

P
21

(K)Y
I

(t}

t P
I2

(K)Y
Z

(t} + t

+ P
22

(K)Y
2

(t} t t
(21.111)

Pm1 (K)Y
I

(t) + Pm2 (K)Y
2

(t} t ... t Pmm(K)Ym(t} = Em(t)

Diese Form eines Differenzengleichungssystems legt den Ubergang zu

einer Matrizenschreibweise nahe. Definiert man:

P (K) =

Pm 1 (K) Pm2 (K) ... P ( K)
mm

und

y I ( t) EI (t)

y (t) •
Y2(t)

E( t)
E

2
(t)

=

Y (t) E (t)
m m

dann läßt sich das Gleichungssystem (Z1.lll) durch

P(K)Y(t} = E(t) (21. 112)

ausdrücken. Die Matrix P ist eine Polynommatrix, da ihre Elemente

keine Zahlen, sondern Polynome bilden. Die Operationsregeln der Ma­

trizentheorie gelten jedoch, wie erwähnt, unverändert. Das Gleichungs­

system (21.112) ist daher immer dann in seine Endgleichungsform über­

führbar, wenn die Polynommatrix P eine inverse Matrix p- 1 besitzt.

Entsprechend (21.107) besitzt eine Matrix immer dann eine Inverse,
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wenn ihre Determinante ungleich Null ist. Die Bedingung zur Ermitt­

lung eines Endgleichungssystems lautet daher

Ip(K)1 • 0

In diesem Fall wird aus (21.112) durch Multiplikation mit p-l(K)

p- I (K)P(K)V(t) = p-l (K)E(t)

und dami t

V(t) = p- I (KJE(t)

Mit (21.10]) wird (21.113)

V(t) _ P"(K)E(t)
- -I P(K) I

und damit ergibt sich die Endgleichung

!p(K)IV(t) = P"(K)E(t)

(21.113)

(21.114)

Das Ermittlungsverfahren sei an einem Beispiel demonstriert. Gegeben

sei das Differenzengleichungssystem:

I ,SV
I
(t) • O,4V I (t-I) • V

2
(t) = EI (t)

lVI(t). O,2V
I
(t-l) • 1,IV

2
(t)'. O,lY

2
(t-l) E

2
(t)

Die Operatorenpolynome sind:

PlI (K) :co 1.5 • O,4K- I
PI 2 (K) '"° 2K-

I -1
P21 (K) = 1 • P

22
(K) = I , I • 0, 3K,

Die Polynommatrix P bestimmt sich nach

P(K) = [P 11 (K)

P21 (K)

Ihre Determinante wird durch

oder

!p(K)1
-I -I -

= (I,S,o,4K ) (I, l'O,3K, )

Ip(K)! = -1,35' O,69K- I .O,12K- 2

beschrieben.



Die Adjunkte P*(KJ bestimmt sich aufgrund (21.108)

[

-I
P* (K) = 1,1 + 0,3 K

-j

-I ]-3-0,2K
-I

1.5t-0.4K

Die Endgleichungsform erhalten wir mit (21.114)

-I -2 [Y1(t)] [l,I+O'3 K-
1

-3-0,2K-
j

][EIlt)]
(-I,35+0,69K +O,12K ) Y

2
(t) = -1 l,5+0.4K- I EZ(t)

Durch Rücktransformation des Operators erhält man in der üblichen Oif­

ferenzengleichungsdarstellung die Endgleichung für Y, (t):

-l,35YI(t) + O,69Y
I
(t-l) + O,IZY 1(t-2) - l,lEj(t).+ O,3E j (t-l) -

- 3EZ(t) - O,ZEZ(t-l)

und für YZ(t)

-l,35YZ(t) + O,69YZ(t-l) + O,IZYZ(t-Z) = -EI(t) + 1.5E
Z(t)"+

+ O,4E
2
(t-l)

Die Division der beiden Gleichungen durch -1.35 führt zu der üblichen

Standardform einer Endgleichung.

Die Tatsache. daß entsprechend Gleichung (21.114) der Spaltenvektor

Y(t) stets mit demselben Operatorpolynom Ip{K)1 multipliziert wird.

führt zu dem Schluß. daß die Endgleichungen der endogenen Variablen

eines Differenzengleichungssystems stets dieselbe reduzierte Form

v=1,2, ...•m

besitzen. Daraus könnte man den Schluß ziehen, daß die Funktionslö­

sungen der endogenen Variablen eines Differenzengleichungssystems

stets dieselben Wurzeln aufweisen und daher ein einheitliches dyna­

misches Verhalten zustande kommt. Dies ist jedoch nicht generell der

Fall. Es 5011 nur kurz gezeigt werden. warum die oben gesch}lderte

Schlußfolgerung falsch ist.

Eine endogene Variable .besitzt nicht nur eine. sondern im Prinzip un­

endlich viele Endgleichungen. Betrachten wir die Endgleichung unseres

MA-Modells

Y(t) - O.3Y(t-I) + O,ZY(t-2) = I (t)
a



deren charakteristische Gleichung die Wurzeln

besitzt, und schreiben wi~ diese Gleichung in Operatorenform, d.h.

Y(t}(1-0,3K- 1 +O,2K- 2 ) = I (t}
a

dann ist es möglich, diese Gleichung mit einem bel.iebigen Operatoren­

polynom zu multipl izieren, um damit eine weitere Endgleichungsform

zu erhalten. Multiplizieren wir unsere Ausgangsgleichung beispiels­

weise mit (K- 1-2), so erhalten wir:

oder die Endgleichung

mit den Wurzeln

1
2

= 0,15 - 0,421)1 und 1
3

= 2

Orientiert man sich an dieser Endgleichung, so würde das System durch

drei Wurzeln bestimmt und einen gegenüber der ursprünglichen Glei­

chung völl ig anderen Verlauf aufweisen: Das System würde wegen der

Wurzel A
3

=2 explodieren, die in der Funktionslösung den Ausdruck C32t

bi Iden würde. Es zeigt sich, daß man durch Multiplikation des Aus­

gangspolynoms mit einem Ausdruck (~-l_a) bel iebig viele Endgleicnun­

gen mit den unterschiedlichsten Wurzeln erhält. Es liegt die Frage

nahe, welche der Wurzeln unter diesen Umständen/das dynamische Ver­

halten des Systems bestimmen.

Um das zu klären, betrachten wir eine Endgleichung in Operatoren­

schreibwei se:

-1 -n -1 -s
Y(t}(ITa

I
K tT ... TanK ) = (90T91K T ... T9sK )E(t)

Unterstellen wir n>rn und multiplizieren mit Kn• so erhalten wir:

() n n-1 n n-1 n-s
Y t (K TalK T... Ta

n
) = (90K T91K T ... TgsK )E(t} (21.114)

Es gilt der Produktensatz für Polynome:
n n-1 0

Sind A, ,A 2 ' ... ,An die Wurzeln des Polynoms bOK +b,K T ••• +bnK • so



laSt sich dieses Polynom durch

(K->-.,) (K->-'2)'"(K-A n) = bOK
n + b,K

n
-

1
+...+bnK

O
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(21.115)

darstellen.

Verwendet man diese Pfoduktendarstellung fOr die Polynome in Glei­

chung (21.114). so erhal t man

mit A und 0 als Wurzeln. Stimmen zwei Wurzeln aus den beiden Polyno­

men miteinander Ubereini so kann die Gleichung durch (K-A.) geteilt

werden. wenn A* dies'e gemeinsame Wurzel ist. Man erkennt.-daB aIle

gemeinsamen Wurze1n der beiden Polynome das ,System~verhalten nicht

beeinflussen. Entscheidend fOr eine Verhaltensanalyse ist daher nur

die Endgleichung. in der die Wurzeln ihrer Operatorpolynome verschie­

den sind. Von dieser Voraussetzung wurde bisher stillschweigend aus­

gegangen. 1m FaIle der Endgleichungsform (21.114) ist jedoch keine

Garantie gegeben. daB die Wurzeln der charakteristischen Gleichung von

!P(K)!Y (t) = 0\I \I=1.2, ...• m

und den Operatorpolynomen der exogenen Variablen verschieden sind.

Enthalt eine End~le-ichun-g d-aher e-ine exogene Vari-able mit unter-sc:hied­

richen Verzogerungen. so sind die Wurzeln des entsprechenden Opera­

torpolynoms mit den Wurzeln der charakteristischen Gleichung zu ver­

gleichen. Erst wenn sich diese als verschieden erweisen. ist es zu­

lassig. anhand der Wurzeln das dynamische Verhalten des Systems zu

beurtei len.

y) Zustandsraumdarstel1ung linearer Systeme unci ihre Analysemethoden

Unsere bisherigen Betrachtungen basierten auf dem Konzept der End­

gleichungsanalyse. Das dynamische Verhalten eines Systems wird in

diesem Fall beiOglich bestimmter endogener Variablen anhand ihrer

Endgleichungen beurteilt. Diese Untersuchungsmethode ist besonders

dann angebracht, wenn man nur an dem dynamischen Verhalten einer ganz

bestimmten endogenen Variablen interessiert ist und damit eine I ver -
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dichtete Aussage' Gber die Beziehungen zwischen dieser endogenen Va­

riablen und den exogenen GroBen gewinnen will.

1m folgenden wollen wir uns mit einer anderen Methode der Analyse dy­

namischer Systeme beschaftigen, die auf der Zustandsraumdarstellung

eines linearen Systems beruht.

Jedes lineare dynamische System laBt sich durch ein aquivalentes Dif­

ferenzengleichungssystem ersten Grades beschreiben. Die um eine Pe­

riode verzogerten endogenen Variablen ein~r solchen Darstellung kon­

nen als ein Zustandsvektor Z(t-l) angesehen werden, der zusammen mit

den exogenen Variablen den Zustandsvektor Z(t) bestimmt. Angesichts

dieser Interpretationsmoglichkeit spricht man in diesem Fall von der

Zustandsraumdarstellung I inearer Systeme.

Diese Darstellungsform erlaubt eine ubersichtl iche Beurteilung der

Abhangigkeiten der endogenen Variablen eines System5~ Die Zustands­

raumdarstellung eines dynamischen Systems in Matrixforrn erhoht aber

nicht nur die Ubersichtl ichkeit, sondern gestattet auch eine einfa­

che numerische Analyse im Fal Ie der Anwendung von EDV-Anlagen. Wie

erwahnt, geht das heute viel verwendete Modellierungskonzept System

Dynamics von der Grundkonzeption aus, daB die Welt durch Beziehungen

zu beschreiben-lsi, die ium A~sdru~k bfingen, in w~lfh~f W~i~~ ~iri

System von bestimmten Systemzustanden ip Periodet-l in die Zustande

in Periode t ubergeht. Demzufolge bilden System-Dynamics-Modelle in

ihrem Primaransatz stets ein System von Differenzengleichungen er­

sten Grades. Diese Konzeption 5011 zwar hier nicht besprochen werden,

doch mag dieser Hinweis genUgen, um deutl ich zu machen, daB die bei

einer Zustandsraumdarstellung eines prlmaren Modellansatzes einzufUh­

renden zusatzl ichen 'kunstl ichen' endogenen Variablen durchaus einer

empirisch sinnvollen Interpretation zuganglich sein konnen; Zur Ein­

schatzung dieser_ Darstellungsform durfte es auch von Interesse sein,

daB die zur Analyse von Volkswirtschaften verwendeten dynamischen

tnput-Output-Modelle im Primaransatz bereits einer Zustandsraumdar­

stel1ung entsprechen.

Na~h einer Beschreibung der Zustandsraumdarstellung wenden wir uns
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den Methoden zu, mit denen primare Modellansatze in eine Zustands­

raumdarste11ung uberfuhrt werden konnen. Daran ansch1ieBend werden

bestimmte Analysemethoden im Rahmen der Zustandsraumdarstel lung er­

orte rt.

A1s erstes wollen wir versuchen, ein a11gemeines MA-Mode11 ,in einer

Zustandsraumdarste11ung zu formu1ieren.

A1s Grund1age dient das Gleichungssystem

Y(t) = C(t) + I. (t) + I (t)
I a

f.(t) = S[C(t).,.C(t-1)]
I

C(t) ,;" aY(t-l)

(21.11])

(21.118)

(21.119)

Setzt man Gleichung (21.119) in (21.118) und (21.117) ein, so erhalt

man

Y(t) = etY(t-1) + I. (t) + I (t)
I a

I.(t) = S[etY(t-1)-C(t-1)]
I

C(t) = aY(t-1)

Mit G1eichung (21.121) in (21.120) folgt:

y(t) = (et+aB)Y(t-1) - BC(t-1) + I(t)
a

I . (t) =- aBY(f..;1} ~BC (t;;;l)
I

C(t) = aY(t-1)

und in Matrizenform

(21.120)

(21.121)

[

Y(t)] [a+Ba 0
I.(t) = as 0

I

C(t) a . 0

(21.122)

In diesem Fall erubrigt sich die Einfugung einer kunstlichen endoge­

nen Variablen, d.h. alle endogenen Variablen entstammen dem Primar­

ansatz. Als wei teres Beispiel 5011 das Gleichungssystem

Y1 (t) + 3Y1 (t-1) - 6Y 1(t-2) - 2Y1 (t-3) = E1(t)

Y2(t) - 2Y 2 (t-l) + 3Y1(t-l) E2(t)

in eine Zustandsraumdarste1lung uberfuhrt werden.

(21.123)

(21.124)



Definieren wir

Zl (t) = Y1 (t)

Z2(t) = Y2 (t)

Z3 (t) = Zl(t-l)

Z4(t) = Z3(t-l)

und setzen diese Definitionen in Gleichungen (21.123) und (21.1Z4)

ein, dann erhalten wir:

Z, (t) + 3Z1(t-1) - 6Z3 (t-1) - ZZ4 (t-1) = E, (t)

ZZ(t) - 2Z Z(t-1) + 3Z,(t-1) = EZ(t)

In Matrizendarstellung ergibt sich:

Z, (t) -3 0 6 Z Z,(t-l) E, (t)

ZZ(t) -3 Z 0 0 ZZ(t-l) EZ(t)
= +

Z3(t) , 0 0 0 Z3(t-l) 0

Z4 (t) 0 0 1 0 Z4(t-1) 0

Da uns im Prinzip nur die BeobachtungsgroBen Y1 und YZ interessieren,

definieren wir die Matrizengleichung

o o
o

Z, (t)

Zz (t)

Z3(t)

Z4 (t)

Das angefUhrte Beispiel laSt anhand Abbildung 21.z8 folgende Inter­

pretation zu:

.. INTERNE ZUSTANDE --

... Zl' Z2' Z3' Z4 --
E1Ct) Y1Ct)

E
2
(t) YZCt)

Abb. 21.28 Zustandsraumdarstel lung eines dynamischen Systems
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Man kann davon sprechen, daB ein System mit den Eingangen E1 und E
2

Uber die internen Systemzustande Z, bis Z4 die Ausgangsvariablen Y,

und Y2 best immt.

Definiert man

Z1 (t) E1 (t)

Z( t} = Z2 (t) E( t) =
E

2
(t)

Z3 (t) 0

Z4(t) 0

-3 0 6 2

M -3 2 0 0 Y(t)
[Yl(tl]

= Y2(t)0 0 0

0 a 0

und

B
= [:

0 0

~], 0

so kann das angefUhrte Beispiel durch die Matrizengleichungen

MZ (t-l) + E(t)

BZ(t) (21.125)

beschrieben werden. Die Matrix Mwird als Zustandsmatrix bezeichnet,

Z(t) als Zustandsvektor, E(t) und Y(t) als Eingangs- bzw. A~sgangs­

vektor und B als Beobachtungsmatrix. Verallgemeinernd kann das Glei­

chungssystem als die allgemeine Form der Zustandsraumbeschreibung ei­

nes dynamischen Systems angesehen werden. 1m folgenden wollen wir

uns intensiver mit der Struktur der Zustandsma~rix M beschaftigen, .

welche alle Informationen Uber das dynamische Verhalten des Systems

enthalt. Dies erkennen wir bei dem Versuch, an hand von Gleichung

(21.125) die Entwicklung des Zeitverlaufes Z(t) zu bestimmen.

Z(1) ::i MZ (0) +' E(1)

Z(2) MZ(l) + E(2) = M2Z(O) + ME(l) + E(2)

Z(3) = MZ(2) + E(3) = M3Z (0) + M2E(1) + ME(2) + E(3)
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Es wird klar, daB die Stabil itat oder lnstabil itat des Systems be­

stimmt wird von der zeitl ichen Entwicklung der Potenzmatrix Mt . Urn

die Struktur dieser Potenzmatrix besser beurteilen zu konnen, sind

einige neue Begriffe und Satze der Matrizentheorie einzufUhren.

Als charakteristische Gleichung einer Matrix M bezeichnet man den

Ausdruck

(21.126)

Handelt es sLch urn eine (nxn)-Matrix, so ist die Gleichung (21.126)

ein Polynom n-ten Grades. Angenommen, M sei durch

M=[~ a ~]
-3 1 3

konkretisiert, dann wird

M-A I =[~ o~] [~~ ~j = [-~ -A ~]
-3 3 0 0 A -3 3-1..

(21.127)-1
S = M

welches zu der folgenden Determinante fUhrt

IM-A I! = >..3 - 3>" 2. - A+ 3

Es gilt der Satz: 12

Sind die Wurzel~ 1.. 1 ,A2 , ... ,An der charakteristischen Gleichung einer

Matrix M verschieden, so laBt sich eine Matrix S finden, die die Be­

ziehung

./.. 1
A2 0

S o .A
n

erfullt. Bezeichnen wir die Diagonalmatrix in (21.127) mit A, d.h.

>"1
0A2

A=
0 '1..

n

12 Zum Beweis siehe [227 ,So 167J
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dann kann die Potenzmatrix von M in folgender Weise ermittelt werden:

SA5- 1

(SAS- 1)(SA5- 1) =

(5AS- 1) (5A2S-1) (21.128)

Fur die Berechnung der Potenzmatrix gilt, wie man leicht nachprufen

kann, der Satz:

Die Potenzmatrix At einer Diagonalmatrix

ist die Diagonalmatrix

Unsere OrsprUr1"gl ich"e PO"ti:nzmcftrix Mt laBt sich daher durch

-1
5 (21.129)

beschreiben. Zur vollstandigen Beurteilung dieser Beziehung 1st es

notwendig, die Gestalt der Matrix 5 naher zu .spezifizleren.

Sie wird als Modalmatrix von M bezeichnet und laBt sich in n 5pal­

tenvektoren S=[Sl ,5 2, ... 5n] zergliedern, die als Eigenvektoren be­

zeichnet werden.

Sind A
1

,A
2

, •.• ,An die (verschiedenen) Wurzeln der charakteristischen

Gleichung der Matrix M, so bestimmen sich die Eigenvektoren 5
1

,5
2
"" ,Sn

der Modalmatrix von M nach der Beziehung 13

M5. = A.5.
I I I

i =1 ,2, ... ,n

13 Zum Beweis siehe [227,5.170]
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Der 5atz sei am Beispiel der folgenden Matrix demonstriert,

M = [~ 0 ~J
-3 3

deren charakteristische GJeichung wir bereits auf Seite 254 mit

)..3 - 3)..2 -1)" + 3 = 0

ermittelt haben. Die Wurzeln dieser Gleichung sind 1.. 1=1, A2=-1, A
3

=3.

Entsprechend dem oben angefUhrten Satz gilt fUr den Eigenvektor 5,

M5 1 =1.. 151

und starker spezifiziert

[-~ 0] [5
11

] [5
11

]0 1 512 = 1 512

3 5'3 513
oder

[-; 1

0] [5
11

]-1 1 S12 0

-3 2 5
13

Die Losung dieses homogenen Gleichungssystems 1iefert

511 = 1 512 = 1 S13 =

Die ana loge Berechnung mi t 1.. 2 und 1..
3

J iefert die Matrix

5 =[ -1 i]
Ihre Inverse bestimmt sich durch

[
3/4 112 -1/4]

5-
1

: 3/8 -1/2 1/8

. -1/8 0 1/8

Damit kann gemaB (21.128) die Potenzmatrix Mt durch



[
' -2 2] t [1 1] [3to]

M
t

= 1 21 1 -1 3 I
t

2 2 1 9 0 I
t

ausgedruckt werden .

[

3/4

3/8

-1/8

1/2

-1/2

o

-1/4]
1/8

1/8
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.Da die Moda1matrix S nur E1emente entha1t, die nicht von t abhangen,

wird deutl ich, daB das dynamische Verhalten eines Systems aussch1 ieB­

lich durch die Wurzeln A1 bis An der charakteristischen G1eichung in

(21.126) bestimmt wird ..

1m Rahmen der Analyse dynamischer Systeme beschrankt man sich bei

groBen Systemen oft nur darauf, die Zustandsmatrix M eines Systems

zu entwickeln und mit Hilfevon EDV-Standardprogrammen die Wurzeln

A1 ,A2 , ... ,An der charakteristischen G1eichung von 1M-All zu ermit­

te1n. Da die Ermitt1ung der Wurzeln einer Matrix ein k1assisches Pro­

blem der numeris'chen Mathematik darstellt, stehen eine Reihe von EDV­

Programmen zur VerfUgung, die auch zur Bestimmung der Wurze1n groBer

Matrizen verwendet werden konnen. So berechnete beispielsweise HOWERY

mit Hi1fe eines EDV-Programmes die Wurze1n einer (56x56)-Zustandsma­

trix eines dynamischen Model ls der US-Wirtschaft[92,S.654].

2.1.2. Nichtlineare Modellformen

Nach der Beschreibung einiger in den Wirtscha1ts- und Sozia1wissen­

schaften verwendeter Typen nicht1inearer Hypothesen wird ein kurzer

Uberb1 ick Ober die einsch1agigen Verfahren der deduktiven Imp1ika­

tionenaufdeckung nicht1inearer Model1e gegeben. Anhand der Phasen­

diagrammdarste1 lung nicht1 inearer Model 1e ersten Grades werden die

von linearen Model1en abweichenden Verhaltensweisen exemplarisch de­

monstriert. SchlieBl ich wird eine KenngroBe zur Charakterisierung

nichtl inearer Modelle diskutiert.
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A. Begriffliche Klarung und empirische Interpretation

Der Formenreichtum nichtlinearer dynamischer Modelle ist so groB,

daB sich die formale Struktur eines nichtl inearen dynamischen Mo­

dells allein als negative Abgrenzung eines linearen dynamischen Mo­

dells definieren laSt. Ein groBer Tei 1 der bisher entwickelten dy­

namisch-okonomischen Modelle ist 1inear. Geht man von der intuitiv

einleuchtenden Feststellung aus, daB die 'real e Welt l nichtl inear

sei, so 1iegt es nahe, die empirische Relevanz linearer Modelle an­

zuzweifeln.

Ore GrOnde, welche dazu fOhrten, daB nicht ausschl ieBlich nichtlinea­

re dynamische Modelle Anwendung finden, I iegen zum einen in dem Man­

gel an geeigneten analytischen Oeduktionsmethoden zur ErschlieBung

der Modellimpl ikationen nichtl inearer Zusammenhange. Zum anderen

sind die zur Entwicklung okonometrischer Modelle notwendigen Parame­

terschatztechniken fur nichtlineare Modelle weniger weit entwickelt.

In der reine~ 6konomischen Theorie sind nichtlineare Modelle zum Bei­

spiel von HICKS, GOODWIN, KALDOR, KRELLEund THALBERG entwickelt wor­

den. [82], [70], [106], [118], [200]. Auch fast alle groBeren okono­

metrischen Modelle enthalten Nichtl inearitaten, sind jedoch in ihrem

Grundcharakter 1inear. So verwendet TINBER~EN sogenannte Schwellen­

variable als nichtlineare Modellglieder. Die Modelte von KLEIN,

KLEIN-GOLDBERGER und CHRIST sind bis auf die Verwendung sogenannter

'compound variables' linear. [205], [206], [111], [110], [31].

Auf beide Arten von Nichtl inearitaten wird i~ folgenden eingegangen.

FOr die Beschreibung mikrookonomischer Zusammenhange ist die Verwen­

dung nichtlinearer Modelle von besonderer Bedeutung. Wie TINBERGEN

bemerkt, ist die Annaherung nichtlinearer Verlaufe durch 1ineare

~unktionen bei Gleichungen mit aggregierten GroBen eher moglich als

bei Gleichungen mit disaggregierten GroBen. Denn die nichtlinearen

Verlaufe okonomischer Beziehungen geringer Aggregation kompensieren

sich in der Regel durch den AggregationsprozeB. [207]. Da mikrooko­

nomische Beziehungen ex definitione eine geringe Aggregation aufwei-
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sen, und ein derartiger Linearisierungseffekt daher nicht zum Tra­

gen kommt, erfordert ihre wirkl ichkeitsnahe Beschreibung auch nicht­

1ineare Modelle. Die Entwicklung von realitatskonformen Branchen­

oder Firmenmodellen verlangt daher oft in besonders starkem MaBe die

Verwendung nichtl inearer Hypothesen.

Wie im Falle ljnearer Madelle bestehen nichtl ineare Modelle im Normal­

fall aus einem System von Gleichungen, die die einzelnen empirischen

Zusammenhange beschreiben. Auch hier kann man eine bestimmte rele­

vante endogene Variable des Modells auswahlen und versuchen, durch

algebraische Umformungen ihre nichtl ineare Endgleichung abzuleiten.

Dieses Verfahren wird jedoch nur dann sinnvoll sein, wenn analyti­

sche Techniken zur VerfOgung stehen, um eine derartige nichtlineare

Endgleichung zu losen oder auch nur ihr Stabil itatsverhalten zu beur­

teilen. In der Reg.el istes aber selten moglich, aus einem nichtli­

nearen Gleichungssystem Oberhaupt die Endgleichung einer bestimmten

endogenen Variablen abzuleiten.

1m folgenden sollen einige wichtige Typen primarer nichtl inearer Hy­

pothesen und Definitionsgleichungen erortert werden.

(1) Strukturgleichungen, welche Compound-Variablen erklaren

Als Compound-Variable bezeichnet man eine endo~ene Variable, die sich

aus der Multiplikation oder Division zweier erklarender Yariablen er­

gibt. Die beiden erklarenden Variablen mUssen dabei endogene Varia­

blen des Modells sein.
14

Strukturel Ie Gleichungen, welche Compound­

Variablen erklaren, sind zumeist Definitionsgleichungen. Wird bei­

spielsweise der Umsatz in einem Modell als Produkt aus Preis mal Men­

ge definiert, und sind Preis und Menge endogene Variablen dieses Mo­

dells, so stel It der Umsatz eine Compound-Variable dar.

Compound-Variable konnen aber. auch durch Hypothesengleichungen er­

klart werden. So wird belspielsweise in FORRESTERs Weltmodell die

Todesrate der Weltbevolkerung aus dem Produkt von vier Multipl ika­

toren bestimmt, die den EinfluB des Lebensstandards, der Umweltver-

14 Ware z.B. eine der erklarenden Variablen eine exogene Variable, so
konnte ein lineares Modell mit zeitvariablen Roeffizienten vorl ie­
gen.
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schmutzung, der Nahrungsmittelversorgung und der Uberbevolkerung

beschreiben. [Vgl. Seite 480]

Die durch Compound-Variable gekennzeichnete multiplikative Verstar­

kung oder Abschwachung von erklarenden Variablen ist als Wirkungs­

prinzip nicht sehr plausibel, wenn sie menschl iches Ve~halten zum

Ausdruck bringen 5011.

(2) Monokausale Hypo~hesengleichungen mit abnehmendem Grenzzuwachs

Hypothesen dieser Art werden im okonomischen Bereich zumeist zur Be­

schreibung von Beziehungen benutzt, die bestimmte Konkretisierungen

des Ertragsgesetzes ausdrUcken. Dies bedeutet, daB es sich urn Funk­

tionsverlaufe handelt, in denen der positive Grenzzuwachs der endo­

genen Variablen mit zunehmender erklarender Variablen abnimmt.

UMSATZ

WERBEAUSGABEN

Abb. 21.29 Zusammenhang zwischen Werbeausgaben und Umsatz (Werbeer­
tragsfunktion)

Als Beispiel sei auf den Zusammenhang zwischen den wirksamen Werbe­

ausgaben und den durch sie induzierten Umsatzen hingewiesen, der

durch eine 'Werbeertragsfunktion ' wie in Abbildung 21.29 dargestellt

wi rd.

Diese in der amerikanischen Literatur auch als 'sales response func­

tion' bezeichnete Funktion wird oft durch eine der folgenden Funktio-
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nen dargestellt. [114,5.224]

U aw
U = a + bW + cW2

+ dW3

mit U=Umsatz und W=Werbeausgaben

In vielen F~11en ist es jedoch nicht mBglich, bestimmte nichtlinea­

re Funktionen anhand derartiger elementarer FormelausdrUcke zu be­

schreiben. Man behilft sich dann damit, die vorgegebenen nichtl i­

nearen Verlaufe durch sogenannte Tabellenfunktionen darzustellen.

Tabellenfunktionen bewirken eine stUckweise Linearisierung eines

nichtlinearen Verlaufes mit Hilfe von PolygonzUgen.

Abbildung 21.30 zeigt eine durch einen Polygonzug ersetzte nichtl j­

neare Konsumfunkt ion e i nes MA-Mode 115..

Get)
[Tsd. ]
100

------------------------~~----,
80

60

40

20

20 40 60 80 100 120 140 160 180 200 220 240 Y(t-1
[Tsd.]

Abb. 21.30 Beispiel einer nichtlinearen Konsumfunktion, welche zur
modellmaBigen Erfassung durch einen Polygonzug annahernd
wiedergegeben wird
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Die Formul ierung von Tabellenfunktionen erfolgt fast ausschlieBlich

direkt in einer ein dynamisches System beschreibenden Computersimu­

lations~prache.15 Daher wer~en Modelle mit Tabel lenfunktionen auch

nicht analytisch untersucht, sondern nur an hand von Simulationsexpe­

rimenten.

(3) Hypothesengleichungen mit oberen und unteren Grenzen

In monokausalen Hypothesen wird oft der ansonsten positiv ansteigen­

de Funktionsverlauf nach unten, oben oder beiderseits durch sogenann­

te Schwellen oder Plafonds begrenzt. Derartige 5chwellen wurden be­

reits von TINBERGEN in seinen Modellen verwendet. [205,5.120]

Das nichtl ineare Konjunkturmodel I von GOODWIN gewinnt seine Nicht-

I inearitat aus der Tatsache, daB die H5he der Investitionen nach

oben durch die Kapazitatsgrenze der InvestitionsgUterindustrie, nach

unten durch die normalen Abschreibungsbetrage begrenzt ist. [70,5.4]

In dem Modell von HICKS entsteht die Nichtl inearitat ebenfalls durch.

eine obere Begrenzung sowie stUckweise aneinander anschl ieBende Ge­

raden mit unterschiedl ich positivem Anstieg. (Vgl. [101,5.200])

Auch in einzelbetriebl ichen Moclellen kann die Kapazitatsgrenze die

Pmax

~
Ne

Abb. 21.31 Zusammenhang zwischen zu befriedigender und effektiv vor­
handener Nachfrage

15 Vgl. 5eite 419L
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obere Begrenzung einer 1inearen Funktion mit positivem Anstieg bil­

den. In Abbi ldung 21.31 beispielsweise ist ein solcher Zusammenhang

zwischen der von einem Betrieb zu befriedigenden Nachfrage Nb , der

effektiv vorhandenen Marktnachfrage N und der Produktionskapazitate
Pmax dieses Betriebes in einer Periode dargestel1t.

1st in einer multikausalen Hypothesengleichung der Funktionsverlauf

fUr bestimmte Argumentenbereiche durch unterschiedliche Formelaus­

drDcke definiert, dann ist es zweckmaBig, solche funktionalen Ver­

knUpfungen konditional auszudrUcken:

Beispielsweise kann der Zusammenhang zwischen der von einem Betrieb

zu befriedigenden Nachfrage Nb, dem Lagerbestand Lund der effektiv

gegebenen Marktnachfrage N durch die in Abbildung 21.32 dargestell-e
te Funktion beschrieben werden.

Abb. 21.32 Funktionale Beziehung zwischen dem LagerbestandL, der
effektiven Marktnachfrage N und der durch den Betrfeb
zu befriedigenden NachfrageeN b

In einer konditionalen Darstellungsweise wird dieser Zusammenhang

folgendermaBen gekennzeichnet:
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NEIN
1ST Ne~L?

JA

n It

Nb=L N = N-
b e

l'
Abb. 21.33 Konditionalstruktur einer Entscheidung Dber die HBhe

der zu befriedigenden Nachfrage N
b

Die Formul ierung nichtlinearer Beziehungen in dynamischen Simula­

tionsmodellen wird zu einem groBen Teil in Form derartiger Konditio­

nalstrukturen vorgenommen.

Der funktionale und nichtlineare Charakter dieser Konditionalstruk­

turen wird bei einer ersten Betrachtung nicht- immer deutlich. Man

soll-te sich daherbewuBt sein, daB b~i det Untersuchurig der nithtli;"

nearen Eigenschaften bestimmter Simulationsmodel le derartige ~ondi­

tionalstrukturen einen starken Antei 1 an der Nichtl inearit~t der Mo­

dellzusammenhange besitzen.

B. Analyse nichtlinearer Madelle

Nach ErBrterung der bedeutsamen Arten nichtl inearer Beziehungen in

Bkonomischen Ansatzen stellt sich die Frage nach den zur VerfOgung

stehenden analytischen Methoden zur ErschlieBung bestimmter Modell­

implikationen. FOr die analytische Untersuchung nichtlinearer Dif~

ferenzengleichungssysteme ist es von Bedeutung, daB sich diese stets

zu einem aquivalenten System von Differenzengleichungen ersten Gra­

des umformen lassen. Dies l~Bt sich einfach zeigen:

1st in einem bel iebigen nichtlinearen Ansatz eine endogene Variable
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Y(t),Y(t-l),Y(t-2), ... ,Y(t-n) enthalten, so konnen folgende Defini­

tionen eingefuhrt werden

= Y(t)

= Y(t-1) = Zl(t-l)

= Y(t-2) = Z2 (t-l)

'Unter Einbeziehung dieser Definitionen wird im prlmaren Ansatz die

Substitution. Y(t-i)=Zi(t-l) fur i=l, ... ,n vorgenommen. Werden aIle

endogenverzogerten Variablen des p~im~ren Ansatzes in gleicher Wei­

se behandelt, so erh~lt man letztlich ein nichtl ineares System von

Differenzengleichungen ersten Grades.

1m Gegensatz zum 1inearen Fall gibt es keine einheitliche Theorie·

nichtlinearer Differenzengleichungen. Analytische Verfahren sind zu­

meist nur fur spezielle Typen nichtl inearer Differenzengleichungen

bekannt und dienen zur Ermittlung der Funktionslosung oder bestimm­

ter Kennzeichen des dynamischen Systemverhaltens.

Funktionslosungen nichtlinearer Ans~tze sind nur in wenigen Fal len

~5g1ich. (Vg1. [105,5.175], [191], [209])

Als Folge dessen stel It sich die Frage, ob zumindest gewisse analyti­

sche Methoden zur Verfugung stehen, die es erlauben, ohne Kenntnis

der Funktionslosungen bestimmte dynamische Verhaltenscharakteristi­

ken nichtl inearer Systeme zu ermitteln.

Eine uber den Einzelfall hinausgehende mathematische Theorie stellt

die sogenannte direkte Methode von Ljapunow dar, mit deren Hilfe das

dynamische Verhalten nichtl inearer Ansatze beurteilt werden kann.

Diese Methode wurde ursprungl ich von LJAPUNOW zur Beurteilung der

5tabilitat von Differentialgleichungen entwickelt und ist von HAHN

auf die Stabil itatsanalyse von Differenzengleichungen ubertragen wor-
. . 16
den.

Die Ljapunowsche Methode laBt sich folgendermaBen charakterisieren:

In dem System Y(t)=F[Y(t-1)] bi lden Y(t) und Y(t~l) die Spaltenvek-

16 Zu einer ausfOhrl ichen Erorterung der Stabil itatstheorie von
LJAPUNOW siehe L170], zur Arbeit von HAHN siehe [77J.
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toren der endogenen Modellvariablen. Besitzt das System eine Losung

F[Y]-Y=O, so kann dieser Gleichgewichtspunkt im Fal Ie vonY~O durch

die Koordinatentransformation X=Y-Y in den Ursprung gelegt werden,

so daB sich die triviale Losung F[X]=O mit X=O ergibt.

Bei Betrachtung eines bestimmten Anfangswertes X ~O kann, wie erwahnt,a
immer dann von einer asymptotischen Stabil itat gesprochen werden,

wenn X(t) mit wachsendem t gegen Null konvergiert. Dieser Fall liegt

unter folgenden Voraussetzungen vor: 17

(1) Es sei V[X(t)] eine positive definite Funktion, d.h. V[X(t)] > °
mit Ausnahme von X=O, WO sie Nul list.

(2) Die Funktion der ersten Differenz von V[X(t)]

bV[X(t)] = VlX(t+l)] - V[X(t)]

sei negativ und im Ursprung Null.

ErfUllt eine Funktion die Bedingung~n (1) und (2), so wird sie als

diskrete Ljapunow-Funktion bezeichnet.

Als Beispiel sei die Differenzengleichung

:gng~fgbrt;. (Vg 1. [214 ,~,-434H .Es \Ali rd d ie~japunow-Fuf}!<t i9.n

V[X(t)] = 2X2{t-1) + X2 (t-2) (21.132)

eingefOhrt. Damit wird

Au 5 (2 1. 131) f 0 I 9 t

2X
2
(t)= 2X4(t-1) + 4X2 (t-1)X2 (t-2) + 2X 4(t-2)

Mit (21.133) folgt

6V[X{t)] = [X2 (t-1)+X2 (t-2)][2X2 (t-1)+2X2 (t-2)-1]

(21.133)

(21.134)

Es zeigt sieh, daB Gleiehung (21.132) die Bed~ngung (1) erfOllt. Be­

dingung (2) gilt gemaB (21.134) im FaIle:

2X2 (t-1) + 2X2 (t-2) - 1 < 0 (21.135)

17 Zum Beweis [61,5.160]
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1st also Bedingung (21.135) erfOllt, so ist das durch die Differen­

zengleichung beschriebene System asymptotisch stabil.

Eine Schwierigkeit bei der Anwendung dieser Methode resultiert aus

der Tatsache, daB es kein al 1gemeines Verfahren zur Ermittlung einer

geeigneten Ljapunow-Funktion gibt.

Weiterhin ist zu bemerken, daB die auf diese Weise ermittelten Para­

meterbereiehe nur hinreiehend, aber nieht notwendig fur das Vor1ie­

gen von Stabi1 itat sind. Oureh die Wahl einer anderen Ljapunow-Funk­

tion ist es durehaus moglich, andere Stabilitatsbedingungen zu erhal­

ten. Die groBte praktische Schwierigkeit bei der Anwendung der Lja­

punow-Methode 'ergibt sich aber aus der Forderung, daB die ermitt~l­

ten Stabil itatsbedingungen, wie zum Beispiel die Bedingung (21.135),

von allen zeitlichen Realisationen der endogenen Variablen erf01lt

werden mussen. Der Zeitverlauf der endogenen Variablen X(t) ist je­

doch gar nicht bekannt. Vielmehr sind in der Regel nur die Anfangs­

werte und der Ver1auf bestimmter exogener Variablen vorgegeben. VI­

DAL hat, aufbauend auf die Arbeiten von CETAEV und AJZERMAN, zwei Me­

thoden angegeben, mit denen unter Verwendung von Ljapunowschen Funk-

'tionen hinreichende Bedingungen bezugl ich der Anfangswerte fureine

asyniptotlsehe Stabi 1itatermi ttelt werden konnen. Eine Anwendung ist

jedoch nur in wenigen Fal len mog1 ich. [214,5.229]

Als Ergebnis 1st festzuhalten, daB nach dem gegenwartigen Erkennt­

nisstand die praktisehe Anwendung ana1ytischer Verfahren der Stabi­

1itatsanalyse relativ beschrankt ist.

Weitere analytische Verfahren zur Beurtei1ung des dynamischen Verhal­

tens nicht1inearer Systeme sind im Rahmen der okonomisehen Wachstums­

theorie zur Beurteilung des proportionalen Waehstums von Wirtschafts­

systemen ent~ickelt worden.

Hierbei wird von einem nichtl inearen Differenzengleichungssystem

Y(t) = H[Y(t-1)] (21.136)

ausgegangen, in dem Y den Vektor des sektoralen Einkommens oder des

mengenmaBigen AusstoBes einer Wirtsehaft reprasentiert. (Vgl. [184];

[195], L142], [140J). Hinsiehtlich der funktionalen Verknupfung H[]
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werden bestimmte restriktive Annahmen wie Monotonitat und Homogeni­

tat unterstellt. 1m Rahmen dieser Restriktionen werden die Bedingun­

gen eines proportionalen Wachstums aufgezeigt.

NIKAIDO hat den Ansatz (21.136) unter den gleichen Restriktionen fOr

H auf die Form

Y(t) = H[Y(t-l)) + A(t-1)

erweitert. Hierbei reprasentiert Y wiederum den Vektor der sektora­

len Einkommen, wahrend A den Vektor der exogen bedingten sektoralen

Ausgaben bildet. Dieser nichtlineare ProzeB der Einkommensentwick­

lung wird von NIKAJDO hinsichtlich der Bedingungen eines proportiona­

len Wachstums untersucht.

Die Beschreibung einiger analytischer Verfahren zur Behandlung nicht­

linearer dynamischer Modelle solI nicht den Eindruck erwecken, daB

diese Verfahren fUr die Analyse der heute zur Verfugung stehenden

Madelle von sehr groBer Bedeutung sind. Samtliche derzeitigen rele­

vanten nichtl inearen Modelle sind praktisch nur mit Hilfe von Compu­

tersimulationen untersuchbar. Die Beschranktheit der diskutierten

Verfahren macht die Relevanz von Computersimulationen deutl ich.

Neben den §lne'l tyt i ~ch~n?_t~h~li ~uc.h Q_~s t tll1lT1te geom~t r j sche Verfanren

zur Beurteilung nichtlinearer Systeme zur VerfUgung. Auch diese Ver­

fahren, die sich nur auf eine ~ichtl ineare Endgleichung ersten oder

hochstens zweiten Grades beziehen, sind aus der Anwendungssicht als

irrelevant zu bezeichnen, da rea1istische Model 1e ja stets komp1exer

sind. Das Studium dieser Verfahren liefert jedoch typische Einsich­

ten in das (von 1inearen Systemen abweichende) Verha1ten nichtlinea­

rer Systeme, ~elche auch fUr die Beurteilung der Simulation kom~exer

nicht1inearer Systeme von Bedeutung sind.

Wir wenden uns daher der Analyse einer beliebigen nicht1inearen End­

gleichung ersten Grades, d.h. einer Gleichung der Form

Y(t) = F[Y(t-l)]

zu. Der Zeitver1auf von Y(t) kann hierbei durch eine einfache gra-
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phische Darstellung in der Form eines sogenannten Phasendiagramms

ermittelt werden.

Y(t)=F[V(t-l)]

V(t-I)

Abb. 21.34 Phasendiagramm einer nichtlinearen Differenzengleichung
ersten Grades

In dem Koordinatensystem der Abbildung 21.34 sind die Funktionen

V(t)=F[Y(t-1)] und Y(t)=Y(t-l) eingetragen. 1st wie in Abbildung

21.34 ein bestimmtes Y(O) vorgegeben, so ergibt sich wegen Y(l)=F[Y(O)]

die GroBe Y(l) als der Ordinatenwert des Punktes A.

Den Wert von Y(2) erh51t man, wenn der gefundene Ordinatenwert von

Y(l) auf die Abszisse Dbertragen wird und dann analog zum ersten

Schritt Y(2) aus dem Schnittpunkt der Senkrechten Dber Y(l) mit der

Funktion F ermittelt wi'rd (Punkt B). Die Ubertragung der Strecke Y(l)

von der Ord.inate auf die Abszisse kann dadurch sehr einfach vorgenom­

men werden, indem man von dem Ordinatenwert Y(l) eine waagerechte li-

nie zieht und vom Schnittpunkt dieser Linie mit der Funktion Y(t)=Y(t-1),
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d.h. der 4So-Linie nach unten lotet. Der Schnittpunkt des Lotes mit

der Abszisse ergibt Y(l).

Durch Fortsetzung dieses Verfahrens gelangt man zu Y(3), Y(4) usw.

Man erkennt aus Abbi ldung 21.34, daB das System in diesem Fall einem

Gleichgewicht im Punkt G zustrebt.

Die hier beschriebene Darstellungsform nichtl inearer Differenzenglei­

chungen ersten Grades l~Bt e~kennen, daB ihr dynamisches Verhalten

sowohl vom Anstieg der Funktion F als auch ihrer Lage zur 4S o-Linie

beeinfluBt wird. Das dynamische Verhalten laBt sich durch folgende

Maximen kennzeichnen: [14,s.265]

(1) Wenn sich die Funktion F[Y(t-l)] Uber der 45°-Linie befindet,
dann ist Y(t) stets groBer als Y(t-l), d.h. Y weist einen wach­
senden Verlauf auf. Demgegenuber zeigt Y einen abnehmenden Ver-
lauf, wenn sich F unter der 45°-linie befindet. .

(2) Wenn der Anstieg von F[Y(t·1)] positii und kleiner als Eins ist,
dann weist das System ein monoton ged~mpftes Verhalten auf.

(3) 1st der Anstieg von F[Y(t-1)] 'positiv und groBer als Eins, so be­
sitzt das System ein monoton ungedampftes Verhalten.

(4) Weist F[Y(t-1)] einen negativen Anstieg auf, dann zeigt das Sy­
stem ein oszil1ierendes Verhalten, das sich fUr F' [Y(t-1)]<-1 als
ungedampft oszi 11 ierend und fur O>F'[Y(t-l )]>-1, als gedampft os­
~ ill ieren9 er\1e i ~ t ~

Eine Funktion F[Y(t-l)] kann jedoch im Rahmen ihres Definitionsberei­

ches sowohl unterschiedl iche Anstiege als auch Positionen zur 45°-Li­

nie aufweisen, so daB in bestimmten Interval len des Definitionsbe­

reiches unterschiedliche Verhal tenswei sen gemaB (1) bis (4) auftre­

ten k5nnen. Abbildung 21.35 zeigt eine Funktion, fur die dieses zu­

trifft.

Das Verhalten eines konkreten Systems wird in diesem Fall von der La­

ge des Anfangswertes Y(O) entscheidend beeinfluBt. Liegt der Anfangs­

wert in dem Intervall AIC I , so wird das System gegen den Gleichge­

wichtspunkt B' konvergieren. Liegt er dagegen im Interval 1 CIE', so

strebt das System gegen den Punkt 0 1
• Falls der Anfangswert nicht in

diese beiden Intervalle fallt, weist das System ein instabiles Ver­

halten auf.
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Abb. 21.35 Phasendiagramm einer nichtl inearen Differenzengleichung
ersten Grades

Oas Beispiel zeigt ebenfalls in anschaul icher Form, daB es - Wle er­

artert - im Rahmen nichtlinearer Systeme notwendig ist, zwischen 10­

kaler und globaler Stabi] itat zu unterscheiden. 18 Wahrend das in Ab­

bildung 21.35 beschriebene System nur lokale Stabil itat aufweist, be­

sitzt das in Abbildung 21.34 angefOhrte System eine globale Stabili­

tat.

Untersuchungen nichtl inearer MZA-Model le mit Hilfe von Phasendiagram­

men liegen bisher kaum vor. Neben einem Ansatz von DORFMAN, SAMUELSON

und SOLOW [39.S.333] untersuchte vor allern DAY die Bedingungen des

Wachstums von Einzelbetrieben anhand einer quadratischen Differen­

zengleichung erster Ordnung unter Verwendung von Phasendiagrammen. [35]

Auch zur geometrischen Analyse nichtlinearer Differenzengleichungen

18 Vg1. im einzelnen Seite 77
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zweiten Grades stehen bestimmte Diagrammtechniken zur Verfugung.

[214.S.112f.J

1m Gegensatz zu dem beschriebenen Verfahren sind dies€ Techniken je­

doch relativ aufwendig und unubersichtlich, 50 daB es empfehlenswert

erscheint, auch schon derartige Ansatze relativ geringer Komplexitat

mit Hi lfe von Simulationsverfahren zu untersuchen.

1m Rahmen der Erorterung linearer Madelle wurde eine Reihe 'I inear­

modellspezifischer ' Kennzeichen wie der Totalmultipl ikator, die Ein­

heitsimpu]santwort oder die Sprungantwort eines linearen Systems be­

handelt:

Es 1iegt nahe, nach der Ubertragung dieser Begriffe auf nichtl ineare

Systeme zu fragen. Grundsatzlich gi It, daB eine solche Ubertragung

auf eln nichtlineares System nicht ohne wei teres moglich ist. Denn

ein derartiges System (als negative Abgrenzung eines linearen Sy­

stems) laBt sich gerade nicht durch solche systemspezifischen Kenn­

graBen charakterisieren.

So besitzt ein nichtlineares System keine systemspezifische Einheits­

impulsantwort, die ja im 11nearen Fa11 den gesamten Transformations­

mechanismus des Systems zum Ausdruck bringt. Be1 nichtlinearen Syste­

men hang en die Verlaufe der Irnpu1santworten aber von den Impulshahen

abo Wahlt man in einem 1inearen oder nichtlinearen Modell die Anfangs­

werte derart, daB sich das System im Gleichgewicht GW befindet, und

bezeichnet man die lrnpulsantwort eines Systems bezuglich eines Impul­

ses der H6he IH als JA(t), so kann man die KenngraBe

SEI (t) : IA(t)-GW
IH

(21.13])

formulieren. SEI soil als standardisierte Einheitsimpulsantwort be­

zeichnet werden.

In einem linearen System verandert sich SEI(t) nicht bei Variation

der Impulshohe IH.

1m Gegensatz dazu andert sich bei nichtl inearen Systemen der Verlauf

von SEI (t) in Abhangigkeit von der Impulsh6he. Dieser Umstand kann

dazu verwendet werden, die Starke der Nichtl inearitat eines Systems
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zu beurteilen. Eine derartige Untersuchung 5011 am Beispiel eines

MA-Systems demonstriert werden, welches eine nichtlineare Konsum­

und Investitionshypothese besitzt.

Y(t) - C(t) + I.(t) + 46000
I

Ii (t) = {~,5 [C(t)-C(t-1)]

C(t) = F
1
[Y(t-l)]

fUr C(t)-C(t-l)~O

fUr C(t)-C(t-l)<O

Die lnvestitionshypothese besagt, daB bei einem ROckgang der Nachfrage

die Unternehmer ihre induzierten Investitionen einstel1en. Es handelt

sich daher urn eine nichtlineare 'Sc hwel1enhypothese ' . Weiterhin wird

angenommen, daB die Konsumfunktion F
1
[Y(t-1)] durch die in Abbildung

21.30 dargestellte Tabellenfunktion beschrieben wird. Bezeichnet man

die Investitionshypothese verallgemeinernd mit Ii (t)=F
2
(C(t)-C(t-1)),

dann kann man analog zum I inearen Fall die Endgleichung

aufstellen. Eine analytische Bestimmung des Gleichgewichtswertes von

1M

1.8

1]

1.6

1.5

1.4

'--~~~---------- iH [TSOJ
10 20 30 40 50 60 70 80 90 100 110 120

Abb. 21.36 Zusammenhang zwischen Totalmultipl ikator TM und Impuls­
hohe IH in einem nichtlinearen MA-System
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Y ware zwar grundsatzlich moglich, aber viel zu aufwendi~. Anhand ei­

ner Simulation zeigt sieh, daB das System bei Y=120·103 ein Gleich­

gewicht aufweist. Dieser Gleichgewichtswert GW wird im folgenden zu

Grunde gelegt (d.h. Y(O)=Y(1)=120.10 3). Dem System werden nunmehr po­

sitive Impulse verschiedener H6he IH aufgepragt, und es werden die

standardisierten Einheitsimpulsantworten SEI ermittelt.

Die Summe der Einheitsimpulsantworten ergibt eine GroBe, die dem

Totalmultipl ikator eines linearen Systems entspricht. Weil es sich

aber urn ein nichtlineares System handelt, werden sich mit vari ieren·

den Impulshohen unterschiedliche Totalmultiplikatoren ergeben.

In Abbildung 21.36 ist der ermittelte Totalmultipl ikator verschiede­

nen lmpulshohen gegenUbergestellt.

W~hrend im linearen Fal I der Totalmultipl ikator nicht durch die Im­

pulshohe beeinfluBt wird, zeigt sich hier eine Abhangigkeit. die als

eine Charakteristik der Nichtlinearitat des vorliegenden Modells auf­

gefaBt werden kann.

2.2. Offene und geschlossene Modellformen

Die Bezeichnungen 'offenes' und 'geschlossenes System 1 werden in so

vielfaltiger Bedeutung im Rahmen systemtheoretischer Betrachtungen

verwendet, daB es vielleicht ratsam ware, solche abgenutzten Worte

nicht mehr zu verwenden. Wenn wir dennoch das Begriffspaar offen­

geschlossen zur Klassifikation dynamischer Systeme gebrauchen, so

zeichnet sich diese begriffliche Festlegung dadurch aus, daB ihre

Unterscheidungsmerkmale an syntaktischen und empirisch interpretier­

baren Strukturelementen dynamischer Madelle ansetzen.

Am Beispiel eines MA-Model ls sol len diese Unterschiede herausgear­

beitet werden. Betrachten wir die Endgleichung

Y(t) = 1 ,89Y(t-l) - O,99Y(t-2) T I (t)
a

(22.1)

dann hangt die Entscheidung. ob es sich um ein offenes oder geschlos­

senes System handelt, von dem konkreten Verlauf ger exogenen Vari-
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ablen la(t) abo Falls fur den gesamten.Betrachtungszeitraum la(t)=O,

dann kann von jedem kalendarischen Zeitpunkt n=O,l ,2, ... ein zeit-

J iches Bezugssystem fur t aufgebaut werden.

In AbbiJdung 22.1 erkennt man, daB ein Zeitsystem mit t=O,l, ... im

Jahre 1952 ansetzt, wahrend ein zweites im Jahre 1950 beginnt. Fur

beide Anfangszeitpunkte gilt im Fal Ie I (t)=O dieselbe Endgleichung
a

mit unterschiedl ichen Anfangswerten.

t 1 "I------+I-----~Il__-----+I-----~I~----......I
-2 -1 0 1 2 3

5
t z ...1-----.....,-----~II__-----+I-------1I-------t

o 1 2 3 4

n .....-----+I-----~Il__-----f-I-----_4.----- .......
1950 1951 1952 1953 1954 1955

Abb. 22.1 Beispiel zur Unterscheidung von offenen und geschlossenen
Modellen

usw.

2

1954

4

1953

2

o
1952

1

wi rd fur I (t) diea

t

Jahr:

Wert von I :a

Generell spricht man immer dann von einem geschlossenen Modell, wenn

die Gultigkeit der Modellhypothesen von einer Verschiebung des zeit­

1 ichen Bezugssystems nicht beruhrt wird.

Nach dieser Feststel lung I iegt die Frage nahe, unter welchen Umstan­

den ein dynamisches Modell eine derartige 'Verschiebbarkeit l seines

Zeitsystems nicht mehr zulaBt.

Gehen wir davon aus, daB die Endgleichung in dem Zeitsystem T1952 ,

welches im Jahre 1952 beginnt, durch einen Verlauf der autonomen In­

vestitionen der Form I (t}=2 t (t=O,1,2, ... ) beschrieben wird. Damita
folgende Zeitreihe festgelegt
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Die Werte fur I im Jahre 50 und 51 sind in die~em Ansatz nicht be­a
kannt. PrOfen wir nunmehr, ob die Endgleichung

y(t) = 1,89Y(t-l) - O,99Y(t-2) + 2t

auch fOr das Zeitsystem T1950 GOltigkeit hat, welches im Jahre 1950

beginnt, so sehen wir, daB dieser Ansatz ab 1952 zu dem Verlauf

usw.

4

1954

16

3

1953

8

2

1952

4

t

Jahr:

Wert von I :a

fOhrt, d.h. die autonomen Investitionen nunmehr einen geanderten Ver­

lauf aufweisen. Es zeigt sich damit, daB in Fal len, in denen sich

der numerische Wert der' exogenen Variablen vedindert, eine Transfor­

mation des Zeitsystems nicht magl ich ist, weil sich damit der Inhalt

der Hypothesengleichungen andern wUrde. Wir konnen nunmehr folgende

Festlegung treffen: Wenn ein Modell exogene Variablen aufweist, die

in den einzelnen Kalenderzeitpunkten ihres Auftretens unterschiedli­

che Werte annehmen, dann handelt es sich urn ein offenes, im andern

Fall um ein geschlossenes Modell. 1m Fall I inearer Systeme mi t kon­

stanten Koeffizienten wird ein offenes System durch eine inhomogene

Endgleichung der Form

Y(t) + a1Y(t-l) +... + anY(t-n) = E(t)

mit E(t):j:O fur t= ... ,-l,O,l, ... beschrieben, ein geschlossenes Sy­

stem dagegen durch eine homogene Endgleichung

Neben der hier verwendeten Bezeichnung des Begriffspaares offen und

geschlossen werden eine FOlIe unter5chiedl icher Bezeichnungen, wie

kausal - historisch, inhomogen - homogen; gezwungen - ungezwungen,

nicht autonom - autonom oder semi-endogen - endogen, absolut iso-

I iert - relativ i501 iert verwendet. (Vg1. [61,5.27], [123,5.205],

[208,5.3], [72,5.9])

Inwelchem Umfang diese Begriffspaare mit der hier entwickelten Dif­

ferenzierung in offen und geschlossen Dbereinstimmen, ist jedoch
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nicht lmmer klar zu erkennen, weil viele Autoren mit diesen Begrif­

fen zwar 1m Rahmen bestimmter Untersuchungen operieren, die ihren

Begriffsbi ldungen zugrunde 1iegenden Abgrenzungs~riterien aber nicht

eindeutig definieren, sondern mit exemplarischen Definitionen arbei­

ten.

Zur empirischen Interpretation offener und geschlossener Model le sei

folgender Aspekt angefDhrt. Es ist ein Ziel naturwissenschaftlicher

Forschung, zeitinvariante ~aturgesetze festzustellen. [169_S.401]

Analog hierzu kann man fordern, daB es ein Ziel der sozialwissen­

schaftl ichen Forschung sein sollte, zeitinvariante strukture11e G1ei­

chungen, d.h. Verhaltensgleichungen sowie technologische und insti­

tutionelle Gleichungen aufzufinden. Die Forderung nach der Ermitt1ung

zeitinvarianter Beziehungen bedeutet, daB die die strukturellen Glei­

chungen bildenden Beziehungen nicht durch Gr6Ben ver~ndert werden

dUrfen, die expl izit von der Zeit t abh§ngen. Daraus folgt, daB eine

Formul ierung eines gegebenen Zusammenhanges immer dann nicht als be­

friedigend angesehen werden kann, wenn es notwendig wi rd, die Zeit t

expl izit in diese Formul ierung aufzunehmen. WOrde man ein offenes

Model I als ad§quate Reprasentation einer bestimmten Theorie ansehen,

so mDBte man zuges tehen ,daB es ze Itverand erliche empi ri scheGesetze

gjbt. Eine solche Konsequenz ist zwar logisch denkbar, wUrde aber ei­

nem Grundpostulat der heutigen Naturwissenschaften widersprechen, wel­

ches behauptet, daB sich elne Uriache (hier repr~sentiert durch den

Wert einer exogenen Variab1en) nicht a11ein deswegen ~ndern kann,

weil die Zeit voranschreitet, sondern, weil sie zugleich die Wirkung

einer anderen Ursache 1st.

Offene Systeme k6nnen daher als eine Art unvol1kommener geschlossener

Systeme interpretiert werden. [171,S.319J

SoIl beispielsweise ein empirisch vorl iegender Zusammenhang unter­

sucht werden, so ist man fast immer gezwungen, eine bestimmte Teil­

menge von Variablen aus dem Gesamtzusammenhang als Sub~ystem zu iso­

I ieren. Die Abgrenzung des Subsystems wird soweit wie m6g1 ich unter

dem Gesichtspunkt erfolgen, seinen Umfang so festzulegen, daB m6g-
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I ichst wenig ~eitveranderliche Variablen das System von auBen beein­

flussen. 1 Eine v61lige Is6lierung laBt ~ich aber fast nie erreichen.

Die Variablen, die das Subsystem von auBen zeitveranderlich beein­

flussen, sind bei Betrachtung des gesamten Systemzusammenhanges sehr

haufig aber von den end6genen Variablen des Subsystems abhangig. Es

besteht in diesen Fallen eine Beziehung zwischen den endogenen Va­

riablen des Subsystems und seinen zeitveranderlichen exogenen Variab­

len. Da diese Beziehungen nicht bekannt sind, k6nnen die Verlaufe

der exogenen Variablen des Subsystems in einer ersten Annaherung als

Funktionen der Zeit angesetzt werden. Gelingt es, durch weitere In~

formationen auch diese Beziehungen durch strukturelle Gleichungen

zu fassen und die in diesen auftretenden zeitveranderlichen exogenen

Variablen wiederum als Verknupfungen der nunmehr erweiterten Menge

der endogenen Variablen zu definieren, so gelangt man letztlich zu

einem geschlossenen Modell. Dieses geschlossene Modell setzt sich

hierbei ausschlieBI ich aus zeitinvarianten Strukturgleichungen zu­

sammen und bi ldet daher - wie schon erwahnt - aus wissenschaftstheo­

retischer Sicht die wunschenswerte Reprasentation einer Theorie .. Wenn

man jedoch von der Annahme einer allgemeinen Interdependenz aller

Gr6Beritlej-" empi frscneif -vJffkli chke i t ~fus'geht, s6k~fnil esirii -sf rengen

Sinne kein empirisch gultiges geschlossenes Modell bestimmter empi­

rischer Teilbereiche geben. Ein geschlossenes dynamisches Modell ist

unter dieser Annahme nur in Gestalt eines Totalmodel 15 im Sinne der

Laplace'schen Weltformel denkbar. Nur in diesem Fall ist jegliche

ceteris-paribus-Klausel aufgehoben.

Akzeptiert man diese Annahme, so folgt daraus, daB geschlossene Mo­

delle gewissermaBen schon a priori eine beschrankte empirische Gul­

tigkeit aufweisen, da die immer vorhandenen exogenen zeitveranderli­

chen Variablen im Modellansatz durch implizite oder expl izite cete­

ris·paribus-Klauseln als unveranderlich angenommen werden.

Die in den Sozialwissenschaften entwickelten dynamischen Madelle

sind fast ausnahmslos offene Modelle, d.h. sie besitzen zeitverander­

liche exogene Variablen. KLEIN und GOLDBERGERs Modell der amerikani-

Zu den Problemen einer zulassigen Subsystemabspaltung im Rahmen ei­
nes geschlossenen Modells, siehe Abschnitt 2.5.3.
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schen Wirtschaft enthalt,beispielsweise in zwanzig Gleichungen acht­

zehn zeitveranderliche exogene Variablen.

Den Extremfal I eines offenen Modells stellen die anfangs erwahnten

zeitverzogerten (d.h. Bestandsgleichungen enthaltende) Definitionssy­

sterne dar, die keine zeitinvarianten Hypothesen enthalten, sondern de­

ren 'empirische FOllung ' allein anhand der Schatzung ihrer exogenen

Variablen erfolgt. 2 Eines der ersten geschlossenen Modelle im Bereich

der okonomie wurde von KALECKJ in Form einer' gemischten Differential­

Differenzengleichung zur Erklarung von Konjunkturverlaufen entwickelt

[107]. In den letzten Jahren wurden geschlossene Modelle vorwiegend

von FORRESTER und seinen Schulern im Rahmen des von ihm entwickelten

System-Dynamics~Konzepteserstellt. Sie werden in diesem Zusammen~

hang diskutiert. 3

Ob es gelingt, die Realitat mit Hilfe eines geschlossenen Modells in

adaquater Weise einzufangen, kann nur von Einzelfall zu Einzelfall

beurtei It werden.

2.3. Zyklische und kaskadierende Modellformen

Die Unterscheidung zwischen zyklischen und kaskadierenden Model len

fUhrt zu bestimmten Typen von Hypothesen, die sich als zykl ische und

kaskad ierende Hypothesen beze i chnen 1assen. In d iesem Abschn itt wer­

den die formale Struktur und empirische Interpretation dieser Hypo­

thesenarten sowie die speziellen Probleme ihrer Implikationenaufdek­

kung er6rtert. Eng mit den zyklischen Hypothesen ist der Begriff ei­

nes Feedback verbunden. Dieser Begriff wird formal expl iziert und

kritisch diskutiert. Es folgt eine ausfUhrliche Darstel lung der Be­

ziehungen zwischen zykl ischen und den sogenannten sequentiellen Hypo­

thesen, welche primar dem Ziel dient, einige konstrukti.ve Einsichten

in den Funktionsmechanismus linearer Modelle zu erhalten. Mit dieser

Darstel lung, welche die Beziehungen zwischen den Gewichts- und Im­

pulsfunktionen linearer Modelle zum Inhalt hat, 'wird eine wichtige

Grundlage fOr das Verstandnis I inearer Madelle geschaffen.

2 Siehe Seite 47
3 Siehe Seite 399ff.



280

2.3.1. Begriffliche Klafung und empirische Interpretation

A. Zyklische und kaskadierende Hypothesen

Unter einem zykl ischen Modell 5011 ein Modell verstanden werden, in

welchem zumindest eine endogene Variable von ihren eigenen verzoger­

ten Realisationen abhangt. Ein kaskadierendes Modell zeichnet sich

dagegen durch das Fehlen der verzogernden Beeinflussung einer endo­

genen Variablen auf sich selbst aus.

Zur Prazisierung der beiden Modellbegriffe ist es notwendig, zwi­

schen zyk 1i schen und kaskad'i erenden Hypothesen zu untersche i den.

Kennzeichen einer (primaren oder sekundaren) zyklischen Hypothese

ist es, daB die iu erklarende endogene Variable in ihrer eigenen Hy­

pothesengleichung verzogert auftritt. So ist die bereits erwahnte de-

'mographische Hypothese der Weltbevolkerungsentwicklung

B(t) = 1 ,02B(t-l) (23.1)

eine zyklische Hypothese, da die zu erklarende Variable B sich ver­

zogert selbst erklart. Primare zykl (sche Hypothesen sind jedoch re­

lativ selten. Das MA;..Mbdell el'1thalt beispielsweise keihe primare zyk­

1is~he Hypothese. So zahlt die Investitionshypothese

I. (t) = S[C(t)-C(t-l)J
I

(23 . 2)

nicht zu den zykl ischen Hypothesen, wahrend die bereits frUher be­

schriebenen sekundaren Hypothesen des Investitionsverhaltens

I. (t) = as[C(t-l )-C(t-2)+1. (t-1)-I. (t-2)+1 (t-l)-I (t-2)] (23.3)
I· I' I a a

und

I.(t) = (a+aS)I.(t-l) - aSI.(t-2) + aSI (t-l) - aSI (t-2) (23.4)
I I I a a

in die Klasse der zyklischen Hypothesen fallen, weil I. in verzoger­
I

ter Form zur Erklarung seiner 'zukUnftigen ' Auspragung beitragt.

Eine kaskadierende Hypothese zeichnet sich dadurch aus, daB die zu

erklarende endogene Variable ausschlieBlich durch (verzogerte und un­

verzogerte) Variablen bestimmt wird, die nicht Verzogerungen der zu
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erklarenden Variab1en sind. Anders ausgedrUckt: eine kaskadierende

Hypothese 1 iegt vor, wenn die Gruppe der vorherbestimmten Variab1en,

welche in einer Hypotheseng1eichung die endogene Variable Y bestim­

men, se1bst keine Verzogerungen dieser endogenen Variab1en entha1t.

Kaskadierende Hypothesen lassen sich a1s eine negative Abgrenzung

zur K1asse der zyk1 ischen Hypothesen auffassen. Damit wird auch deut­

1ich, daB die (primaren) Hypo~hesen des MA-Mode11s kaskadierende Hy­

pothesen $ind, da sie, wie erwahnt, nicht zu den zyk1 ischen Hypothe­

sen zah1en.

Die Unterscheidung zwischen zykl ischen und kaskadierenden Hypothesen

gibt einen Einb1 ick in die Wirkungsrichtungen der kausa1en VerknOpfun­

gen dynamischer Mode11e. Eine zyk1ische Hypothese kennzeichnet einen

Zusammehhang, der oft a1s Feedback bezeichnet wird, wei1 die Auspra­

gung einer endogenen Variablen einen verzogert~n EinfluB auf sich

se1bst ausUbt. Eine vo11ige G1eichsetzung ist jedoch problematisch.

Andernfalls mOBte lede Bestandsfottschreibungsgleichung als Feedback

gedeutet werden. Meist pflegt man erst dann von einem Feedback zu

sprechen, wenn diese verzogerte ROckwirkung auf sich selbst Ober meh­

rere endogene Variab1en erfo1gt, was dadurch zum Ausdruck kommt, daB

riicht die primaren Hypotheseh dieser endogenen Variablen, sondern

erst dl~ (durch Sch1eifenreduktion abge1eiteten) sekundaren Hypothe­

sen in Form von zykl ischen Hypothesen auftreten.

Sind die primaren oder auch sekundaren Hypothesen eines Model1s kei­

ne zykl ischen Hypothesen, so kann man daraus nicht den zwingenden

SchluB ziehen, das Modell enthalte keine Feedbacks. Dieses Urteil ist

erst mog1ich, wenn man die primaren oder sekundaren minima1en Hypo­

thesen (oder in mathematischer Ausdrucksweise die Endgleichungsform)

des Mode11s ermitte1t hat.

Entha1t keine der Endgleichungen eine endogene verzogerte Variable,

dann besitzt das Modell keine Feedbacks, und man kann von einem kas­

kadierenden Modell sprechen. Der dynamische Charakter eines solchen

Mode11s resultiert in diesem Fall aus den Verzogerungen der exogenen

Variablen. Als Beispiel sei ein Modell angefOhrt, durch welches der

Zusammenhang zwischen den Werbeausgaben W(t) eines Unternehmens, sei-
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nem Umsatz U(t) und den aus dem UmsatzprozeB resultierenden Kassen­

eingangen K(t) beschrieben wird.

U(t)

K(t)

1,5W(t) + 6W(t-l) + 4,5W(t-Z) + 3W(t-3)

O,lU(t-l) + O,4U(t-2) + O,4U(t-3) + O,lU(t-4)

Die Werbeausgaben beeinflussen verzogert den Umsatz, und die aus dem

UmsatzprozeB folgenden Geldeinnahmen treffen weg~n der untersthied­

lichen Zahlungsgewohnheiten der Schuldner ebenfalls verzogert ein.

Es handelt sich urn ein kaskadierendes Modell, denn die Gleichung fUr

U(t) ist bereits eine Endgleichung und enthalt nur exogene verzo­

gerte Variablen. Durch Einsetzung der Endgleichung von U(t) indie

Gleichung fUr K(t) kann die Endgleichung fUr K(t)" ermittelt werden,

die, wie man leicht erkennt, nur Verzogerungen von W enth5lt.

Die meisten Model Ie gehoren der Gruppe der zykl ischen Modelle an, de­

ren eindeutige Identifizierung auf der Grundlage der minirnalen Hypo­

thesen (bzw. Endgleichungen) moglich ist.

1m FaIle eines MA-Modells, dessen prim5re Hypothesen keine Feedbacks

aufweisen, besitzen die minimalen Hypothesen oder Endgleichungen die

folgende Form:

Y(tj = (a+aS)Y(t-lj - aSV(t-i5 + I (t) ,
a

I.(t) = (a+aS) I. (t-l) - aSI.(t-2) + aSI (t-l) - as! (t-Z) (23.6)
I I I a a

C(t) = (a+aS)C(t-1) - aSC(t-2) + al (t-1)
a

In diesen Endgleichungen des MA-Modells schlagen sich die EinflUsse

samtl icher in dem System wirkender Feedbacks nieder. Es bietet sich

daher an, Endgleichungen als die formal en R~prasentan~en anzusehen,

an denen sich oft verwendete Systemattribute wie positiver oder ~­

gativer Feedbackkreis explizieren und ihre empirischen Konsequenzen

darstellen lassen .. Ein solcher Versuch der formalen Aufweisung des

Feedbackbegriffes 1m Rahmen linearer Systeme wird im folgenden unter-

nommen.

Der Begriff des 'Feedback ' ist im sozial- und wirtschaftswissen-

schaftl ichen Bereich weit verbreitet. Von einem positiven Feedback-

kreis wi rd gemeinhin gesprochen, wenn ein Anwachsen des Wertes einer

GroBe dazu fuhrt, daB auf diese GroBe ein verzogerter EinfluB zum ei-
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genen weiteren Wachstum ausgeubt wird. Ein negativer Feedbackkreis

dagegen 1iegt nach allgemeiner Auffassung dann vor, wenn die Erho­

hung einer GroBe verzogert zu einem diesem Anwachsen gegenlaufigen

Effekt fuhrt. 1

Zur Diskussion des Feedbackbegriffes betrachten wir das in Abbildung

23.1 dargestellte FluBdiagramm eines MA-Modells. Es lassen sich zwei

Feedbackkreise unterscheiden, die durch die Zahlen 1 und 2 gekenn­

zeichnet werden.

1
2

YCd -
·yCt)=CCt)+I.Ct)+I (t) 1 2

I a

1,2 C(t)
1C( t ) = aY ( t - 1)

2

..

fiC t )=S[ cCCY-C(t - I)]
2

2

Ii (t)

Abb. 23.1 .Feedbackinterpretation eines MA-Systems

Wir wollen uns als erstes die Frage stellen: Kann man die zwei Feed­

backkreise in 'positive' und 'negative ' Feedbacks klassifizieren.

Diese Frage wurde bereits bei der Besprechung komparativer Schau­

bildmodelle bejaht: im Falle des ersten Kreises wi:ichst C mit Y, und

ein wachsendes C erhoht wiederum Y. Fur den zweiten Kreis gilt: wenn

Y wachst, dann wachst auch C, wenn C wachst, wachst auch die Diffe­

renz C(t)-C(t-l), was zur Folge hat, daB auch I. wachst, welches wie-
I

derum Y erhoht.

Da das Modell keine nichtkomparativen Hypothesen enthalt, erweisen

sich beide Feedbackkreise alspositiv.
1 Vgl. Seite 59f.
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Wir haben gesehen, daB die Existenz von Feedbacks in der Endg1eichung

einer endogenen Variab1en durch autoregressive Beziehungen, d.h. der

Abhangigkeit der endogen unverzagerten von ihren eigenen verzagerten

Auspdigun.gen, zum Ausdruck kommt. Es 1iegt daher die Frage nahe, ob

es mag1 ich ist, zwischen der Existenz bestimmter positiver oder ne­

gativer Feedbackkreise und der Endg1eichung Korrespondenzen festzu­

stellen. Da die Endgleichung einer Variab1en a1s die verdichtete Zu­

sammenfassung der Auswirkung a11er Feedbackkreise auf eine Variab-

le anzusehen ist, fragt man sich vor al1em, ob an hand einer Endg1ei­

chung zu erkennen ist, daB ein System aussch1 ieB1 ich negative oder

positive oder beide Arten von Feedbackkreisen enthil·t. LieBen sich

solche Beziehungen aufweisen, dann hieBe dies, daB das Vorliegen ei­

ner dieser drei Konste11ationen von Feedbackkreisen eine bestimmte

strukture11e Beschaffenheit der betreffenden Endg1eichung zur Fo1ge

hatte. Beispie1sweise bote es sich an, zu uberprufen, ob im Fa11e

nur positiver Feedbacks a11e Koeffizienten der Endg1eichung positiv

sind, wahrend sie im Fa11e negativer Feedbacks nur negative Werte an­

nehmen und im gemischten Fall sowoh1 negative a1s auch positive Ko­

effizientenauspragung besitzen. Eine solche Feststel1ung wurde dazu

fuhren, daBder empirische Geha1t derartiger Feedbackbehauptungen

durch die in einer Endgleichung 'verbotenen' Parameterausprigungen

expliziert.wird und mit dem empirischen Gehalt der angestrebten pa­

rametrisch-singularen Endgleichung verg1ichen werden kann. 2

Ein Blick auf die Endgleichungen des MA-Mode11s zeigt jedoch, daB

die angefUhrten Hypothesen nicht zutreffen, denn obgleich im System

nur positive Feedbacks festzuste11en waren, existiert ein negativer

Koeffizient. Man kann zeigen, daB es nicht magl ich ist, aus der Kennt­

nis bestimmter Konstel1ationen positiver und negativer Feedbackkrei­

se in zwingender Weise auf irgendeine strukturelle Beschrankung der

Koeffizienten einer Endgleichung zu sch1ieBen. 3

Eine abschl ieBende Betrachtung im Lichte dieser Formal isierung soll

der manchma1 vertretenen Ansicht gelten, ein positives Feedback fuh­

re zur Explosion eines Systems, wahrend im Fa1 le eines negativen Feed-

2 Zur Beurtei1ung des empirischen Gehalts, siehe Seite 38ff.
3 Mit Ausnahme einer Differenzeng1eichung ersten Grades
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backs dagegen ein bestimmter Gleichgewichtszustand real isiert wer­

den wUrde.

In dieser undifferenzierten Form kann eine solche Auffassung (, der

man al1gemein in den Sozia1wissenschaften nicht widersprechen so11,

wei1 sie niemandem schadet) bei ihrer 'RUckUbertragung' auf dynami­

sche Systemmode11e zu Fehleinschatzungen fOhren.

Ein positiver Feedback ist zwar notwendig, aber nicht hinreichend

fUr das explosive Wachstum einer Variab1en. Betrachten wir den ein­

fachsten Fall eines im G1eichgewicht befind1 ichen 1inearen Systems

ersten Grades, we1chem ein Einheitsimpuls E*(t) aufgepragt wird.

100
Y(t) = aY(t-1)+ 100 + E*(t) y(-1) = (1-0:) (23.7)

Das System besitzt ein positives Feedback, wenn 0:>0, aber nur im

Fall a>1 tritt ein unbegrenztes Wachstum auf. 1m Gegensatz dazu kann

man im Fal 1e a<O von einem negativen Feedback sprechen. Eine Stabi­

litat dieses Systems, d.h. eine ROckfOhrung zum G1eichgewicht ist

aber dennoch nur im FaIle O<a<l gegeben, wah rend das System fUr a<-l

f1uktuierend explodiert.

Zusammenfassend kann man sagen: Die Begriffe eines positiven und ne­

gat ivenFeedbacks kannen zu r Kennze ichnung best i mmter rtickfUhrender

Beeinflussungsketten von Variab1en verwendet werden, wenn a11e Hypo­

thesen in diesen Ketten komparativ sind. Ub~r die (unter Umstanden

magliche) Klassifizierung von Feedbackkreisen hinausgehend, erlaubt

die Feststel lung solcher Eigenschaften von Feedbackkreisen keine

SchluBfolgerung, die zur Einschrankung des potenti~ll magl ichen Ver­

haltens von Systemen fUhrt. In starker formaler Sprachweise ausge­

drUckt heiBt dies: aus den komparativen Hypothesen eines Systemmo­

dells kann man keine Aussage tiber strukturelle Beschrankungen der

minima1en parametrisch-generellen Hypothesen desselben Systemmodells

ableiten. Die vorangegangene Veranschaulichung dieser recht einsich­

tigen Folgerung erscheint mir notwendig zu sein, um den Stel1enwert

solcher in der systemtheoretischen Literatur behandelter paradigma~

tisch Uberfrachteter Begriffe wie positiver und negativer Feedback­

Kreis klarer beurteilen zu kannen.
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Die vorangehenden Betrachtungen Uber Feedbackkreise betrafen Hypothe­

sensysteme, welche durch zykl ische Modelle beschrieben werden, d.h.

Modelle, deren Endgleichungen oder minimale Hypothesen Autoregressio­

nen enthalten.Ein potentieller Opponent wird einwenden, daB die ver­

wendete Definition eines zykl ischen Modells nicht als operationales

Kriterium geeignet ist, um zu entscheiden, ob ein vorliegendes Mo­

dell zur Klasse der zykl ischen Modelle gehort oder nicht. Denn zum

einen ist es praktisch unmoglich, die Endgleichung nichtl inearer Mo­

delle zu ermitteln, und zum anderen ist die Ermittlung der Endglei­

chung I inearer Modelle eih muhseliges Unterfangen.

Diesem Einwand ist zuzustimmen. Die entwickelte Definition lieferte

zwar einen fruchtbaren Ansatzpunkt zur Diskussion bestimmter Arten

von Feedbackbeziehungen, sie ist jedoch als Kriterium zur begriffli­

chen Klassifizierung ungeeignet. Statt dessen sol I im folgenden die

ge~nderte Definition verwendet werden, daB ein zykl isches Modell im­

mer dann vorl iegt, wenn gezeigt werden kann, daB wenigstens eine en­

dogene unverzogerte Variable des Model 15 zumindest von einem ihrer

eigenen Variablenwerte verzogert beeinfluBt wird, wobei nichts Uber

den Grad der Verzogerung und die konkrete funktionale Form der Ab­

h~ngigkeit gesagt wird. Eine solche weniger scharfeDefinition ist

jedoch fur die Kennzeichnung von zykl ischen Modellen vall ausreichend.

Denn die in einer Endgleichung zusatzlic~ zum Ausdruck kommenden In­

formationen uber den Grad der Verzogerung und die konkrete funktiona­

le Form sind fur die Klassifizierung ohne Belang. Zur Beurteilung ei­

nes konkreten Modells laBt sich die Existenz von Feedbackkreisen da­

durch feststellen, daB man mit einem formalen Verfahren auf ISchlei­

fensuche l geht, d.h. die Model 19leichungen daraufhin untersucht, ob

sie Beeinflussungsketten enthalten, die sich zu einer vorgegebenen

Ausgangsvariablen wieder zuruckfuhren lassen. Eine derartige Schlei­

fensuche kann daher fUr lineare und nichtlineare Madelle gleicher­

maBen durchgefUhrt werden. Die Beschreibung dieses Verfahrens erfolgt

erst, nachdem die auch fur andere Fragestellungen notwendigen Elemen­

te der Modellstrukturanalyse entwickelt wurden. 4

4 Vgl. Seite 360f.
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B. SeqLientielie Hypothesen

Die Abgrenzung zwischen zykl ischen und kaskadierenden Mode11en diente

nicht nur dazu, die zykl ischen Model1e und ihre empirischen Kennzei­

chen hervorzuheben. Unter den vielf~ltlgen Formen von kaskadierenden

Hypothesen (, derenName sich daraus her1eitet, daB die vorherbestimm­

ten Variab1en wie Kaskaden verzogert die zu erk1~renden endogenen Va­

riablen beeinflussen) verdient eine Hypothesenart, die a1s sequentie1­

~ Hypothese bezeichnet werden solI, besondere Beachtung.

In einer sequentie11en Hypothese hangt die zu erklarende endogene Va­

riable al1ein von den mit einem Gewichtungsfaktor versehenen additiv

miteinander verknupften verzogerten und unverzogerten Einwirkungen

einer Variablen abo

Die allgemeine Form dieser Hypothese folgt mit n=O aus (12.11)

(23.8)

Neben den sequentiel len Hypothesen mit end1ich vie1en Koeffizienten

kann oman auch von der Annahme einer unend1 ichen Gewichtungsfo1ge

gO,g1"" ausgehen. Entsprechend 5011 zwischen finiten und infiniten

sequentie11e~Hypothesenunterschieden werden.

Als finite sequentie1le Hypothese kann die bereits erw~hnte Werbeer­

tragsfunktion (23.5) angefOhrt werden. Eine infinite sequentie11e

Hypothese kann bei~pielsweiseim analogen Fall einer Werbeertra~shy­

pothese die Form

n=0,1,2, ...

besitzen. Die Gewichtungskoeffizienten sequentie11er Hypothesen kon­

nen sowoh1 negative als auch positive Werte umfassen. Auch ist es

denkbar, daB die (unend1 iche) Summe der Koeffizienten lnfiniter Ma­

delle unendlich ist.

1m Rahmen der finiten und infiniten primaren sequentie1 len Hypothe­

sen spielen die sogenannten vertei1ten Verzogerungshypothesen die

wichtigste Rol Ie. Der Charakter dieser Hypothesenform 5011 im fo1­

genden gekennzeichnet werden.

Von einer verteilten Verzogerungshypothese kann gesprochen werden,
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wenn eine sequentielle Hypothese die folgende Form anninrnt,

(23.10)

wobei folgende Restriktionen gefordert werden:

1.) w ,0
n

00

2. ) 1: w ~

n=O 11

3 . ) M>0

fUr n=O,l,2, ...

(23.11)

Die erste Forderung verlangt nichtnegative Gewichtungsfaktoren, w§h­

rend durch die zweite Forderung zum Ausdruck kommt, daB die Summe

der Gewichtungsfaktoren Eins sein 5011. Mit der dritten Forderung

wird ein positives M gefordert.

Die Werbeertragshypothese (23.5) UiBt sich durch entsprechende Nor­

mierung auf die in (23.10) verlangte Form Gberftihren. d.h.

u(t} = 15[0,II1(t) +0,411(t-l) +0,311(t-2) +0,211(t-3)] (23.12)

Verteilte Verzogerungshypothesen bringen bildhaft gesprochen einen

Vorgang zum Ausdruck. in welchem eine EingangsgroBe E nach einem fe­

sten Schlussel erst verzogert zur Wirkung gelangt, und ihre ausgelo­

ste Wirkung das M-fache des Betrages ihrer verzogerten Komponenten

darstellt.

Die GroBe M kann als der Totalmultipl ikator der vertei Iten Verzo­

gerungshypothese bezeichnet werden, wahrend die AusdrOcke Mw. Verzo-,
gerungsmultipl ikatoren genannt werden.

Es 1 iegt nahe, nach KenngroBen zu fragen. die den Verlauf der Gewich­

tungskoeffizienten zum Ausdruck bringen. Oa die Gewichtungskoeffizien­

ten den Bedingungen 1) und 2) von (23.11) genOgen, entsprechen sie

formal einer Wahrscheinlichkeitssvertei lung. KenngroBen einer Yahr­

scheinl ichkeitsvertei lung wie das arithmetische Mittel und die Va­

rianz sind daher zur Charakterisierung des Verlaufes der Gewichtungs­

koeffizienten analog anwendbar. Die durchschnittl iche Verz6gerungs­

dauer. oder kOrzer, die durchschnittliche Verzogerung ciner verteil­

ten Verz6gerung ist mi t

o = Ow
O

+ lW 1 + 2w
2

+ ...+
5

:::::I I: iw.
i -0 I

(23.13)
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definiert. Sie entspricht dem Erwartungswert einer Vertei lung cler

Elemente der Zahlenmenge 0,1,2, ...• 5, welche mit einer Wahrscheinlich­

kelt von wo,w, ,w
Z
•... ,w

s
auftreten. Die durchschnittl iche Verz6ge­

rung Jiefert ein MaB fur die Schnelligkeit, mit cler Anderungen cler

EingangsgroBe auf die AusgangsgroBe durchschlagen. Daraus f019t:

Je geringer die durchschnittl iche Verzogerung, umso geringer ist cler

zum Tragen kommende Verzogerungseffekt.

Wenden wir die eingefOhrten Begriffe auf die in Gleichung (23.12) be­

schriebene vertei lte Verzogerungshypothese an, dann zeigt sich:

Der totale Multiplikator ist 15. es gibt vier Verzogerungsmultipli­

katoren nullten bis dritten Grades 1,5; 6,Oj 4,5 und 3.0. Die durch­

schnittl iche Verzogerung belauft sich auf

D = 0,1'0 ... 0,4·1 ... 0,3·2 ... 0,2'3 = 1,6 [PeriodenJ

Vertei Ite Verzoge~ungshypothesenkonnen nicht direkt beobachtet wer­

den. Daher sind sowohl die Folge der Gewichtungskoeffizienten als auch

cler Totalmultiplikator anhancl der vorl iegenden Zeitreihen fOr den

Ein- und Ausgang der Verz5gerung statistisch zu schatzen. Geht man von

der Annahme einer endl ichen Gewichtungsfolge aus, so konnen die Koef­

fizienten der vertei lten Verz5gerungshypothese (23.10) mit Hilfe von

Regressionen statistisch geschatzt werden. Man unterstel It in diesem

Fal I, daB ein stochastischer ProzeB vorl iegt, cler durch

(23.14)

beschrieben wird. Von diesem stochastischen ProzeB wird weiter ange­

hommen, daB die stochastische Variable E(t} den Erwartungswert Null

besitzt. und ihre Real isationen in den einzelnen Perioden stochastisch

unabhangig sind.

FOr die DurchfOhrung der Schatzung ist es notwendig, daB die Variab­

len E(t-n) keine Multikol inearitat untereinander aufweisen. Dies ist,

wie die Erfahrung zeigt, bei einer Zeitreihe oft nicht zutreffend.

Aus diesem Grund fOhrt die Bestimmung der Parameter vertei Iter Ver­

zogerungshypothesen mit Hi I fe von Kl e j ns tquad ratschi:i tzungen' of t zu

unzulangJ ichen Schatzergebnissen.
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Zur Vereinfachung des Schatzprozesses hat man sich bemuht,Verfahren

zu entwickeln, die die Anzahl der zu schatzenden Pacameter reduzie­
5reno

Dies versucht man dadurch zu erreichen, daB von vornherein unter­

stel It wird, die betreffende verteilte Verzogerungshypothese gehore

einer bestimmten K1asse von Verzogerungsformen an, die sich dadurch

auszeichnet, daB relativ wenige Parameter geschatzt zu werden brau­

chen.

Eine oft verwendete Klasse von vertei1ten Verzogerungshypothesen bil­

den die A1mon-Verzogerungen. [4,S.179,196]

Man geht von der Annahme aus, daB die Gewichtskoeffizienten

durch ein Polynom niedrigen Grades beschrieben werden, d.h. man un­

terste11t

b b' b· 2 b .p . 1 2wj = 0+ 1 1 + Z' +... + pi 1=" ... ,5

P l,st hierbei ein vorzugebender Parameter. Setzt man diesen Ausdruck

irJ (Z3__~1~) eiJ~,~C::>.~r~ennt. r1]an, daB.Aas Schatzf?robl_~m a~_f d!e Bestim­

mung der p+1 Parameter bO,b 1 , ... ,b p reduziert ist. Das Verfahren

zie1t darauf ab" daB die Parameterzah1 p+1 wesent1 ich kleiner sein

5011 als s. In der praktischen Anwendung muB man verschiedene Schat­

zungen mit variierenden Parametern p und 5 durchfuhren und die geeig­

netste Schatzung auswah1en. Ei.ne andere Gruppe von Verfahren beruht

darauf, infinit sequentle1 le Hypothesen in zyk1 ische umzuformen. Auf

diese Verfahren wird in Abschnitt'S dieses Kapitels eingegangen.

Werden vertei lte Verzogerungshypothesen in einem primaren Ansatz ver­

wendet, dann ist esoft schwierig, eine theoretische Rechtfertigung

fur den Gebrauch einer bestimmten Verzogerungsform oder zumindest

fur die nicht diskutierte Einschrankung auf eine bestimmte Klasse

von Verzogerungen zu liefern. Wahrend ein ModellentwickTer in der Re­

gel von plausiblen parametri sch-generel len Hypothesen ausgeht, deren

5 Zur weitergehenden Erorterung siehe DHRYMES [37J.
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numerische Spezifizierung anhand statistischer Schatzungen durchge­

fuhrt wird, laSt sich die Wahl der generel len Verlaufsform einer ver­

teilten Verzogerung nur selten plausibel begrunden.

1m folgenden 5011 eine besondere Form einer verteilten Verzogerungs­

hypothese beschrieben werden, die zur Beschreibung der Beziehungen

zwischen den Zu- und Abgangen von Bestanden verwendet werden kann.

Unter einem Bestand versteht man eine bestimmte Menge gleichartiger,

in der Realitat.aufweisba'-er Elemente. 1m allgemeinen zeichnen sich

Bestande durch zumindest ei~en Zu- und Abgang aus, so daB ihre Ent­

wicklung durch die ubliche Bestandsfortschreibungsgleichung

B(t) = B(t-1) + Z(t) - A(t) .( 23. 16)

beschrieben werden kann. 1m Hinblick auf das Ziel, die Welt mit Hil­

fe dynamischer Model Ie zu beschreiben, lassen sich Bestande als eine

Art 'Verzogerungsspeicher ' interpretieren, denn ihre Existenz resul­

tiert aus dem Umstand, daB die Ihnen zuflieBenden Elemente den Be­

stand verzogert wieder verlassen.

Als Beispiel sei der Lagerbestand eines Betriebes angefuhrt: uber

die Bestellungen werden dem Lager GUter zugefuhrt~ die d~~~ ein~ ge­

wisse Zeit auf Lager bleiben, um dann zur Fertigung weitergeleitet

zu werden. Auch die Entwicklung des Bestandes an TBC-Patienten ist

ein Beispiel fUr den verzogerten Durchlauf eines St~oms von Elemen­

ten. Hypothesen, die die Beziehungen zwischen clem Zu- und Abgang ei­

nes Bestandes beschreiben, werden als Verweilzeithypothesen bezeich­

net.

Primare sequentielle Verwei lzei thypothesen gehen vonder Annahme aus',

daB die einem Bestand w5hrend .einer Periode zugehenden Elemente nach

festen Anteilen wO,w
1
"" in unterschiedlichen Peri6den den Bestand

wieder verlassen. Unter dieser Annahme erweisen sich die Verweilzeit­

hypothesen als Teilklasse der durch (23.11) gekennzeichneten verteil­

ten Verzogerungshypothesen mit dem Totalmultiplikator M=l.

Diese formale Definition reicht jedoch al lein nicht aus, um von ei­

ner Verweilzeithypothese sprechen. zu konnen. Zusatzlich muG es stets
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meglich sein, die Variable Y in (23.10) als den Ausgang und die Va­

riable E als den Eingang eines Bestandes interpretieren zu kennen.

Neben der Verweilzeithypothese (auch Bestandsubergangsfunktion ge­

n~nnt) kann daher 5tets eine Bestandsgleichung formul iert werden,

welche bei nur einem Zu- und Abgang durch (23.16) dargestellt wird.

Die verzegert wi rkenden Beziehungen zwischen dem Zugang eines Bestan­

des Z und seinem Abgang A kann durch

CXl

mi t wi >0 und i~Owi=l

beschrieben werden.

Eine Verweilzeithypothese braucht nicht notwendigerweise in der Form

einer primaren sequentiellen Hypothese aufzutreten. Sie kann auch

durch Ableitungen aus einem bestimmten primaren Hypothesensystem als

sekundare zykl ische oder auch sekundare sequentielle Verweilzeithy­

pothese gewonnen werden.

Ein solcher Fall I iegt immer dann vor, wenn es megl ich ist, durch

bestimmte Verhaltensgleichungen die 'Behandlung ' der in einen Bestand

e int retenden Elementedetailli erter zumode llieren~ Sokonnte manver­

suchen, das Schicksal der in den 'Bestand an Auftragen in der Ferti­

gung l eintretenden Elemente zu erfassen. Wenn es dann gel ingt, die

modell ierten Ablaufe zur Plazierung, Zwischenlagerung und Ausfuhrung

der Auftrage durch eine einzige Beziehung zwischen dem Lagerzu- und

-abgang zusammenzufassen, dann erhielte man die sekundare Verwei 1­

zeithypothese dieses Bestandes.

Die Entwicklung einer derartigen sekundaren Verwei lzeithypothe5e 5011

an einem einfachen Lagerhaltungsmodel1 demonstriert werden.

Der Lagerbestand dieses Systems wi~d durch die ubliche Definitions­

gleichung

L(t} = L(t-l) + Z(t} - A(t) (23.1 n
beschrieben. Es wird angenommen, der Lagerdisponent bestimme die La­

gerabgange nach folgender Entscheidungsregel:
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(23.18)

Sie besagt, daB 1m Fal Ie der Ubereinstimmung von $011- und 1st lager­

bestand S(t} und L(t-l) cler Lagerabgang das a-fache des Bestandes

cler Vorperiode betragen soil. Existiert dagegen eine Abweichung zwi­

schen clem 501J- und Istlager, so wi rd cler Lagerabgang urn das 6-fache

dieser Oifferenz korrigiert.

Der Sollagerbestand Set) wi rd auf das dreifache des prognostizierten

Lagerzuganges pCt) festgelegt, d.h.

S(t) = 3P(t) (23.19)

Der prognostizierte Lagerzugang pet) wird nach der Methode cler expo­

nentiel len Glattung bestimmt und damit nach

p(t) = P(t-l) + y[2(t-l)-P(t-l)] (23.20)

Die sekundare Verweilzeithypothese des Lagers ist ermittel t, wenn es

gellng!, die Endgleichung von A(t) zu berechnen.

Diese Berechnung 1iefert die zykl ische Verweilzeithypothese

A(t) = a
1
A(t-1) + a 2A(t-2) + b

1
Z(t-1) + b

2
2(t-2) (23.21)

mit a 1 = 2 y-a+B b1 = a-B+3By

a 2 = -1 + Y + Ct - 6 - ay + By b2 = -a + B+ ay - 4By

welche, wie sich nachprufen laBt, mit M=(b 1+b 2)/(1-a 1-a 2 ) den Total­

multipl ikator von 1 besitzt.

Das beschriebene Beispiel zeigt, daB es grundsatzlich zwei Mogi ich­

keiten gibt, urn die Verwei lzeithypothese eines Bestandes zu ermit­

teln: entweder aus einem primaren 5equentiellen Ansatz oder durch Ab­

leitung aus einern System von Verhaltensgleichungen. Wenn man 5ich

die Frage stellt, welches der beiden Hypothesengewinnungsverfahren

das 'bessere ' sei, so wi rd mit Recht der Einwand erhoben, daB es fur

die Beurteilung einer Verweilzeithypothese vol 1ig unmaBgebl ich sei,

auf welche Weise sie gewonnen wurde, entscheidend sei nur ihre empi ri­

sche Gultigkeit. Dieser Einwand verkennt aber, daB mit 'besser ' nicht

die empirische GGltigkeit angesprochen wird, sondern ein Kriterium,
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welches man als den Expl ikationsgrad der kontrol lierbaren Parameter

bezeichnen konnte. Wird die Verweilzeithypothese (23.20) aus den Glei­

chungen (23.17) bis (23.19) gewonnen, so sind die in diesen Gleichun­

gen auftretenden Parameter als GroBen anzusehen, die prinzipiell von

bestimmten Personen kontroll iert werden. Der Explikationsgrad der kon­

troJlierbaren Parameter ware in diesem Falle 1. Dies hatte zur Folge,

daB man im Rahmen einer (hier allein anstehenden) explikativen Modell­

verwendung Sensitivitatsanalysen im Hinblick auf bestimmte kontrol­

lierbare Parameter vornehmen kann.

1m FalTe eines primaren sequentiellen Ansatzes hatte man nach einer

statistischen Schatzung nur die numerischen Werte der Parameter w
1

,

w2 ,w3 , ... zur Verfugung, uber deren auch nur indirekt aufweisbare

Kontrollierbarkeit durch Personen aber nichts bekannt ist, so daB in

diesem Fall der Explikationsgrad der kontrollierbaren Parameter Null

ist. Man kann auch bezuglich dieser Parameter bestimmte Sensitivitats­

analysen durchfUhren, aber ihre'Aussagekraft ist weniger informativ,

da sie keine eindeutige Verknupfung zu bestimmten Handlungstragern

und damit keine kontextuale Verankerung gestatten.

Da die Gewichtungskoeffizieriten von primaren sequentiellen Verweil­

zeithypothesen nur-in seltenenFatlen eine lnt-erpretation- alskon­

trollierbare Parameter gestatten, ist es meistens erstrebenswert~,

sie aus einem-Hypothesensystem mit einem hoheren Explikationsgrad

der kontrol 1ierbaren Parameter abzuleiten.

Primare sequentielle Hypothesen werden daher'auch oft nur verwendet,

wenn die Ableitung von Verweilzeithypothesen nicht mogl ich ist. Denkt

man zum Beispiel an die Verweilzeithypothese fOr den Bestand an TBC­

Kranken, so wurde ihre Ableitung aus einem Hypothesensystem mit ei­

nem hohen Explikationsgrad erfordern, daB ein System von Hypothesen

zur VerfOgung st~nde, in welchem die unterschiedl iche Krankheitsdau­

er von Patientengruppen in Abhangigkeit von bestimmten prinzipiell

kontrollierbaren Parametern zum Ausdruck kame. Da solche Hypothesen

unbekannt sind, behilft man sich mit Hypothesen, die zwar einen Ex­

plikationsgrad der kontroll ierbaren Parameter von Null besitzen, den

primar angestrebten prognostischen Zwecken aber voll genUgen.



2.3.2. Beziehungen zwischen linear zyklischen und
infinit sequentiellen Hypothesen

Zyklische und"sequentiel Ie I ineare Hypothesen sind nicht generell mit­

einander unvertd:igl ich. Es ist vielmehr unter "Umstanden magI ich, ei­

ne primare infinit sequentielle Hypothese in eine sekundare zyklische

Hypothese zu OberfUhren. Die primare infinite Werbeertragshypothese

U(t) (23.22)

t=O , 1 , i, ...

laBt sich beispielsweise in die sekundare zykl ische Hypothese

) 5 ( 25 5U(t ="3 U t-1) - 3b U(t-2) + 12 W(t)

umwandeln. (W: Werbeausgaben, U: Umsatz)

Gehen wir von zykl ischen Hypothesen aus, dann gilt sogar, daB jede

zykl ische Hypothese in eine infinit sequentielle umgewandelt werden

kann. So ist es beispielsweise magI ich,

C(t) = (ct +ct 8) C( t -1) - ct 8C( t - 2) + ct I ( t -1 )
a

mit ct=O,972 und 8=0,714 in die infinite sequentiel Ie Hypothese

co 5 or
c Ct) =2;_( 1tor Hr:} n,.972I(t-T-1)

T=O 0 a

zu transformieren. Der TransformationsprozeB zwischen den beiden Mo­

dellformen ist Gegenstand der folgenden Darstel lung.

A. Oberfiihrung zyklischer in sequentielle Hypothesen

a) Gewichtsfunktion und Einheitsimpulsantwort

Jeder Einheitsimpuls, der einem zykl ischen System aufgepragt wird,

bewirkt eine bestimmte Impulsantwort, die in Form einer unendl ichen

Folge cO,e1 ,c2 , ... dargestellt werden kann. 6 Einem derartigen System

mit Null werdenden Anfang5werten 5011 im Zeitpunkt k ein beliebiger

Ei ngang E(T) mit T=k, k+1 , ... aufgepragt werden.

Der Eingang E(k) bewirkt dabei aufgrund des Postulats der ungestarten

Uberlagerung I inearer Systeme eine Antwort

6 Vgl. Seite 202f.
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cOE(k) ,c,E(k) ,c 2E(k), ...

Der Eingang E(ktl) bewirkt die Antwort

Ermittelt man in gleich.er Weise die Antworten de. folgenden Eingange

und ordnet die entsprechenden Komponenten der Antworten den Zeitpunk­

ten ihres Auftretens entsprechend in einer Zei le an, so ergibt sich

die folgende Matrix:

Zeit

o

ktl
,

c1E(k)

cOE(ktl)

o

o

kt2

cZE(k)

c1E(ktl)

cOE(kt2)

o

o

kts

C E(k)
5

Aufgrund der Beziehung E(k-1)=E(k-2)= ... =E(k-s)=O kann man die Fel­

der unter der ,Hauptdiagonalen der Matrix mit Null werdendenAusdrtik­

ken besetzen.

Zeit k

cOE(k)

c1E(k-l)

cZE(k-2)

c E(k-s)
s

Y(k)

kt1

c 1.E (k)

cOE(ktl)

cZE(k-l)

c
3

E(k-2)

c E(k-stl)
5

Y(kt1)

kt2

cZ£(k)

c1E(ktl)

cOE(kt2)

c
3
E(k-l)

c4 E(k-2)

c E(k-st2)
5

Y(kt2)

~tS

C E(k)
'5

. c lE(kt1)5-

Y(kts)

Die Summe jeder Spalte der Matrix stel lt den Wert der endogenen Va­

riablen Y(kti) mit i=0,1,2, ... ,s dar. Sie ergibt sich aus
So

Y(kti) =~ C E[(kti)-T]
T=O T
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Substituie~t man k+i=t und JaBt s gegen unendJ ieh laufen, folgt

co

Y(t) = ~ C,E(t-,)
,=0

(23.24)

Die Folge e kann als Gewichtsfunktion des Systems bezeichnet werden,,
weil sie angibt, in welcher Weise die pm , verz6gerten Eingange zur

Bestimmung der Ausgangsgr6Be gewichtet werden. Wir erinnern uns je­

doeh, daB c zugleich die Einheitsimpulsantwort des Systems darstel It.
T

Damit zeigt sich, daB die Gewichtsfunktion eines linearen Systems mit

dessen Einheitsimpulsantwort identiseh ist.

Jedes lineare dynamisehe'System l§Bt sieh somit als ein Mechanismus

interpretieren, dureh den Eingangsgr6Ben mittels der Gewichtsfunktion

in Ausgangsgr6Ben umgewandel~ werden.

Mit diesen AusfOhrungen wird die Behauptung einsiehtig, daB jede li­

neare zykl ische Hypothese der Form

(23.25)

(23.26 )

einer sequentiellen Hypothese der Form

co

Y(t) = ~ G(n)E(t-n)
n=O

aquivalent ist, wobei G(n)f d.h. die Gewichtsfunktion des sequentiel­

len Ansatzes (23.19) mit der Einheitsimpulsantwort des zyklisehen An­

satzes (23.25) identisch ist.

Abbildung 23.2 zeigt beispielhaft den Ablauf dieses Transformations-

prozesses.

Zur Illustration der sequentiel len Darstellung einer zyklisehen Hypo­

these greifen wir auf unser Standardbeispiel eines MA-Systems zurUek.

Betraehten wir die Version 0=0,972, (3=0,714, welehe mit

, = cd 1+8) + la 2 (1 +13) 2 _ Q'

1\1,2 2 -V:' 4 a I-'

zu einer gleiehen Wurzel

,* ~ 5
1\ - b
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•
0,6

0,4

0,2

I I I
Co C1 C2 C

3
C4 C

5

GEWICHTSFUNKTION, WELCHE DIE UMWANDlUNG DER

EINGANGSGRoBEN IN AUSGANGSGRoBEN BESTIMMT

Eingangs­
g roBe E( t)

10

5

E(7),
I·

E(9)
t

. I

Or-WJ-t--~t---'f---+--...--...--+--+---+---t--"1---+---+-""~ PERIODE

-5 E(8)
•.

Von E(7) induzierte Systemantwort

+
Von E(8) induzierte Systemantwort

Ausgangs-
groBe Y( t)

Durch Addition der •5 Systemantworten gebilde- •te AusgangsgroBen • •• • • •0

5 6 7 8 9 10 11 12 13 14 15 16

Von E(9) induzierte
Systemantwort

PERIODE

Abb. 23.2 Schematische Darstellung der Umwandlung einer Eingangs­
gr6Be in eine Ausgangsgr6Be mittels der Gewichtsfunktion
eines 1inearen dynamischen Systems

und der Endgleichung

Y(t) = 1,666Y(t-l) O,69Y(t-2) + I (t)
a

fuhrt. Die Funktionslosung der Einheitsimpulsantwort bestimmt sich
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nach (21.76) durch

G( t) = (1 +t) At

und damit besitzt das System die Gewichtsfunktion:

"(=0, ',2, ...

Das MA-System wird daher im Falle verschwindender Anfangswerte durch

die sequentielle Form:.

t=O , 1 ,2, ... (23.28)

beschrieben .

.Die Behauptung der Äquivalenz zwischen einem zykl ischen und sequen­

tiellen Ansatz der 'Form (23.25) und (23.26), welche anhand des MA­

Modells durch den Ubergang von (23.27) a~f (23.28) demonstriert wur­

de, erfolgt unter einer stillschweigenden Prämisse, welche im folgen­

den expl izlert werden soll. Diese Prämisse bezieht sich auf den Fall,

daß eine zyk~ ische Hypothese der Form (23.25) Anfangswerte besitzt,

die ungleich Nul,l sind. Es läßt sich der Einwand erheben, daß in die­

sem Fal I die Äquivalenzbehauptung zwischen (23.25) und (23.26) nicht

goi lt, .wei I (23.26) nur -den Einfluß der ELn,gangsvar.iabJen [ auf das.

System berücksichtigt, nicht aber die Auswirkungen der von Anfang an

im System 'gespeicherten' Anfangswerte.

Dieser Einwand läßt sich ausräumen, wenn man zeigen kann, daß durch

die Vornahme einer Retrodiktion eine Folge von Eingängen E(-1),

E(-2), ... ,E(-m) rückprogno~tiziert werden kann, die exakt zu den in

der zykl ischen Hypothese vorgegebenen Anfangswerten ~(-1) ,Y(-2) , ... ,

Y(~m) führt.

Dies ist gerade der Fall. Durch die Auf15sung des G~eichungssy­

. stems
m

Y(- i) = !: a. Y( - j - i ) +E ( - i )
j=1 J

mit Y(-m- i ) =0

i =, ,2, ... ,m

nach E(-i) erhält man eine exogene Variablensequenz, deren Verwendung

im sequentiellen Ansatz die uneingeschränkte Gültigkeit der Äquiva-
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lenzbehauptung zur Folge hat.

Sind somit in der Endgleichung Y eines MA-Modells die Anfangswerte

Y(-l) und Y(-2) vorgegeben, so ermittelt man die in ihrem sequentiel­

len Äquivalent zu verwendenden autonomen Investitionen I (-1) und
a

I (-2) anhand des Gleichungssystems
a

y(-l) = (a+aß)Y(-Z)- aßY(-3) + I (-1)
a

Y(-Z) = (a+aß)Y(-3) - aßY(-4) + I (-2)a

Als Ergebnis erhält man mit Y(-3)=Y(-4)=0

I (~l)
a

I (-Z) =
a

Y(-l) - (a+aS)Y(-2)

Y(-2)

Wir haben bisher nur den Fall der Gewichtsfunktion eines zyklischen

Modells betrachtet. Dieselbe sequentiel le Darstellung eines Systems

ist jedoch auch bei gemischt zyklisch sequentiellen Hypothesen mög­

1 ich.

Als Beispiel unterstellen wir, daß die autonomen Investitionen I (t)
a

eines HA-Systems von den geplanten Investitionen der Unternehmer I (t)
p

durch die Beziehung

I (t) = 0,31 (t) + 0,71 (t-l)a-- - -, ,.. '- p'. --- - ,.. .p . .

beschrieben'werden, denn naturgemäß existieren zeitl iche Verzögerun­

gen zwisch~n Planung und Realisierung einer Investition. Man erhält

unter dieser Annahme die gemischt zyklisch sequentielle Minimalhypo­

these

Y(t) = (a+aß)Y(t-l) - aßY(t-2) + 0,3 I (t) +0,71 (t-1)pp,

Für a=0,96 und ß=0,667 zeigt de~ Kurvenverlauf a in Abbildung 23.3

die Einheitsimpulsantwort des Systems bezOgl ich 0,3 I (t), während
p

der Verlauf b die Einheitsimpulsantwort bezüglich O,7Ip(t-1) zum Aus-

druck bringt. Die durch c gekennzeichnete Kurve, welche wegen des

Prinzips der ungestörten Uberlagerung durch die Ordinat~naddition

der Verläufe a und b zustande kommt, ist die Gewichtsfunktion des Sy­

stems, und ihre Funktionslösung führt zu der sequentiellen Hypothese

00 , 4 1 4 1
Y(t) = ~ [1,175(1+1)(-5) -0,875(-5) JI (t-T)

1=0 P
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t.0

Y(t) O,3(1+t)(t)t

a Y(t) = O,96(1+O,667)Y(t-1) - O,96·0,667Y(t-2)
0,5

t O,31~(t)

° t

r, b Y(t) 0,7t(t)t-l=

I \ Y(t) = O,96(1+ü,667)Y(t-l) - O,96·0,667Y(t~2)

I \ t O,71*(t-1)
P

I "-
"-
" ........

..........

° t

2
Y(t) 4 t-1c (5) (0,24tO,94t)
Y(t) O,96(ltO,667)Y(t-l) - 0,96·0,667Y(t-2)

t O,31*(t) + O,71*(t-l)
P P

o 10 20 30

Abb. 23.3 Darstellung zur Ermittlung der Einheitsimpulsantwort oder
Gewichtsfunktion eines gemischt zykl isch sequentiellen
Modells

Wie erwähnt, ist es zur analytischen und computerte'chnischen Behand­

lung oft wünschenswert, dynamische Systeme in Form einer Zustands­

raumdarstel lung auszudrücken.] Dies bedeutet, daß im Rahmen von Ma­

trizengleichungen mit Verzögerungen ersten Grades eine für die ge­

mischt zykl isch sequentielle Hypothese

] Vgl. Sei te 250
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y(t) + 8,Y(t-l) +... + anY(t-n) = goE(t) + 9,E(t-') +... +gsE(t-s)

äquivalente Zustandsraumdarstellung gefunden werden muß.

Eine solche Darstellung des gemischt zykl isch sequentiellen Ansatzes

wird im Fall n>s durch

Z (t)
n

-al -aZ -a -a -a Z, (t-l)
3 n-' n, 0 0 0 0 ZZ(t-l) 0

0 0 0 0 + E(t-l)

0 0 0 0 Z ( t-l) 0
n

mit Y(t) = c,Z,(t) + c2Z2 (t) +... + cnZn(t) + bOE(t}

und c. =b. - a. b0 ( i =, ,Z , .•• , n)
I I I

zum Ausdruck gebracht.

Als Beispiel wählen wir das eben erörterte MA-Modell mit a=0,96 und

ß;:;;0,667, d.h.

y(t) = ',6Y(t-l) - O,64Y(t-2) + 0,31 (t) + 0,71 (t-l)
P P

Die entsprechende Zustandsraumdarstellung dieses gemischt zyklisch

sequentiellen Modells ergibt

[
Z,(t)]=[-1'6 0,64] [z,(t-l)]+[l], (t-1)
Z2(t) 1 0 Z2(t-') 0 p

Y(t) = 1,,8Z,(t) + O,'9ZZZ(t) + O,3Ip(t}

b) Ermittlung der Gewichtungsmatrix sequentieller Matrizenmodelle

Die Betrachtungen zur Umformung eines zyklischen in ein sequentiel­

les Model I können auch im Rahmen der Matrizendarstellung 1inearer Mo­

delle vorgenommen werden. Sie erhalten damit eine höhere Allgemein­

heit, wei I die gefundenen Erkenntnisse unabhängig von der Anzahl der

auftretenden Variablen gelten.

Ausgehend von der Matrizengleichung

Y(t) ;:;; MY(t-') + E(t} (23.30)

soll gezeigt werden, daß der Spaltenvektor Y(t) der endogenen Varia-
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blen eines linearen Modells als Funktion der Spaltenvektoren der exo­

genen verzögerten Variablen E(t-n) dargestellt werden kann. Diese

Darstel lungsform soll als sequentielles Matrizenmodel 1 bezeichnet

werden.

Durch zeit1 iche Verzögerung um eine Periode erhält man aus Gleichung

(23.30)

Y(t-l) = MY(t-2) + E(t-1)

Setzt man Gleichung (23.31) 1n (23.30) ein, dann folgt

Y(t) = M2Y(t-2) + ME{t-1) + E(t)

Aus (23.30) folgt

Y(t-2) ~ MY(t-3) + E(t-2)

(23.32)

(23.33)

Die Einsetzung von Gleichung (23.33) Jn Gleichung (23.32) liefert

Y(t) ~ M3Y(t-3) + M2E(t-2) + ME(t-1) + E(t)

bei w-facher Wiederholung dieses Verfahrens erhält man

Y(t) ~Mw+1Y(t-w-1) + MWE(t-w) + Mw- 1E(t-(w-l)) + ... + MOE(t)

Nehmen wir an, daß das System eine unendliche Vergangenheit hat, d,h,

w-+ oo , dann strebt im Falle von Systemstabi 1i tät der Ausdruck

Mw+1Y(t-w-l) gegen Null. Denn gemäß (21.129) ist MW (im Falle ~nglei­

cher Wurzeln)- durch

MW+1 ~S [A7:~+1 ] S-1

'Aw+1
. m

darstellbar. Sind sämtliche Absolutwerte von A kleiner als Eins, so

streben die Elemente der Diagonalmatrix gegen Null. Unter diesen Um­

st~nden läßt sich Y(t) durch

00

Y(t) ~ k MnE(t-n)
n=O

(23.34)

formul ieren. Diese sequentielle Darstellungsform eines linearen dy­

namischen Systems wird auch als Finalform bezeichnet. [203,5.138]

Die Matrix Mn 5011 als die Gewichtungsmatrix eines 1inearen Systems
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bezeichnet werden. Zur Aufdeckung der mit dieser Gewichtungsmatrix

eines Systems verbundenen Implikationen wäre es vorteilhaft, wenn man

bei einem vorl iegenden Modell die Elemente von Mn als Funktionen von

. n formul ieren kann. Es stellt sich daher die Frage nach der Berech­

nung von Mn,

Zur Entwicklung einer einfachen Berechnungsmethode für Mn stützen wir
8uns auf das Cayley-Hamilton-Theorem. Es ~esagt:

Satz 23.1: Ist

f(A) = IM-AI I = a O + a 1A +... + anA n =0

und wird jede Potenz Ai durch die Matrix M gleicher Potenz, d.h. Mi

ersetzt, so ergibt sich eine Nullmatrix, d.h.

2 n
f(M) = aO + alM + a2M +... + anM . = 0

Die Gültigkeit dieses Theorems sei an einem Beisplel demonstriert:

Die Matrix

besitzt die charakteristische Gleichung

IM-All = [4-A 3] = (4-A)(6-A) - 21
7 6-A .

oder
2IM-AI I = A - 10 A + 3

Aus dem Cayley-Hamilton-Theorem folgt

M2 - 10M + 31 = 0

Mit

[
37
70

30]
57

ergibt sich

8 Zum Beweis siehe [227.,S.178f.]
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,Bevor wir uns der Ermittlung von Mn zuwenden, müssen wir uns mit dem

Problem der Division von Polynomen befassen.

Betrachten wir den Ausdruck ~t, so ist dieser als ein Polynom t-ten

Grades anzusehen. Was passiert, wenn dieses Polynom durch das Poly-

nom

) 2 n
f(A = aO T all.. + aZA +... + anA

dividiert wird? Für t>n erhalten wir stets ein Quotientenpolynom gt{A)

und ein Restpolynom ht{A)/f{A), cl.h.
t ' h (A)

A /f{tJ = gt(A) + W
W~hlen wir beispielsweise t=3 und f(A)=1+2A+3A 2 , so ergibt die Divi­

sion

, I..3 : (1 +2:\+3A2 )

- (,,3 +~A 2 +~A)
'3 3
_~1 Z -1.1
. 311 31\

- (- ~~ 2 - ~A - ~ )
3 9 9

~:\+~
9 9

1 2 1 Z.
warn i t 93 (A )= "3 I.. -"9 uncl h3(I.. ) = 91..T '9 1St.

Es läßt sich zeigen, daß man bei einem bel iebigen Polynom

Ai (i=n+l,n+2, ... ) und einem Polynom der Form f(tJ=aO+alA+azA2+ ... +anAn

stets zu einem Zähler ht(A) des Restpolynoms gelangt, der h5chstens

ei-~ Polynom ~-lten Grades bildet. Denn in dem Quotienten ht(A)/f(A)

darf ht(A) nicht mehr durch f(A) geteilt werden k5nnen. Diese Fest­

stellung ist wichtig für das weitere Vorgehen.

Die Multiplikation von Gleichung (23.35) mit f(A) ,1 iefert,

(23.36)

Schränkt man den Definitionsbereich von f(A) auf die Wurzeln

Al'~2, ... ,An von f(),J ein, dann gilt
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und aus Gleichuhg {23.36) folgt

At = h
t

(>..) (23.3])

Der Zähler des Restpolynoms kann, wie erwähnt, nur ein Polynom (n-1)­

ten Grades sein, d.h.

1 2 n-1ht (>..) = bO(t) + b1(t)>.. + b2 (t)>.. +... + bn_.1 Ü )>"

·Mit (23.37) wird damit

At = bO(t) + b1(t)A 1 + b
2

(t)>..2 +... + b
n

_1 (t)A n- 1

und wegen des Cayley-Hamilton-Theorems

(23.38)

t ). .1' ) 2 (n-l (M = bO(t I + b,(t)M + b2 (t M +... + bn- 1 t)M 23.39)

Die Beziehung (23.39) dient uns zur Berechnung von Mt. Es zeigt sich,

daß jede Potenzmatrix Mt für alle t=n,n+l , ... durch eine Linearkombi­

nation der Einheitsmatrix und der ersten n-1 Matrixpotenzen beschrie­

ben werden kann.

Da sämtliche Wurzeln det charakteristischen Gleichung Al ,A 2 ,·· ,An

die Gleichung (23.38) erfüllen, kann man die Koeffizienten bO(t),

b, (t), ... ,bn- 1(t) durch die Auflösung des Gleichungssystems

A~ = bO(t) + b1(t)A~ + + bn_l(t)A~-l

A~ bO(t) + b1(t) A1+ + bn- 1(t)A2-1 (23.40)

't 1 n-1
A bO(t) + b1(t)A +... + b l(t)An n n- n

gewinnen, welche in Gleichung (23.39) eingesetzt Mt bestimmen.

Das ganze Verfahren soll am Beispiel des MA-Modells demonstriert wer­

den. Die Zustandsraumdarstellung des MA-Modells bestimmte sich nach

Gleichung (21.122) auf Seite 251.

[

Y(t)] [Ci.+a ß
I. (t) = aß

I

C(t) 0

o -8] [Y(t-n]
0-8 l.(t-1)

I

o 0 C(t-1) +m I (t)
a

Wählen wir 0=0,72 und 8=0,25, so wird die Zustandsmatrix durch
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O,9 0

M= Ot18 0

0,72 0

-0,25J
-0,25

o
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bestimmt. Die Gewichtungsmatrix Mt wi rd nach Gleichung (23.39) durch

Mt = bO(t) I + b
1

(t)M + b
2

(t)MZ ,

ermittelt. Die Wurzeln der charakteristischen Gleichung von M berech­

nen sich mit A,=0,3, A
2
=0,6 und A

3
=O. Die mit t vari ierenden Koeffi­

zient~n .bO(t), b , (t) und b
2

(t) bestimmen sich nach (23.40) durch die

Lösung des Gleichungssystems

At = (0,3)t = b
O
(t) + 0,3b

1
(t) + 0,09b

2
(t)

1
At = (O,6)t = b

O
(t) + 0,6 b1(t) + 0,36b

2
(t)

Z
At = 0 = bO(t)3

Die Auflösung dieses Gleichungssystems 1iefert

Nach

~ =~~~~] +

o -0,0225]
o -0,045°.-0,18

Eine Zusammenfassung der Matrizen ergibt die endgtlltige Form der Ge­

wichtungsmat r ix

t t 0 - t(0,6)t+t(0,3)t2(0,6) -(0,3)
t . -i (0,6) t+t (0 ,3) t 0 r(0 , 6) t -t (0 ,3) tM =

';(O,6)t_l;(0,3)t 0 - (0 ,6) t+ 2 (0 ,3) t

Das allgemeine Gl ied der unendl ichen Reihe (23.34), d.h. MnE(t-n),

wird durch
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2(O,6)11_(0,3)T) ° -t( 0,6) T)+t( 0,3) 11

-i"(0,6) 11+t(Q,J)11 0 t (0 .6) n-t;( 0,3) 11 0 I (t-11)
a

1
5
2(0 ,6) 11+ 1

5
2 (0 ,3) 11 0 -(0,6)11+2(0,3)11 0

dargestellt, Die Ausdrücke in der ersten Spalte bilden die Gewichts­

funktionen von Y, I j und C bezüglich des E.ingangs ja' Die Gewichts­

funktion (oder Einheitsimpulsantwort) von Y wurde für dieselben Wer­

te für a u~d ß bereits auf Seite Z06 berechnet und stimmt, wie man

sich überzeugen kann, mit der hier ermittelten überein.

B. Überfüh'rung infinit sequentieller in zyklische Hypothesen

Jede Endgleichung der Form

(23.41)

läßt sich, wie wir gesehen haben, in ihr sequentielles Äquivalent um­

wandeln, d.h. auf die Form

Y(t) ::: M[wOE(t)+w, E(t-1)+ ... ] (23.42)

Würde man zur ModelIierung eines Zusammenhanges eine infinit seguen­

tiel le Hypothese verwenden, die sich in eine sekundäre zyklische Hy~

pothese umwandeln 1ieBe, dann hätte dies den Vorteil, daß die Bestim­

mung der Endgleichungen einfacher würde. Im Falle einer fast immer

durchzuführenden Simulation, würde eine zyklische Hypothese zudem den

~rogrammier- und Speicheraufwand vermindern, weil im Gegensatz zu ei­

ner sequentiellen Hypothese weniger verz6gernde Variablen zu spei­

chern wären;

Primäre sequentielle Hypothesen geh6ren fast ausschl ieß] ich zur Fa­

mil ie der ~erteilten Verz6gerungshypothesen. Wi 11 man diese in zykl i~

sehe Hypothesen umwandeln, so müssen die primären Hypothesen in­

finite Gewichtsfunktionen besitzen, die zum einen die in (23.11) for­

mul ierten Restriktionen erfüllen und zum anderen auch Gewichtsfunk­

tionen einer zykl ischen Hypothese sind.
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Im folgenden 5011, ausgehend von der allgemeinen Form einer zykl i­

schen Hypothese, eine Klasse von Gewichtsfunktionen abgeleitet werden,

die die Restriktionen (23.11) einer verteilten Verzögerungshypothese

erfüllen und damit als Gewichtungsfolge eines sequentiellen Ansatzes

dienen können. Die Folge der Verzögerungsmultipl ikatoren Mw
O

,Mw 1 , •••

einer verteilten Verzögerungshypothese hat mit (23.11) folgenden For­

derungen zu genügen:

(1) Jedes Gl ied der Gewichtungsfolge wO,w1 , ... 5011 positiv sein.

(2) Die Gewichtungsfolge w
O

,w
1

,_ •• 5011 eine Summe von 1 ergeben.

(3) Der Totalmu1tip1 ikator M 5011 frei wählbar und größer Null sein.

Die Gewichtsfunktion einer zyklischen Hypothese erfüllt die erste

Forderung, wenn sämtl iche Wurzeln ihrer Funktionslösung zwischen Null

und Eins liegen. Wir wollen uns bei unserer Suche nach einer geeigne­

ten Gewichtsfunktion von vornherein auf diese Tei 1menge beschränken,

die sich wiederum in die Untermenge gleicher und ungleicher Wurzeln

zer 1egen läßt.

In einer weiteren Einschränkung sollen ausschließlich Minimalhypoth~­

sen oder Endgleichungen mit gleichen Wurzeln betrachtet werden.

Im ersten Schritt wollen wir aus der generel len ~ormul ierung einer

Endgleichung

durch Spezialisierung eine Endgleichung mit identischen Wurzeln und

einem Multipl ikator von Eins entwickeln. Anhand dieser Endgleichung

wird in einem zweiten Schritt das entsprechende sequentielle Äquiva­

lent abgeleitet. Auf diese Weise gewinnen wir eine Zusammenstel lung

der primären sequentiellen Hypothese und ihres sekundären zyklischen

Äquivalents.

Unter Verwendung des Operators Kn-nY(t)=Y(t-n) erhalten wir. die Ope­

ratarengleichung

n n-1 0
Y(t}[K+a 1K +...+anK] = gE(t) (23.44)

Das in eckigen Klammern stehende Polynom kann in seine Produktenform

überführt werden, d.h. 9

9 Siehe Seite 249
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Da die Wurzeln Al ,A 2 ,··· ,An gleich sein sollen, folgt

n n-l 0 n
K + alK +... + anK = (K- A)

Der Ausdruck (K-A)n läßt sich in seine sogenannte Binomialform über­

führen, d.h. [127,5.551].

(K-\)n = Kn - (~)AKn-l + (~h2Kn-2_ ..• +(_l)nAnKO

Ersetzen wir das Polynom in Gleichung (23.44) durch diesen Ausdruck,

50 erhalten wir

y(t))Kn_(ln)AKn-l+(~)A2Kn-2_... +(_1)n\nKo] = gE(t) (23.45)

Die Rücktransformation Y(t-n)=Kn-nY(t) führt zur generellen Form ei­

ner inhomogenen Endgleichung n-ten Grades mit gleichen Wurzeln \.

Y(t) - (7)\Y(t-l) + (~)\2Y(t-2) - ... + (-l)h\nY(t-n) = gE(t)

(23.46)

Der Totalmultipl ikator der Endgleichung (23.44) bestimmt sich nach

(21 .82) mit

M = g
1+a 1+a 2+:· .+an

Der Vergleich der allgemeinen Endgleichung5form (23.43) mit dem Spe­

zialfaTl gleicher Wurzeln A ergibt:

1 + a1 + a2 +... + an = 1 - (~)A + (~)A2 - ... + (-1)"Xn = (l_\)n

Man erkennt, daß die Endgleichung (23.44) in diesem Fall immer dann

einen Totalmultiplikator von 1 besitzt, wenn der freie Parameter g

gewählt wird.

Mit dieser Festlegung wird die zweite an die Gewichtungsfolge einer

verteilten Verzögerung zu stel lende Forderung erfüllt. Da jedoch ent­

sprechend der dritten Forderung in einer Fami lie der Gewichtungsfol­

gen von vertei lten Verzögerungen der Totalmultiplikator M frei wähl­

bar sein 5011, muß 9 endgUltig mit
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n
g=M(l-/>.)

gewählt werden.

Mit (23~47) in (23.46) erhält man mit (23.48) eine Famil ie von zyk-

1i sC,hen Hypothesen. deren Gewi chtsfunkt ionen den in (23.11) erhobenen

Forderungen genügen.
n n

- ... + (-1) "/>. Y(t-n )
n

M(l-/>.) E(t}

(23.48)

In einem zweiten Schritt wollen wir nunmehr das sequentielle Äquiva­

lent der zykl ischen Hypothese (23.48) entwickeln.
-nVerwenden wir den Operator K Y(t)=Y(t-n), so folgt aus (23.48)

n -, n 2 -2 n n _n n
Y(t)[l-(,)>..K +(2)/>' K - ... +(-1) />. K ] = M(l-/>.) E(t}

oder
~ (n)(_/>.K- 1)nY(t) = M(l-A)n E(t}

n=O n

Aufgrund des Binomiallehrsatzes gilt

n
:i (fl)(_/>.K-1)n = (l_/>.K-,)n

n=Q n

(23.50) in (23.49) ergibt

(1-/>.K- 1)n Y(t) = M(l-A)n E(t)

Y( t) = M( 1- A) n (1 - AK-1 ) - nE( t)

(23.50)

(23.52)

Der Ausdruck (1-AK- 1)-n kann als unendliche Reihe dargestellt werden

(1 - AK-1 ) -n "= ~ (n +n -, ) (A K-1 )n
n=O n

Aus (23.51) und (23.52) folgt

Y(t) = (l-A)n i (ntn-1) (AK-1)nME(t)
n=O 'n

Die Rücktransformation Y(t-n)=K-nY(t) liefert das sequentielle Äqui-

valent
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Die Gewichtsfunktion ergibt sich mit

(23.54)

In Tabelle 23.1 sind die Gewichtsfunktionen der Differenzengleichun­

gen ersten, zweiten, dritten und n-ten Grades einander gegenüberge­

stell t.

Grad Gewi chtsfunkt ion
Zykl isches Äquivalent

w =(l-t..)t..n
1 n

Y(t)-t..Y(t-l)=(l-t..)E*(t)

2
wn=(1-:t..)2(1+n)t..n

Y(t)-2t..Y(t-1)+t.. 2Y(t-2)=(1-t..)2E*(t)

3
wn7(1-~-)3[(l+n) (2+n)/2J't..n

Y(t)-3t..Y(~1)+3t..2Y(t-2)~A3Y(t-3)=(1-A)3E*(t)

n
wn=(n+~-l)(l-A)nAn

Y.( t) - (~ )AY( t - 1)+(~) A2Y( t - 2 ) - • • • t ( -1) nt.. ny (t - n) =(1-A)nE*(t )

Tab. 23.1 Gewichtsfunktion sequentieller Ansätze und ihre zykli~

schen Äquivalente

Die auf diese Weise ermittelten Gewichtsfunktionen entsprechen einer

Pascalverteilung. Dies ist eine in der Wahrscheinl ichkeitstheorie ver­

wendete Vertei lung für nichtnegative ganzzahlige Zufallsvariablerr.

Der Erwartungswert einer Pascalverteilung n-ten Grades berechnet sich
10nach

w = nA/(l-A)
n (23.55)

Dieses Maß kann zugleich als eine Kenngröße für den Verlauf der Ge­

wichtsfunktion dienen. Abbildung 23.4 zeigt den Verlauf der Gewichts­

funktion ersten bis dritten Grades mit einem Mittelwert von w=10

Wie wir später sehen, werden die beschriebenen Gewichtsfunktionen

dritten Grades von FORRESTER in seinem dynamischen Modellierungskon-

10 Vgl. [50,5.202J
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0,08

0,06

0,04

0,02

5 10 15 t [PERIODE]

Abb. 23.4 Gewichtsfunktionen linearer Differenzengleichungen er­
sten bis dritten Grades bei gleichen Wurzeln und w=10

zept System Dynamics in großem Umfang verwendet.

Die bisherigen Erörterungen 1ieferten uns eine durch (23.54) gekenn­

zeichnete Famili"e von Gewichtsf~nktionen~ die den an verteilte Ver­

zögerungshypothesen gestellten Forderungen (23.11) genügen und durch

die zykl ische Hypothese (23.48) zum Ausdruck kommen. Wi r wollen uns

im folgenden wieder der Frage ~uwenden, ob und auf wel~he Weise eine

Famil ie der Gewichtsfunktionen zykl ischer Verzögerungshypothesen zur

Mode,ll i erung pr i märer verte i I ter Verzögerungshypothesen verwendet

werden kann. Als Ausgangspunkt dieser Erörterung dient uns die durch

(23.54) gekennzeichnete Famiiie der Gewichtsfunktionen. Für'die ei­

gentl iche Fragegestel lung gehen wir von einer Klasse von Gewichts­

funktionen aus, die wir durch zwei Einschränkungen auf eine Teilklas­

se von (23.48) und eine Erweiterung dieser Teilklasse über (23.48)

hinaus erreichen.

Die erste Einschränkung beruht darauf, daß wir nur die durch die Spe­

zifizierung von n=3 sich in (23.48) ergebende Teilklasse von Gewichts­

funktionen untersuchen wollen. Es handelt sich um Gewichtsfunktionen
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sche Zusammenhänge plausibel erscheint. Abbildung 23.4 zeigt ein Exem­

plar dieser Tei lklasse mit einer durchschnittl ichen Verzögerung von

10 Perioden.

Die zweite Einschränkung bezieht sich auf die empirische Interpreta­

tion der verteilten Verzögerungshypothesen: es soll nur die Model-

l ierung von Verweilzeithypothesen untersucht werden. Diese Einehgung

folgt aus der Absicht, im Rahmen de~ nachfolgenden Betrachtungen über

die Simulation dynamischer Systeme ein Model 1konzept zu entwickeln,

in welchem die Modell ierung primärer sequentieller Verweilzeithypö­

thesen eine wichtige Stellung einnimmt. Formal drückt sich diese Ein­

schr~nkung durch die Wahl eines Totalmultiplikators von M=l aus. Die

Erweiterung des Repertoires an Gewichtsfunktionen ergibt sich durch

die Einfügung von Totzeiten. Ersetzt man in (23.48) E(t) durch E(t-T),

so hat dies zur Folge, daß die Variation von T zu unterschiedlichen

Gewichtsfunktionen führt.

Die Auswirkung einer Totzeit läßt sich am anschau1 ichsten anhand der

einer Gewichtsfunktion entsprechenden Impulsantwort eiDeS Systems de­

monstrieren. Schickt man in ein System einen Einheitsimpuls, so wird

die Zeit T, die vergeht bis der erste positive Wert der Einheitsim­

pulsantwort auftritt, als Totzeit bezeichnet. Die in Abbildung 23.4

dargestellten Gewichtsfunktionen besitzen eine Totzeit von 0 Perioden.

Würde man diese Gewichtsfunktionen um eine Totzeit von T Perioden mo­

difizieren, so hieße dies, daß die Verläufe um T Perioden nach rechts

verschoben werden müßten:

Unter diesen Einschr~nkungen und Erweiterungen erhalten wir aus (23.48)

die zykl ische Verweilzeithypothese

A(t) = 3AA(t-1) - 3A 2A(t-2) + A3A(t-3) + (1-A)3 Z(t-T) (23.56)

Aus mnemotechnischen Gründen wurden dabei die Variablen Y durch A und

E durch Z ersetzt, so daß Z als Zugang und A als Abgang einer Be­

standsgröße anzusehen sind.

Die Gewichtsfunktion von (23.56) ergibt sich mit (23.54) aus

3·w· =
Tl

fü r Tl=O, 1 , .•• , T-1
für n=T,T+1, ... (23.57)
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Zur besseren Beurteilung von Hypothesen ist es erstrebenswert, daß

ihre Parameter eine sinnvolle empirische Interpretation erlauben.

Aus diesem Grunde 5011 der Parameter A in (23.57) durch zwei Parame­

ter definiert werden, die sich als die durchschnittl iche Verzögerung

eines Elementes im Bestand (D) und als die rotzeit (T) der Gewichts­

funktion oder Systemantwort deuten lassen.

Besitzt eine Verweilzeithypothese die in (23.54) dargestel lte Ge­

wichtsfunktion w , dann kann die durchschnittliche Verzögerung ei-n .
nes den Bestand durchlaufenden Elementes mit

00

0* = :E w •n
n=O n

beschrieben werden. Im Falle der Erweiterung des Ansatzes (23.48)

durch die Einführung einer Totzeit T kann die durchschnittliche Ver­

zögerung D mit

00

berechnet werden. Hieraus folgt

00 00

o = :E wn' n + T :E wnn=O n=O

und mit (23.11) sowie (23.58) ergibt sich

o = D* + I

Da das in (23.55) angegebene arithmetische Mittel der Gewichtsfunk­

tion mit der hier erörterten durchschnittlichen Verzögerung 0* iden­

tisch ist, gi lt für n=3

0* = 3A/ Cl-I.)

Au s (23 . 59 ) und (23 . 60) f 0 1g t

O-T
A = D-T+3

Oa A positiv und kleiner als 1 sein muß, gilt

o - T > 0

(23.60)

(23.61)

Mit (23.61) ist die geforderte Reduzierung von A auf die durchschnitt­

licheVerzögerung und die Totzeit vorgenommen.
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. Unter Berücksichtigung von (23.61) wird (23.57)

für n=O,1 ,2, ,T-1
für n=T,T+1, ..

(23.62 )

2.4. Rekursive und inte.rdependente Modellformen

Nach einer ersten intuitiven Klärung der formalen Struktur und der

empirischen Deutungsmögl ichkeit von rekursiven und interdependenten Mo­

dellen werden wir im zweiten Abschnitt Methoden diskutieren, mit de­

nen man interdependente und rekursive dynamische Modelle beliebiger

Größe voneinander unterscheiden und in übersichtl icher Weise gl ledern

kann. Abschließend wenden wir uns den besonderen Problemen der Zeit­

pfadermittlung im Rahmen interdependenter Modelle zu.

2.4.1. Begriffliche Klärung und empirische Interpretation·

Der grundsätzl iche Unterschied zwischen einem rekursiven und einem

interdependenten Modell kann anhand des ·Pfei lschemas in Abbildung

24.1 demonstriert werden.

In einem interdependenten Modell lassen sich zumindest zwei unverzö­

gerte endogene Variablen finden, die eine wechselseitige Beeinflus­

sung aufeinander aus·üben. In Abbildung 24.1 beeinflußt Y1 über Y2
die Variable Y

3
und wird von dieser wiederum direkt beeinflußt. Eine

derartige wechselseitige Beeinflussung kann durchaus Ober belieb~g

viele 'Stationen', d.h. andere endogene unverzögerte Variablen laufen.

Entscheidend ist al lein, daß eine geschlossene Beeinflussungskette

vorhanden ist.

Anschaulich formul iert heißt dies, daß ein durch ein Pfei ldiagramm

gekennzeichnetes dynamisches System immer dann interdependent ist,

wenn man für mindestens zwei unverzögerte·endogene Variablen einen

durch diese beiden Variablen fOhrenden geschlossenen Beeinflussungs­

'pfad findet. Im Gegensatz dazu zeichnen sich rekursive dynamische Mo­

delle durch die Abwesenheit eines solchen Beeinflussungspfades aus.
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'Als Folge davon kann man die Pfeildiagrammdarstellung eines rekursi­

ven Systems durch Austauschen der Zei len immer so umgestalten, daB

alle Beeinflussungspfeile zwischen den endogenen unverz8gerten Va­

riablen in eine Richtung zeigen.

Tauscht man beispielsweise in Abbildung 24.1 die Anordnung der Va­

riablen Y, und Y2 miteinander aus, so wird eine solche 'Standa~di­

sierung ' bewirkt.

t-2 t-l t t-2 t-l t

0----4....·

o
o

~.,'

D

D

D

o

E, ~

Y2 0

INTERDEPENDENTES

MODELL

REKURSIVES

t-10DELL

Abb. 24.1 Pfeildiagramm eines interdependenten und rekursiven dy­
namischen Modells

Bisher haben wir nur die formalen Unterschiede zwischen rekursiven

und dynamischen Modellen erörtert. Es liegt jedoch nahe, daß auch di.e

empi'rische Deutbarkeit der in den beiden Modelltypen auftretenden Hy­
pothesen von unterschiedlicher Art sein wird.

Um dieser Frage nachzugehen, betrachten wir zwei modifizierte Versio­

nen eines MA-Model ls, welche durch

v(t) = C(t) + I {t) + I. (t)
a J

I. (t)= ß[C(t)-C(t-2)]
I

C(t) = aY(t-1)

(24. 1)

(24.2)

(24.3)
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und

Y(n) ::: C(n) + I (n) + I. (n)a I

I. (n)::: S[C(n)-C(n-1)]
I

C(n) ::: aY(n)

beschrieben werden.

(24.4)

(24.5)

(24.6)

Wie man leicht nachprUfen kann, stellt die erste Version ein rekur­

sives, die zweite dagegen ein interdependentes Model I dar. Anhand

dieser Beispiele wollen wir der Frage nachgehen, ob es bestimmte lin­

terdependente Model lhypothesen ' gibt, die einen grundsätzlich ande­

ren Charakter besitzen als die ihnen gegenüberzustel l~nden 'rekursi~

ven Modellhypotheseni.

Hypothesen sind Wenn-Dann-Aussagen. Dem intuitiven Verständnis der­

artiger Wenn-Dann-Aussagen kommt es sehr entgegen, daß sie eine kau­

sale Interpretation zulassen, -d.h. die 1 Wenn-Komponente I als Ursache

einer Wirkung gedeutet werden kann, die in Form der 'Dann-Komponente'

zum Ausdruck kommt. Rekursive Modelle werfen bei der Anwendung die­

ser Interpretation keine Probleme auf: die endogenen unverzögerten

Variablen einer Hypothesengleichung können stets als 'Wirkung' der

auf der rechten Seite def Gl~ichung steh~fid~h 'UFsatHeh ' g~d~ute~­

werden. Die Mögl ichkeit, in einem rekursiven Modell die endogenen un­

verzögerten Variablen in Form einer offenen Beeinflussungskette anzu­

ordnen, führt dazu, daß es bei rekursiven Modellen nie mögl ich ist,

eine bestimmte endogene unverzögerte Variable als eigene Ursache ih­

rer Wirkung zu deuten. Gerade dies ist jedoch bei interdependenten

Modellen der Fall.

Die Transitivität kausaler Beziehungen erlaubt die Behauptung, daß

die Variable A(t) als die Ursache von C'(t) bezeichnet werderi kann,

falls A(t) die Ursache von B(t) und B(t) die Ursache von C(t) is~.

Betrachten wir unter dieser Deutung das interdependente Model I in Ab­

bi ldung 24.1, so ist die Wirkung Y, (t) ihre eigene Ursache, weJI ~(t)

die Ursache von Y2(t), Y2(t) die Ursache von Y
3

(t) und Y
3

(t) die Ur­

sache von Y,(t) ist.

Die Version (24.4) bis (24.6) des MA-Modells zeigt die Schwierigkei­

ten einer kausalen Interpretation im Falle der Konsumfunktion.
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Setzt man die Gleichung für Y(n) in die Konsumfunktion ein, so er­

gibt sich:

d.h. die Dann-Komponente C(n) auf der linken Seite der Gleichung ist

zugleich Bestandteil der Wenn-Komponente.

Die Schwierigkeiten einer Kausalinterpretation fUhren zu der Frage,

warum Modellentwickler Oberhaupt auf derartige Hypothesen kommen.

Diese Frage ist um so berechtigter, wenn sich zeigt, daß auch die mit

interdependenten Modellen verbundenen Schätz- und Analyseverfahren

aDfwendiger als im Falle rekursiver Modelle sind. Gerade dies ist je­

doch der F~I l. Wenn dennoch interdependente Modell~ verwendet werden,

dann liegt der Grund darin, daß manche empirischen Zusammenhänge we­

gen Datenmangels allenfalls mit derartigen Modellformen erfaßt wer­

den können.

Zur Verdeutl ichung betrachten wir das folgende rekursive, aus zwei

Hypothesen bestehende Model I

A(n) = aB(n- 1 ) + bA(n-4) + cA(n- 1)

B(n) dA (n-1) + eA (n- 2) + S

wobei der Zeitindex n Halbjahresperioden beschreiben soll. Die Va­

riab·le A besitzt die Endgleichung

(24. ])

Ein angenommener 'historischer Verlauf' von A fUr 50 Halbjahresperio­

den wird durch den Zeitverlauf mit dem Symbol + in Abbi ldung 24.2

dargestel lt. Die Kleinstquadratschätzung der Parameter in Gleichung

(24.7) anhand dieser Zeitreihe fUhrt zu der parametrisch-singulären

Hypothese

A(n) 2,837A(n-l) - 2,831A(n-2) + 1, 107A(n-3) - O,116A(n-4) +

+ 61,226 (24.8)

deren simul ierter Zeitverlauf durch das Symbol * beschrieben wird.

Gehen wir nunmehr davon aus, daß die Beobachtungswerte für A(n) und

B(n) Flußgrößen darstellen, die nur als kumul ierte Jahreswerte zur

Verfügung stehen, so ist es nicht möglich, eine Parameterschätzung,

wie sie sich in Gleichung (24.8) dokumentiert, vorzunehmen.
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Abb. 24.2 Histogramm der beobachteten Zeitreihe der Variablen A (+)
sowie der Zeitreihe für A, welche von der Glei~hung

(24.8) erzeugt wird (*) [Einheit T: Tausend]

Es fragt sich aber, ob es mögl ichist f ei~en Modellansatz des zu be­

schreibenden Systems zu entwickeln, mit dem man eine Zeitreihe der

Jahreswerte gewinnt, deren Verlauf gegenüber dem Zeitverlauf des an­

gestrebten aber nicht realisierbaren Ansatzes (24.8) nur geringfügig

abweicht.

In Abbildung 24.3 ist auf der 1inken Seite ein Pfeilschema des rekur-

siven Zusammenhangs angeführt.

Denken wi( uns dieses Pfellschema nunmehr so zusam~engeschoben, daß

sich die Quadrate der Perioden n-1, n-3,n-5 usw. mit denen der Perio­

de n bzw. n-2, n-4 usw. decken, dann erhält man aufgrund dieser zeit-
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lichen Aggregation das auf der rechten Seite dargestel lte Schema,

welches ein interdependentes Jahresmodell zeigt.

t-2 t-1 t
n-4 n-3 ,-2 1'\-1 n t-2 t-1 t

A 0
B 0 0 D 0 0 0 D

t ,
S· 5

Abb. 24.3 Beispiel der Gewinnung eines interdependenten Modells durch
zeitl iche Aggregation eines rekursiven Modells

Dieses interdependente Jahresmodell wird durch

A( t}

B(t)

aB(t} + ßA(t-2)

yA(t) + 6A(t-1) + S

beschrieben. Es liegt nahe, an hand der bekannten Jahresbeobachtungs­

werte die Parameter dieser 'Hi lfskonstruktion aus Datenmangel' zu

schätzen. Legt man die aus (24.9) ermittelte Endgleichung von A(t)

A(t) : ~ A(t-l) + ß__ A(t-2) + a__ S
1-ay 1-ay 1-ay

zugrunde, so führt eine Kleinstquadratschätzung der Parameter an hand

der Jahresbeobachtungswerte zu der Gleichung

A(t) = 1,84507A(t-l) - O,86857A(t-2) + 1259,56551 (24.10)

Diese Jahresbeobachtungswerte ergeben sich jeweils aus der Addition

von zwei Halbjahresbeobachtungswerten der Variablen, deren Verlauf

in Abbildung 24.2 beschrieben wurde.

Abbildung 24.4 zeigt den Zeitverlauf der Jahreswerte A im Falle des

rekursiven Ansatzes (24.8) sowie des interdependenten Ansatzes (24.10)

im Vergleich mit den Beobachtungswerten von A, die der Schätzung der
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1Parameter beider Modelle zugrunde lagen.
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Abb. 24.4 Zeitlicher Verlauf der Variablen A im Falle des rekursiven
Halbjahresmodells (*), des interdependenten Jahresmodel ls
($) sowie der Jahresbeobachtungswerte von A(+)
[Einheit T: Tausend]

Man erkennt, daß das rekursive Modell zu einer wesentlich stärkeren

Ubereinstimmung mit dem Verlauf der Beobachtungswerte führt als das

interdependente Modell.

Die Jahreswerte des rekursiven Modells ergeben sich aus der Addition
von jeweils zwei Halbjahreswerten des rekursiven Ansatzes.
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Da es unter den geschilderten Umständen nur mögl ich ist, ein interde­

pendentes Modell zu entwickeln, fragt es sich aber, ob die Abweichun­

gen zwischen den durch das interdependente Modell erzeugten Verläu­

fen und den Beobachtungswerten zu tolerieren sind. Diese Frage hängt

von den Kriterien ab, mit denen die Akzeptierbarkeit statistisch ge­

schätzter Modelle beurteilt wird.

Die Schilderung der Uberlegungen, die zu einem interdependenten Mo­

dell fUhren können, läßt die Anwendungsberechtlgung derartiger Mo­

delle erkennen: Sie stellen Hilfskonstruktionen aus Datenmangel dar,

deren Berechtigung aus ihrer praktischen Bewährung folgt.

Das geschilderte Verfahren macht jedoch deutlich, daß interdependen-
. .

te Modelle nur im Rahmen von Uberlegungen entwickelt werden können,

die auf eine statistische Schätzung der Parameter des I ErsatzmodeJ Is'

hinauslaufen. Aus diesem Grunde treten in Model 1ierungskonzepti6nen,

die auf statistische Schätzungen verzichten und auf der Basis sub­

jektiv geschätzter Parameter entwickelt werden, keine interdependen­

ten GJeichungssysteme auf: Als Folge davon gibt es Simulationssyste­

me, wie DYNAMO oder CSMP, die von vornherein nur für rekursive dyna­

mische Modelle angelegt s.ind:

Die Schätzung der Parameter interdependenter Modelle mit Hi lfe der

Methode der Kleinstquadrate fUhrt zu einer verzerrten Schätzung, weil

die erwähnte vierte Voraussetzung einer effizienten Kleinstquadrat-.

schätzung nicht erfüllt ist. 2 Es handelte sich um die Forderung, daß

zwischen einer Schockvariablen und den erklärenden Variablen einer

strukturellen Gleichung keine Abhängigkeiten existieren dürfen.

Zur 11 lustration,daß solche Abhängigkeiten aber in interdependenten

Modellen existieren, greifen wir auf das erörterte interdependente

MA-Mode 11

Y(t) = C(t) t I. (t) t I (t)
I a

I. (t) = ß[ C( t) - C( t -1)] + d t)
I

C(t) = aY(t) + ~(t)

(24.11)

(24.12)

(24.13)

zurück und wollen den Parameter ß in der Gleichung (24~12) schätzen.

Eine verzerrungsfreie Schätzung setzt voraus, daß die vorherbestimm­

ZVg I. Se i te 115
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ten Variablen C(t) und C(t-1) nicht von der Schockvariablen s abhän­

gen; Mit (24:12) in (24.11) erhalten wir

Y(t) = C(t) + B[C(t)-C(t-l)] + I (t) + dtl
a

(24.14) in (24.13) 1 iefert

C(t) = (a+aß)C(t) - aBC(t-1) + al (t) + as(t) + ~(t)a

(24.14)

Wir erkennen, daß die vorherbestimmte Variable C(t) von E beeinflußt

wird, und eine Unabhängigkeit im Sinne der vierten Voraussetzung ei­

ner effizienten Kleinstquadratschätzung nicht vorliegt.

Um im Fall interdependenter Modelle zu besseren Schätzungen zu ge­

langen, werden verschiedene Schätzmethoden wie zweistufige Kleinst­

quadratschätzungen, Limited Information Maximumlikelihood Estimation,

verwendet. Ihre Anwendung erfordert einen höheren theoretisch-stati­

stischen Wissensstand als im Fall von Kleinstquadratschätzungen und

ist auch in der technischen Durchführung aufwendiger.

Die Entwicklung interdependenter Modelle ist so eng mit den Proble­

men ihrer statistischen Schätzung verbunden, daß sie heute von haupt­

beruflichenÖkonometrikern und, seltener,ökonometrisch geschulten

Fachwissenschaftlern aus dem Bereich der Wirtschaftswissenschaften

betrieben wird. Diese Situation wird sich ändern, sobald in größerem

Umfang com?utergestützte Schätz- und Simulationssysteme zur Verfü­

gung stehen, welche die kampl izierteren Schätzverfahren für interde­

pendente Modelle auf einfache Weise zu handhaben erlauben. Als fort­

schritt1 iches Beispiel derartiger Schätz- und Simu1ationssysteme wird

später das TROLL-System erörtert. 3

2.4.2. Analyse der Verknüpfungsstruktur rekursiver und
interdependenter Modelle

Die erste formale Charakterisierung rekursiver und interdependenter

Modelle anhand eines Pfei Ischemas erlaubt es nicht ohne weiteres, ein

vorliegendes größeres Model I als rekursiv oder interdependent einzu­

ordnen.

3 Vgl. Sei te 569 ff
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Evident wird diese Behauptung im Fall der heute schon vorl legenden

Modelle mit drei- bis vierhundert endogenen Variablen. Hier kann eine

Entscheidung über den vorliegenden Modelltyp nur anhand formaler Uber­

prüfungsverfahren durchgeführt werden. Zur Beurteilung der Verknüp­

fungsstruktur von Modellen bedient man sich sogenannter Strukturma­

trizen.

A. Strukturmatrizen rekursiver Modelle

Da die Verknüpfung zwischen den endogenen unverzögerten Variablen zu

beurteilen ist, können einem Modell aus Gründen einer besseren Uber­

sicht alle Informationen entzogen werden, die sich nicht auf die Ab­

hängigkeit zwischen den endogenen unverzögerten Variablen beziehen.

Die Gleichungen ~es MA-Modells

y (t) = C(t) + I (t) + I. (t)a I

C(t) = aY(t-1)

I.(t) = ß[C(t)-C(t-l)]
I

können daher auf die Form

y(t) F,[C(t),l
i
(t)]

C{t) F
2

[ cons d

li (t) = F3[C (t) ]

reduziert werden. In diesem Fall braucht kein formales 'Entscheidungs­

verfahren eingeführt zu werden, denn die Rekursivität des MA-Modells

ist auyenscheinlich.

Zur Beurteilung der Rekursivität größerer dynamischer Modelle dient

die sogenannte Strukturmatrix. Jede Zei le einer Strukturmatrix kor­

respondiert mit einer bestimmten Gleichung des betreffenden dynami­

schen Modells, jede Spalte dagegen mit einer entspre~henden unverzö­

gerten Variablen. Die Elemente der Strukturmatrix bestimmen sich nach

der Vorschrift: Trage in die Spalte, welche zu der betrachteten Glei­

chung gehört, den Wert Eins ein, wenn die dieser Spalte zugeordnete

endogene unverzögerte Variable in der Gleichung auftritt. Alle frei­

en Plätze erhalten eine Null. Entsprechend dieser Vorschrift erhält
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man für das MA-Modell die Strukturmatrix

Gleichungsnr. Y(t) c(t) I. (t)
I

Y(t) = F
1
[C(t), I

j
(t)]

C(t) = F2[ con s t]

'j (t) = F3[C( t) ]

2

3 ~]

(24.16)

In einer Strukturmatrix kann man die Zeilen und Spalten beliebig mit­

einander vertauschen, ohne den Informationsgehalt des Ansatzes zu

verändern. Denn eine Vertauschung cler Reihenfolge entspricht einer

Umstellung der Reihenfolge der Gleichungen und eine Vertauschung der

Spalten bewirkt keine Änderung der Verknüpfungsbehauptung.

Es 1legt nun nahe, diesen 'Freiraum ' der Spalten- und Zeilenanordnun­

gen auf beStimmte Standardformen einzuschränken, die zugleich Aus­

kunft über den Modelltyp liefern.

Zur Charakterisierung dieser Standardformen sind drei Strukturtypen

von Matrizen einzuführen: Dreiecksmatrizen, unzerlegbare Matrizen

und blocktriangulare Matrizen.

Eine dreieckige Strukturmatrix ist eine quadratische Matrix der Form

* 0 0 0

* * 0 0

* * * 0 (24.15)

...............

* * * *
wobei mit dem Sternsymbol Elemente gekennzeichnet,sind, die entweder

eine 1 oder 0 repräsentieren können.

Eine quadratische Matrix wird als zerlegbar bezeichnet, wenn es ge­

l ingt, sie durch einen Austausch von Zeilen und Spalten in die Form

(-~~-~-~--1* : M2

zu überführen. M1 ist eine quadratische (rxr)-Matrix und M2 wird da­

mit eine (n-r)x(n-r)-Matrix.

Mit dem Symbol * ist eine (n-r)x(r)-Matrlx gekennzeichnet, die bel ie~
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bige Werte annehmen darf, während in der oberen rechten Ecke eine

Nullmatrix der Ordnung rx(n-r) enthalten ist.

Gelingt es nicht, eine Matrix durch Zeilen- und Spaltenaustausche in

die Form (24.16) zu überführen, dann wird von einer vollkommen unzer­

legbaren Matrix gesprochen.

Zur Verdeutlichung betrachten .wir die Strukturmatrix,

o 0

000,
welche wir durch den Austausch der ersten mit der dritten Zeile und

Spalte in die Form

I I
1 I 0 I 0 0' __ L __ .l _

I ' I

1 I 1 I 0 0__ L __ .... _

I I'
I I 1
I I,
I I'1 J 1 '1I I

(24.17)

überführen können. Es handelt sich also um eine zerlegbare Matrix.

Eine unzerlegba~e blocktriangulare Matrix ist eine quadratische Ma­

trix der Form-;

I I J I
M,'O I 0 I ••• ,I 0

---t--r--r----r--* I M2 J 0 I ••• I 0
I J I I---r--r--r----r--

_~_~~_~~3L:::_L~_
* \* :*: ... La
---.--~--~----~--

* :* :* : ... : Mr

Die Untermatrizen 0 über der Hauptdiagonalen sind Nullmatrizen. Die

Elemente der Hauptdiagonalen M1 ,M2 , ... ,M r bilden unzerlegbare Matri­

zen, während die mit * gekennzeichneten Blöcke bel iebige Matriien re­

präsentieren.

Die im letzten Beispiel gefundene Matrix (24.17) ist eine unzerleg­

bare blocktriangulare Matrix, weil sämtl iche drei auf der Hauptdia­

gonalen I iegenden Blöcke unzerlegbare Matrizen darstel len.

Wir haben uns nunmehr das Rüstzeug geschaffen, um ein generelles Be~
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urtei lungskriterium für rekursive und interdependente Modelle aufzu­

stellen.

Es gilt der Satz: Ein dynamisches Modell ist stets nur dann rekursiv,

wenn seine Strukturmatrix durch Zeilen- und Spaltenaustausche in ei­

ne Dreiecksmatrix überführt werden kann.

Die Strukturmatrix des Multiplikatormodel 1s kann beispielsweise in

die Dreiecksform

G1eichungsnr. C(t) I. (t) y(t}
I

2 [ 0

~]3

1

überführt werden. Die Dreiecksform der Strukturmatrix eines rekursi-

ven Modells dient nicht nur seiner Identifizierung, sondern 1iefert

wichtige Einsichten über die Systemstruktur. Im Falle der Struktur­

matrix des MA-Mode11s erkennt man, daß bei einer periodischen Regres­

sionslösung in einem ersten Schritt die endogene Variable C ermittelt

werd~n muß, danach I. und schI ießlich Y. Man kann das Berechnungsver-
I

fahren der Variablenwerte im Rahmen einer periodischen Regressionslö-

sung auch durch fo1gend~s Diagramm darstellen~

....y_C_t_)......~__~...._I.l;.i_C_t-)--~0

Abb. 24.5 Rekursive Anordnung der endogenen Variablen eines MA-Mo~

de1 1s zur Ermittlung einer periodischen Regressionslösung

Für die Simulation eines rekursiven dynamischen Modells mit Hilfe ei­

nes Computers ist es notwendig, die vorgegebenen Gleichungen durch
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Instruktionen d~rzustel len, die in Ubereinstimmung mit der Numerie­

rung einer Dreiecksstrukturmatrix abzuarbeiten sind. Dies bedeutet,

daß bei größeren Modellen praktisch immer die Anordnungsfolge einer

Dreiecksstrukturmatrix ermittelt werden muß.

Die Uberlegenheit bestimmter Simulationsprachen wie zum Beispiel DY­

NAMO oder CSMP gegenüber FORTRAN wird durch die Tatsache deutl ich,

daß in diesen fOr rekursive Modelle geschaffenen Programmiersprachen

die prozedurale Anordnung der Gleichungen von dem Programmsystem

selbst vorgenommen wird. Geht man beispielsweise davon aus, daß in

der Jumbo-Version der DYNAMO-Programmiersprache Modelle mit mehr als

tausend endogenen Variablen simuliert werden können, so müßte vor der

Programmierung de:artiger Modelle in FORTRAN die rekursive Anordnung

von tausend Variablen ermittelt werden.

B. Strukturmatrizen interdependenter Modelle

Eine zerlegbareStrukturmatrix, die sich nicht in eine Dreiecksma­

trix OberfDhren l~ßt, kann zumindest in eine blocktriangulare unzer­

legbare Strukturmatrlx umgewandelt werden.

Eine Matrix wie zum Beispiel

[~ 0 ~]
die nicht in mehrere unzerlegbare Diagonalblöcke M17 M2 , ... überführt

werden kann, sondern sozusagen nur aus einem unzerlegbaren Diagonal­

block M1 besteht, ist als ein Spezialfa~1 einer unzerlegbaren block­

triangularen Matrix aufzufassen und wurde bereits als vollkommen un­

zerlegbare Matrix bezeichnet.

Es gilt der Satz: Ein interdependentes dynamisches Gleichungssystem

besitzt eine unzerlegbare Strukturmatrix seiner endogenen unverzöger­

ten Variablen.

Das erörterte interdependente MA-Modell
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V(t) = c(t) + I. (t) + I (t)
I a

c(t) = aV(t)

I. (t)= ß[c(t)-c(t:"1)]
I

besitzt beispielsweise die Strukturmatrix

v CI.
I

die, wie man leicht erkennt, unzerl~gbar ist.

In vielen Fällen ist es, wie gesagt, nicht ohne weiteres möglich, zu

entscheiden, ob das vorliegende System interdependent oder rekursiv
. \

ist. Es ist darüberhinaus auch mögl ich, daß ein dynamisches Model 1

aus mehreren Subsystemen besteht, die in sich je eininterdependen­

tes Modell bilden. In einem Modell ist aber nicht unmittelbar zu er­

kennen, welche endogenen Variablen derartige interdependente Subsy­

steme miteinander bi Iden.

Betrachten w)r beispielsweise das Gleichungssystem

Xl F[ X
3

,X
7

]

X2 F[X4]

X
3 F[~3]

X4 F[XS]
Xs F[X

3
X4] (24.18)

. X
6 F[ X1]

X
7

F[X6,X
9

]

X8 F[X4]

X
9 , F[X, ,X2]

so ist nicht ohne weiteres klar, welche Variablen zu bestimmten in­

terdependenten Teilmodellen gehören. Dieses Gleichungssystem besitzt

die Strukturmatrix
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X, - X? X? ' Xh X_ X6 X Xg XaI" '7

Xl (i) 1 1

X? IQ) 1

X~ 10
Xli ICU 1

Xt; 1 1 (j)
XI) 1 ICi)
X7 1 CD 1
Xs 1 1(1)
X9 1 1 ,CD

Ein entsprechende Vertauschung der Zeilen und Spalten dieser Struktur­

matrix führt zu der blocktriangularen Matrix,

XJ
X, Xs X ' X ,X6 X7 Xg Xs4 2 1'

X
3 Ci)

X4 1(1) l

Xs 1 I 1 16)
X 1 lGl2
Xl 1

. CU 1
X6 1 ,CD
X7 1 G) 1
X9 1 1 lcu

IXS 1 CD

aus der man die interdependenten Subsysteme und ihre Verknüpfung mit-
\

einander deutl ich erkennt. Das Verfahren zur Ermittlung derartiger

blocktriangularer Strukturmatrizen wird im folgenden Abschnitt be­

schrieben.
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C. Ermittlung standardisierter Strukturmatrizen von rekursiven und
interdependenten Modellen

Angesichts der Tatsache, daß es Computerprogramme gibt, die die be­

schwerliche Ermittlung einer standardisierten Strukturmatrix überneh­

men, k5nnte man meinen r daß es nicht mehr notwendig sei, sich mit

dem Problem zu beschäftigen, auf welche Weise die geschilderten Stan­

dardformen von Strukturmatrizenzu ermitteln sind. Dennoch soll im

folgenden ein Verfahren beschrieben werden, wei 1 seine Kenntnis das

Verständnis für die Verknüpfungsweise dynamischer Systeme erhöht.

Neben der'auf Seite 326 angeführten Strukturmatrix des rekursiven

MA-Modell s

kann man von demselben Modell auch eine Boolsche Matrix aufstellen.

Im Gegensatz zur Strukturmatrix korrespondiert jede Spalte nur mit

einer der in den Gleichungen als unabhängige Variable fungierenden en­

dogenen unverzögerten Variablen, weshalb die Boolsche Matrix auf der

Hauptdiagonalen nur Nullen aufweist, während die Strukturmatrix dort

nur mit Einsen besetzt ist.

Die Boolsche Matrix eines MA-Modells weist daher folgende Form auf

Y "C I.
I

~ [~ 0 ~]
I 1 0 0
i

y(t) C(t) + I.(t) + I (t)
I a

C(t) = etY(t-1)

I. (t) = ß[C(t}-C{t-1)]
I

(24.19)

Die beschriebene Aufstel lung einer Boolschen Matrix ist unproblema­

tisch, wenn jede Gleichung des dynamischen Modells als unabhängige

Variable genau eine endogene unverzögerte Variable aufweist. In di'e­

sem Fall, der für die meisten dynamischen Modelle zutrifft, kann die

jewei lige Gleichung als ein schwarzer Kasten angesehen werden, des­

sen Inputvariablen I. die Outputvariable O. bestimmen. Im Falle der
J I
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Boolschen Matrix des MA-Modells (24.19) wird die Outputvariable Y

beiipielsweise durch die Inputvariablen C und I. bestimmt.
I

Das Verfahren zur Entwicklung einer blocktriangularen, nicht weiter

zerlegbaren Strukturmatrix sol I am Beispiel des bereits zitierten

Gleichungssystems (24.18) demonstriert werden. Die Boolsche Matrix

des Systems erhalten wir, wenn die Elemente der Hauptdiagonalen durch

Nullen ersetzt werden. Denn diese Einsen auf der Hauptdiagonalen re­

präsentieren ja die Outputvariablen in jeder Gleichung, welche in der

nur die Inputvariablen charakterisierenden B60lschen Matrix nicht er­

scheinen dürfen.

Für unser Beispiel fUhrt die Streichung zu der Boolschen Matrix

M =

Xl X2 X3 X4 Xs X6 X7 Xs Xg

Xl 1 1

X2 1

X3
X4 1

Xs 1 ,1

x
6

- 1

X7 1 1

Xa 1

Xg 1 1

Diejeni~en Zei len, welche leere Felder, d.h. nur unterdrUckte Nullen

enthalten, repräsentieren Variablen, die nicht von den anderen Va­

riablen beeinflußt werden. Weiterhin wird deutlich, daß Spalten, wel­

che nur unterdrückte Nullen aufweisen, solche Variablen beschreiben,

die selbst keine anderen Variablen beeinflussen. In unserem Beispiel

wird daher die Variable X
3

als erste berechenbare Variable in die er­

ste Zeile einer Variablenl iste eingetragen, während die Variable XS '

welche für keine weitere Berechnung mehr gebraucht wird, am Ende der­

selben Liste aufgefUhrt wird, d.h.
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~3

Nach diesem ersten Schritt gewinnen wir eine reduzierte Matrix M

durch Streichung der Zeilen und Spalten von X
3

und XS' Diese Matrix

und der entsprechende Graph besitzen die Gestalt

M =

Xl Xz X
4

Xs X6 X
7 X9

Xl 1

Xz 1

X4 1

X5 - 1

x 1
6

X7 1 1

X9 1 1

Von der Matrix M ist das BobIsche Matrizenprodukt M2 zu ermitteln.

Die Boolsche MJ,Jltiplikation ~i[1~X Mcrtrix ~ei kur?: d?3rgestellt;

Eine Boolsche Multipl ikation geht zum einen von der zusätzl ichen Vor­

aussetzung aus, daß A und Beine O-l-Matrix bilden. Das übl iche Ma­

trizenprodukt M aus den Matrizen A und B ergibt sich wie bereits ein-

M.. =A. B., d. h. das Ska 1a r-
I J I J

Spaltenvektor B. 1iefert das
J

man nunmehr zur ErmittlungEI ement M.. der
IJ

einer Matrix C die zusätzliche Vorschrift

gehend beschrieben, durch die Vorschrift

produkt aus dem Zeilenvektor A. und dem
I

Produktmatrix M. Wendet

= {O wenn MiJ. 0
cl j 1 wenn M.• =F 0

IJ

an, dann erhält man mit C das Boolsche Matrizenprodukt von A und B.

Das Element einer quadratischen Potenzmatrix A4B
3

würde nach der all­

gemeinen Vorschrift zur Ermittlung von Vektorprodukten zu dem Ergeb-

nis
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1+0+0+1 =2

führen. Da 2*0, ist bei einem Boolschen Vektorprodukt statt 2 als

Element eine 1 zu wählen.

Nach dieser Berechnungsvorschrift ergibt sich die Quadratmatrix M2.

X, X
2

X4 Xs X6 X7 Xg

Xl
, ,

X2 ,
Xl. 1

Xc; ,
Xh

,
X7 1 1

X9 1 1

Mit Hilfe dieser Quadratmatrix läßt sich zeigen, welche Variablen ei­

ne andere Variable über eine weitere Variable beeinflussen. Die mit

X, korrespondierende Zeil~ enthält beispielsweise In der mit X6 u~d

X9 korrespondierenden Spalte eine 1. Dies bedeutet, daß X6 und X
9

die

Variable Xl über eine weitere Variable beeinflussen. Wie wir uns an­

hand des Graphen überzeugen, ist dies der Fall, denn man findet oh­

ne Schwierigkeiten die Beeinflussungsketten X6-X
7

-X , und X
9

-X
7

-X , .

Verallgemeinernd kann durch die Potenzmatrix Mn die über n-1 Variab­

len laufende Verknüpfung zwischen den mit einer Zeile und Spalte kor­

respondierenden Variablen gefunden werden.

Im Falle der Matrix M2 enthalten die den Variablen X4 und Xs zugeord­

neten Zeilen nur auf der Hauptdiagonalen eine'. Dies bedeutet, daß

sich X4 und Xs über eine weitere Variable selbst beeinflussen und da­

mit ein simultanes Gleichungssystem bilden. Die beiden Variablen be­

stimmen auch eine maximale Schleife, d.h. sie umfassen ein abgeschlos­

senes simultanes Gleichungssystem, weil sle nicht von den verbleiben­

den Variablen beeinflußt werden. Wir erhalten damit die erweiterte
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Li ste

X
3

XS,X4 simultan

Streicht man die entsprechenden Zeilen und Spalten von Xs und X4 in

der Matrix M
2

, so ergibt sich die reduzierte Matrix M~

t1 *2

X X
2 X6 Xl X91

Xl 1 1

X2
X6 1

X7 1 1

X9 1

Anhand dieser Matrix erkennen wir, daß die mit X2 korrespondierende

Zeile nur Nullen besitzt, d.h. von keiner der noch vorhandenen Va­

riablen beeinflußt wird. Die Zeile und Spalte von X
2

ist daher zu

streichen, und wir erhalten die Matrix M~*.

M ** =
2

Xl X
6 X

7
X

9

Xl 1 1

X6 1

X
7

1

X9 1

Durch Aufnahme von X2 in die Variablenl iste erhält man:



337

X3
XS,X4 simultan

~z

Indem man in der ursprOnglichen Matrix M ebenfalls die Zeilen und

Spalten von XS' X4 und Xz streicht, ergibt sich M*.

~=

Xl X6 X
7

X
9

Xl I

X6
I

X7 I I

X9
I

Die Matrix M3 berechnet sich dann mit:

M**"M*
2

Xl X6 X7 X9
Xl 1

X6 1

X7 1

X9 1 1

Wir erkennen, daß die Variablen Xl' X6 und X
7

über zwei Variablen

nur von sich selber abhängen. X
9

dagegen wird über zwei Variablen so­

wohl von sich selbst als auch von X6 beeinflußt. Die vier Variablen

bilden eine maximale Schleife, d.h. ein simultanes Gleichungssystem,

weil jede der vier Schleifen Ober zwei andere Variablen läuft und da­

her alle Variablen voneinander abhängig sind.

Damit ergibt sich die endgültige Variablenliste
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X
3

X
S

,X4 simultan

X2
Xl ,X6 ,X

7
,X

9
simultan

X8

In dieser Reihenfolge können wir nunmehr die Zeilen der ursprüngl i­

ehen Strukturmatrix anordnen und erhalten die uns bereits bekannte

blocktriangulare unzerlegbare Strukturmatrix

X
3

X4 Xs Xz Xl X6 X7 X9 Xa
X
3 Ci)

- X4 1(1) 1
Xs 1 1 (1)
Xz 1 lGl
Xl 1 CD 1
X6 1 Ci)
X7 1 G) 1
X9 1 1 ICD

1-X8 :' ~ -

CLr1

Anhand der ermittelten Strukturmatrix. lassen sich die in Abbildung

24.6 dargestellten Teilsysteme voneinander abgrenzen.

Abb. 24.6 Schema der sukzessiven Lösung eines Gleichungssystems mit
interdependenten Tei lsystemen
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+START

i t
1

STREICHE DIE SPALTE JA ENTHÄLT EINE SPALTE DER
UND IHRE KORRESPON- BOOLSCHEN MA.TRIX AUS-
DIERENDE ZEILE SCHLIESSLICH NULLEN?

NEIN
t

2

STREICHE DIE ZEILE UND ENTHÄLT EINE ZEILE DER
IHRE KORRE SPOND I ERENDE BOOLSCHEN MATRIX AUS-
SPALTE SCHLIESSLICH NULLEN?

JA NEIN·

1 t
3

BERECHNE DIE N-TE POTENZ
DER BOOLSCHEN MATRIX(MIT
N=ANZAHL DER AUSFÜHRUNG
VON SCHRITT 3)

1

4

ENTHÄLT EIN ELEMENT DER
HAUPTDIAGON-ALEN-EINE l?

JA NE I N I
•

5

IST DIE SCHLEIFE MAXIMAL?

JA NEIN

6

STREICHE DIE ENT- WIRD DIE, SCHLEIFE VON EINER
SPRECHENDE ZE (LE INPUTVARIABLEN BEEINFLUSST?
UND SPALTE

t
NEIN JA

" r

?

BEEINFLUSSEN DIE SCHLEIFEN-
VARIABLEN EINE ANDERE OUTPUT-
VARIABLE?

t~E IN JA

Abb. 24.7 Schema zur Zerlegung eines dynamischen Modells in minimale
Subsysteme von interdependenten Gleichungen
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Das beschriebene Verfahren läßt sich auf be1 iebige Modelle erweitern.

Seine Durchführung ist anhand von Abbildung 24.7 noch einmal in all­

gemeiner Form zusammengefaßt. 4

Die Simulationssysteme TROLL und SIMULATE, die für interdependente

dynamische Modelle geeignet sind, führen die Ermittlung unzerlegba­

rer blocktriangularer Strukturmatrizen anhand der eingegebenen Glei­

chungen selbst durch und entlasten den Entwickler dynamischer Model­

le von einer zeitaufwendigen Aufgabe. Die Programmiersprache DYNAMO

hat eine Fehlerroutine~ welche die vorhandenen maximalen interdependen­

ten Schleifen eines Modells als unzulässig aufzeigt, da DYNAMO keine

interdependenten Gleichungen zuläßt. Im Falle des anhand von Abbil­

dung 24.6 dargestellten Systems würde in DYNAMO ein Ausdruck erfolgen,

daß zum einen die Variablen X
5

und X4 sowie die Variablen X" X6, X
7. 5und Xl ~ X9 , X7 jewei ls ein interdepentes System bilden.

D. Zeitpfadbestimmung in interdependenten Modellen

a) Zeitpfadbestimmung in linearen interdependenten Modellen

Interdependente Modelle repräsentieren eine Formalstruktur, die in

der Mathematik alss irriLi 1täriesG Ier chun.gs sys tem bezeichnet wi rcl. Vi ir

wollen daher im folgenden synonym von interdepenten oder simultanen

Modellen sprechen.

Lineare interdependente Modelle mit konstanten Koeffizienten lassen

sich durch die folgende Matrizen-Endgleichung darstellen:

(24.20)

und das

wobei HO eine blocktriangulare unzerlegbare Matrix ist. Es ist nicht

möglich~ auf der Grundlage dieser Form mit Hilfe periodischer Regres­

sionslösungen den Zeitverlauf der endogenen Variablen Y(t}=[YI(t} ~

Y2(t)~ ... ,Yn(t)] zu berechnen. Das Modell m~ß vielmehr in seine re­

duzierte Form überführt werden. Dieses Verfahren wird im folgenden

kurz anhand eines Beispiels beschrieben.

Ist die'Determinante IMOI+O, so besitzt MO eine Inverse M~l

4 entnommen mit geringfügigen Änderungen [84,S.250J
5 5 i ehe Se i te 524
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-1
Gleichungssystem wird durch Multipl ikation mit MO in seine reduzier-

te Form überführt, d.h.

Als Beispiel sei ein von KLEIN entwickeltes aus sechs Gleichungen be­

stehendes simultanes Modell der amerikanischen Wirtschaft angeführt:

[111,S.68]

KO(t) = 16,78 + O,02NE(t) + O,23NE(t-1) + O,8[LP(t)+LS(t)]

NI (t) = 17,79 + 0,23 NE (t) + 0,55 NE (t -1) - 0, 15 KS ( t -1 )

LP(t) = 1,6 + 0,42 [VE(t)+SS(t)-LS(t)] + O,16[VE(t-1)+SS(t-1)­

-LS(t-1)] + 0,13 (T-1931)

VE(t) = KO(t) + NI (t) + SA(t) - SS(t)

NE(t) = VE(t) - LP(t) - LS(t)

KS (t) = KS ( t -1) + NI (t)

Die Symbole besitzen folgende Bedeutung:

KO- Konsum

NI = Nettoinvestition

LP = Lohnsumme der Privat-Beschäftigten

LS = Lohnsumme der vom Staat Beschäftigten (EXOGENE VAR.)

VE = Volkseinkommen

NE = Nichtarbeitnehmereinkommen

KS = Kapitalstock

5S = Steuersumme (EXOGENE VAR.)

SA = Staatsausgaben (EXOGENE VAR.)

T = Zeitindex (Jahr) (EXOGENE VAR.)

Bringt man sämtl iche endogenen unverz6gerten Variablen auf die linke

Seite der Gleichungen, so ergibt sich:

KO(t) - O,8LP(t) - O,02NE(t) = 16,78 + O,2'3NE(t-l) + O,8LS(t)

NI (t) - 0, 23 NE ( t) = 17,79 + 0, 55 NE ( t - 1) - 0, 15 KS (t -1 )

LP(t) - 0,42VE(t) = 1,6 + 0,42[SS(t)-LS(t}] + 0,16 [VE(t-1)+

+SS(t-1)-LS(t-l)] + 0,13 (T-1931) (24.21)

VE (t) - KO (t) - NI (t) = SA (t) - SS(t)

VE (t) - LP (t) - NE (t) = LS (t)

KS (t) - NI (t) = KS ( t -1 )



342

Die Koeffizientenmatrix der auf der linken Seite des Gleichungssy­

stems stehenden unverzögerten endogenen Variablen ist

KO NI LP VE NE KS
1 0 -0,8 0 -0,02 0

0 1 0 0 -0,23 0

0 0 1 -0,42 0 0
M=

-1 -1 0 1 0 0

0 0 -1 1 -1 0

0 -1 0 0 0 1

Die inverse Matrix -1 ergibt sich mitM

1,67 0,.67 1 , 148 0,67 -0,187 °0,257 1,257 -0,089 0,257 -0,294 0

M- 1=
0,809 0,809 1,445 0,809 -0,202 0

1,927 1,927 1,06 1,927 -0,482 °1 , 11 8 1 , 11 8 -0~385 1, 118 -1 ,28 0

0,257 1,257 -0,089 0,2S7 -0,294

Mit den Definitionen

und

B( t) =

x(t) =

B
1
(t)

B
2
(t)

B
3

(t)

84(t)

BS(t)
B6 (t)

KO (t)

NI (t)

LP(t)

VE(t)

NE(t)

KS(t)

=

16,78+0,23NE(t-l )+0,8LS(t}

17,79+0,55NE(t-1 )-0, 15KS(t-l)

1,6+0,42[SS(t)-L5(t)]+0,16[VE(t-1)+SS(t-1)-
-L5(t-1)]+0,13 (T-1931)

SA (t) - S5 (t)

LS (t)

KS (t-l)

(24.22)

läßt sich das Gleichungssystem (24.21) durch



MX (t) = B(t)

darstellen. Nach X(t) aufgelöst ergibt sich die reduzierte Glei­

chungsform

und damit das voll ausgeschriebene Gleichungssystem der reduzierten

Form

C(t) = l t67B 1 (t:) + Ot 67B2(t) + 1,148B
3

(t} + Ot 67 B4 (t} -Ot 187 B
S(t}

I (t) = O,257 81(t} + 1,257 B2(t) - O,089B
3

(t) + O,257B4 (t) - Ot 294B
5

(t)

p (t) Ot 80 9B 1 (t) + Ot 80 9B2 (t) + l t445B
3

(t) + 0,8 09 B4 (t) - Ot202BS(t)

V( t) 1,92781(t) + l t927 B2 (t} + l t06B
3
(t) + l t 9278 4(t) .,. O,4828

S
(t}

N(t) = 1,118B1(t) + l t118B
Z
(t) - Ot3858

3
(t} + 1,118B4 (t} - l t 28B

S
(t}

K( t) Ot 257 BI (t) + 1,2S782 (t} - Ot 0898
3

(t} + O,257 84(t} -

- O,294B
S

(t} + B6 (t) (24.23)

Dieses Gleichungssystem stellt mit (24.22) ein rekursives Modell dar.

Damit ist es gelungen, das ursprünglich interdependente Modell in ein

rekursives zu überführen.

Auf der Grundlage dieses rekursiven Ansatzes ist es mögl ich t den Zeit­

pfad der· Modellvariablen durch p.erLodisch.e Regre.ssio.nsJÖSl,!fl9~11 ?:.IJ ~r­

mitteln. Die Technik dieses Verfahrens wird anhand des entwickelten

Modells von KLEIN im Abschnitt Ober die 'Simulation dynamischer Model­

le behandelt. 6

b) Zeitpfadbestimmung in nichtlinearen interdependenten Modellen

Zur Lösung nichtl inearer simultaner Differenzengleichungssysteme wird

heute vorwiegend das Gauß-Seidel-Verfahren verwendet. Die Verläufe

der endogenen Variablen nahezu aller größeren nichtlinearen interde­

pendenten Modelle werden heute unter Anwendung dieses Verfahrens er­

mittelt. Auch bei der Retrodiktion nichtl inearer dynamischer Modelle,

die eine Lösung simultaner Gleichungen erfordert, ist das Verfahren

anwendbar. 7

6 Siehe Seite 533
7 Vgl. Seite 471f.
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Das Gauß-Seide1-Verfahren 5011 am Beispiel eines simultanen Systems

mit zwei endogenen Variablen demonstriert werden. Als Ausgangspunkt

dient das Gleichungssystem:

F, [ Y, (t) , Y2 (t) , Y, (t -, ) , Y2 ( t -1 ) , E1 (t) ]

F2[Y 1(t) 'YZ(t) ,Y, (t-1) ,Y2 (t-1) ,E2 (t)]
(24.24)

F,[.;.] und F2[ ..• ] bi 1den nichtl ineare Funktionen, welche es nicht

erlauben, durch mathematische Umformungen die reduzierten Gleichun­

gen von Y1 (t) und Y2(t) abzuleiten. Aus diesem Grunde ist eine pe­

riodische Regressionslösung nicht anwendbar.

Die Lösung des Gleichungssystems ist daher nur mit Hilfe eines Nähe­

rungsverfahrens mög1 ich. Das hier verwendete Gauß-Seidel-Verfahren

erfordert die Bestimmung von zwei Anfangswerten Y~(t) und Y~(t), die

wir in die rechte Seite von Gleichung (24.24) für Y,(t) und YZ(t)

einsetzen. Wir erhalten damit

Die zweite Iteration 1iefert

Y~ (t) =

Y~(t)

Nach v Iterationen erhalten wir

Die vorherbestimmten Variablen, d.h. Y1 (t-l)'Y2(t-l),E,(t) und EZ(t)

ändern ihre Werte während des Iterationsprozesses nicht.

Falls d~r Prozeß konvergiert, d.h. die Differenzen Y~(t)_y~-1 (t) und

Y~(t)-y~-1 (t) mit wachsendem v abnehmen, muß eine Abbruchvorschrift

definiert werden. Als Abbruchkriterium kann man beispielsweise

und Y~(t)-y~-l(t) <10-3
y~-l (t)



wählen.

Die Geschwindigkeit der Konverg~nz des Iterationsprozesses kann er­

höht werden, wenn man den aus einer Gleichung gewonnenen neuen Wert

der endogenen unverzögerten Variablen sofort als Eingangsgröße für

die Berechnung der nachfolgenden endogenen Variablen verwendet.

Im Falle unseres Beispiels also nach dem Schema

= F1[Y1'-1 (t) , y~ -1 (t) , Y1(t -1) , Y2 (t -1) , E1 (t)]

v v"'1F2[Y1 (t) 'Y2 (t) ,Y 1(t-1) ,Y2 (t-l) ,E 2 (t)]

Die Konvergenz des Verfahrens ist nicht zwingend gewährleistet. Sie

hängt u.a. auch davon ab, welche der endogenen Variablen in einer

Gleichung als unabhängige Variablen gewählt werden.

yl
1 - - - - - - - - -/4--'

Abb. 24.8 Graphische Darstellung eines konvergierenden Gauß-Seidel­
Verfahrens zur Lösung eines nichtl inearen Systems von zwei
Gleichungen
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Betrachten wir beispielsweise das simultane nichtlineare Gleichungs­

system

F,[Y, (t},Y 2 (t)]

F2 [Y, (t) 'Y2(t}]

o
o

(24.25)

Die Kurvenzüge in Abbildung 24.8 beschreiben die Koordinatenwerte

von F, und F2· Gesucht sind die Koordinatenwerte des Punktes G, die

all ein (24.25) befriedigen. Wi r unterstellen, es sei mög 1ieh (24.25)

in die Form

zu überführen. Wählt man als Anfangswert für Y2 in (24.26) den Wert

so erhält man, wie aus Abbildung 24.8 zu erkennen ist, für Y, den
o . ,

Wert Y,. Dieser in (24.27) eingesetzt ergibt Y2 usw.; man erkennt,

daß der Prozeß gegen G strebt.

G, [Y
2
,(t}]

G2 [Y, (t)]
(24.26)
(24.27)

o
Y2 '

Grundsätzl ich wäre es aber auch möglich gewesen, das Gleichungssystem

nach jewei ls einer anderen Variablen aufzulösen, d.h.

H,[Y,(t}]

Hi [Y
2
(t)]

Verfolgen wir den Iterationsprozeß anhand, von Abbildung 24.9, dann

erkennen wir" daß "auch bei der Wahl des'selben Anfangsw~rtes Y~ keine

Konvergenz zustande kommt.

Die vorangegangenen Ausführungen bezogen sich nur auf ein simultanes

Gleichungssystem mit zwei Variablen. Sie lassen sich jedoch auf ein

System mit n Variablen erweitern.

Für den Fall ohne sukzessive Einsetzung während eines Iterations­

schrittes erhalten wir das Schema

\I v-' v-, v-' v-,
Y. (t) = F. [Y, , Y2 ' ••• , Y. , . • . , Y ]

J J I n
j=',2, ... ,n (24.28)

Die Konvergenz kann auch d~durch erreicht werden, daß statt der Va­
v-'riablen Y. der Ausdruck
I



wenn man bei der Berechnung von Y. im v~ten Ite­
J

Variablenwerte yr- 1 bis yr:~ in (24.27) durch die

bis Y~-l (i=j) ersetzt, welche bereits berechnet
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wy~-l + {1-W)y~-2
I .,

gewählt wird, in welchem w in der Regel zwischen Null und Eins liegt,

in manchen Fällen aber auch, um eine Konvergenz herbeizuführen, grös­

ser als Eins gewählt werden muß. Wie erwähnt, kann die Konvergenz be-

schleunigt werden,

rationsschritt die

Variablenwerte Y~

wurden.

Nach einer entsprechenden Zahl von Ansätzen gel ingt es oft, einen

konvergierenden Prozeß zu erhalten.

-- - - - - - - - - - - - - - - - - - - - - - - - - - - -o/!---+

-----------

I

I

Abb. 24.9 Graphische Darstellung eines nicht konvergierenden Gauß­
Seidel-Verfahrens zur Lösung eines nichtl inearen Systems
von zwei Gleichungen
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2.5. Zerlegbare, unzerlegbare und annähernd
zerlegbare Modellformen

Bisher haben wir uns vorwiegend mit dem Verhalten einzelner endoge­

ner Modellvariablen befaßt. Für die Beurteilung eines Modells jst es

jedoch auch von Interesse, die Verknüpfung zwischen seinen endogenen

Variablen zu studieren.

So kann man der Frage nachgehen, ob sich in einem dynamischen Modell

eine Gruppe von Variablen finden läßt, die das restliche System be­

einflußt, ohne wiederum von diesem Restsystem beeinfluBt zu werden.

Im Gegensatz zu diesem Fall ist es auch instruktiv zu wissen, ob et­

wa alle endogenen Variablen direkt oder indirekt miteinander, ver­

knüpft sind. Im folgenden werden bestimmte Modelltypen entwickelt,

denen sich die oben beschriebenen Verknüpfungsweisen eineindeutig

zuordnen lassen. Daran anschließend wird der Versuch unternommen,

ein Maß für die Verknüpfungsintensität oder auch Komplexität eines

Modells zu entwickeln. Schl leBl ich wird die Frage diskutiert, ob und

bis zu welchem Grade es zulässig ist, ein nur 'lose l mit dem Haupt­

system verbundenes Subsystem isoliert zu untersuchen.

2.5.1. Begriffliche Klärung und empirische Interpretation
.

Für die Verknüpfung einer endogenen Variablen Y, (t) mit ein~r anderen

endogenen Variablen Y2(t) ist es unmaßgeblich, ob Y
1
(t) verzögert oder

unverzögert auf Y2 (t) einwirkt. Die Unterscheidung zwischen verzöger­

ten und unverzögerten endogenen Variabl~n ist daher für die Darstel­

lung der Verknüpfung~struktur eines Systems bedeutungslos.

Zur Analyse der Modellverknüpfung wird e~n parametrisch-generelles

Modell wie

y(t) = C(t) + I. (t) + I (t)
I a

C(t) ~Y(t-')

i. (t) = ß[C(t)-C(t-l)]
I



auf seine ni chtparametri sche Form unter Vernachläss,igung der exoge­

nen Variablen reduziert. In unserem Beispiel erhält man

y = F[C,I.]
I

C = F[Y)

1.= F[C]
I

(25. 1 )

Die exogenen Va~iablen bleiben bei dieser Darstellung unb~rOcksich­

tigt, und auch die spezielle Art der Verknüpfung zwischen den endo­

genen Variablen ist nicht mehr von Interesse. Die unabhängigen Va­

riablen in den Gleichungen repräsentieren jeweils den Einfluß der

entsprechenden .verz5gerten oder auch unverz6gerten Variablen.

In Analogie zur Ermittlung der Strukturmatrix der endogenen unverz6­

gerten Variablen k6nnen wir eine Sttuk;urmatrix der endogenen Va­

riablen entwickeln, die als Verknüpfungsmatrix bezeichnet werden

so 11.

Um die Verknüpfungsweisen eines dynamischen Modells besser beurtei­

len zu k6nnen, ist es erstrebenwert, seine Verknüpfungsmatrix durch

entsprechenden Zeilen- und Spaltenaustausch (Permutationen) auf be­

stimmte standardisierte Grundformen zu überführen.

Gel ingt es, die Verknüpfungsmatrix eines Modells in eine vollkommen

zerlegbare Matrix zu überführen, dann zeigt sich, daß der aufgestell­

te Model~ansatz aus zumindest zwei voneinander unabhängigen Modellen

besteht.

Eine vollkommen zerlegbare Matrix ist eine quadratische Matrix der

Form

o

o

M
r

Sie zeichnet sich dadurch aus, daß außer den Untermatrizen auf der

Hauptdiagonalen alle übrigen Elemente Nullmatrizen sind.

Als Beispiel sei das dynamische Model I
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y 1 (t)

y2 (t)

y3 (t)

y4 (t}

0",5 y 1 (t -1) + Y3 (t)

= Y4 (t} - O,2Y
2

(t-l)

O,lY
1

(t}

= Y
4

(t-1) + Y
2

(t)

angeführt, dessen Verknüpfungsmatrix

Y1 0 0

Y2 0 1 0 1

Y
3

1 0 1 0

Y4 0 . 1 0 1

auf die Grundform

Y1 1 1 0 0

Y
3

1 0 0 0

Y4 0 0

Y2 0 0

überführt werden kann. Man erkennt, daß Y1 und Y
3

auf der einen und

Y4 und Y2 auf der anderen Seite zwei voneinander völ li9 unabhängige

.Modelle bilden. Dieser Fall eines vollkommen zerlegbaren Modells dürf­

te relativ selten auftreten.

Wichtiger sind dagegen die hierarchisch zerlegbaren Modelle. Ein sol­

cher Typ 1i egt immer dann vor, wenn es ge li ngt, die Verknüpfungsma­

trix eines Model lsin eine unzerlegbare blocktriangulare Matrix zu
1

überführen, d.h. eine Matrix der Form

*
*

0 0 0

M2
0 0

* M3"·· . 0

o
o
o

* * * Mr- 1 0

* * * ... * Mr

Dabei wird unterstellt, daß zumindest eine der durch * gekennzeich­

neten Matrizen in jeder Spalte keine Nullmatrix ist.

1 Vgl. Sei te 327
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Anhand einer solchen Matrix können wi runs verdeutl ichen, warum man von

einem hierarchisch zerlegbaren Model I sprechen kann. Bezeichnen wir

mit dem Vektor [Y,] die der Matrix M, zugeordneten Variablen und de­

finieren entsprechend die Vektoren [Y2] bis [Y r ], so können wir fol­

gende hierarchische Gl iederung erkennen: [Y,] beeinflußt zumindest

eine der endogenen Variablen in [yZ] bis [Y
r
], wird aber von keiner

dieser Variablen beeinflußt.

[y,J und [Y 2J beeinflussen zwar iumindest eine der Variablen aus [Y3]

bis [y ], werden aber von diesen nicht beeinflußt. Verallgemeinernd
r

e~kennt man, daß die Variablengruppen [Y, J, ... , [Y i ] nur einseitig ei-

nen Einfluß auf die Gruppen [V. , J, ... , [y ] ausüben.
1+ r

Man erhält daher ein hierarchisches Beeinflussungsverhältnis der Va-

riablengruppen, an dess~n Basis die Variablengruppe [Y,] anzuordnen

1st, während die Gruppe [y ] die Spitze der Hierarchie einnimmt.
r

Die Kenntnis der hierarchischen Struktur eines dynamischen Modells

zeigt die Mögl ichkeiten der 'Weitergabe l bestimmter Systemverhaltens­

weisen unter den Variablengruppen. Auch wird deutl ich, welche Variab­

1en man im Rahmen der Gruppe [Y,] von dem Gesamtmode 11 labkoppe 1n l
,

d.h. isol iert untersuchen kann. Zugleich zeigt sich, welche der zu­

sammengefaßten hierarchisch aufsteigenden Gruppen [Y,] und [y Z] oder

[Y, J, [Y2 ] und [Y
3

] usw. losgelöst von den übrigen Modelltei len un­

tersucht werden kann.

Im folgenden 5011 die Grundform der Verknüpfungsmatrix eines einfa­

chen linearen Modells bestimmt werden. Wir gehen aus von dem Ansatz

Y, (t) = 0,5 Y
3

(t-l) + E,(t)

YZ(t) = , ,5 Y5 (t) + 3,°Y4 (t )

Y3 (t) = O,25Y
S

(t-l) + E2 (t) (25.2)

Y4 (t) = 0,05 y3 ( t -1) +' y2 (t-1)

YS(t) = 0,' Y, (t-1) + YS(t-l)

Die Verknüpfungen zwischen den (verzögerten und unverzögerten) endo­

genen Systemvariablen können auf das folgende Gleichungssystem redu­

ziert werden.
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Y, = F[Y3]

Y2 F[YS'Y4]
Y

3
F[YS]

YI, F[Y
3

,Y2]

YS = F[Y1]

Die Baalsche Re 1at i onenma tr ix ergibt:

Y1 Y2 Y
3

Y4 Ys
Y1 1

1 1

1

1 1

1

Die Quadratmatrix von M, d.h.

Y,

Y2

M
2

= Y3

Y4

YS.

1

1 1 1

1

1 1

1

zeigt, daß die Variablen Y2 und Y4 eine maximale Schleife bi Iden,

weil sie keine andere Variable des Systems beeinflussen. Durch Strei­

chen der Spalten und Zeilen von Y2 und Y4 erhält man die Matrix M~
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1

1

1

Durch Streichen der Spalten und Zeilen von Y2 und Y4 in der ursprüng­

lichen Matrix M erhält man M*

Y, Y3 Ys
Y,

M* = Y3

Ys

,
1

1

Die Matrix M =M*·M*
3 2

YYY, 3 5

1

,
1

Y
1

M
3 = Y3

. Y5

zeigt, daß die Variablen Y" Y
3

und Ys eine maximale Schleife bilden.

Die entsprechende Umordnung der Boolschen Relationenmatrix ergibt:

Y,

Y2

1

1

1

1 1

1 1
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und damit erhält man die Verknüpfungsmatrix

yyyyy
1 5 ~ 4 2

1 1

1 1

1 1

1 1 1

1 1 1

Der vorl iegende Ansatz erweist sich als ein zweistufig hierarchisch

zerlegbares Modell. Man erkennt, daß die Gruppe der Variablen Y" Ys
und Y3 die Variablengruppe Y4 und Y2 beeinflußt, ein rückwirkender

Einfluß jedoch nicht gegeben ist. Interessieren den Modellentwickler

nur die Impl ikationen der Variablen Y1, Ys und Y3 , dann kann er das

Gleichungssystem, welches diese Varia~len erklärt, isoliert untersu­

chen.

Gelingt es n-icht, die Verkrtüpfungsmatrix eines äVnamische-ti Müdells

in eine blocktriangulare Form zu überführen, dann handelt es sich um

ein unzerlegbares HodelI.

Als Beispiel kann das HA-Modell dienen, dessen Gleichungssystem der

endogenen Verknüpfung (25.1) zu der Boolschen Matrix

c I.
I

Y

c

M = I.
I

y

1

1

1 1

führt.
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Die Boolsche Quadratmatrix von M ergibt

c I.
I

y

c

y

1 1

1

1 1

Es zeigt sich, daß das System keine maximale Schleife besitzt, die

nur über zwei Variablen fUhrt, denn es läßt sich keine Spalte finden,

die nur auf der Hauptdiagonalen eine 1 besitzt. Eine weitere Matri­

zenmultipl ikation liefert

c I.
I

y

c

y

1 1

1 1

1 1 1
- -

Da die gesamte Hauptdiagonale mit Einsen besetzt ist, befinden sicA

alle drei endogenen Variablen in einer geschlossenen Beeinflussungs­

kette, d.h. einer Schleife. Eine graphische Darstellung der Verknüp­

fungsstruktur ergibt

Abb. 25.1 Graphische Darstellung der Verknüpfungsstruktur eines MA­
Systems
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Es kann gezeigt werden, daß es in einem unzerlegbaren Modeii stets

eine geschlossene Beeinflussungskette gibt, die Uber alle endogenen

Variablen fUhrt.
2

Eine derartige geschlossene Beeinft~ssungskette

soll als Totalschleife bezeichnet werden~ Erweist sich ein Modell als

unzerlegbar, so wird deutl ich, daß man keine Submodelle isoliert un­

tersuchen kann. Auch spricht in diesem Falle vieles fUr die Vermu­

tung, daß sich spezielle Systemverhaltensweisen eines Teilbereiches

wie ein fluktuierendes Verhalten Uber die vorhandene Totalschleife

auf das gesamte System ausbreiten werden.

Die vorangegangenen Erörterungen erlauben nunmehr, das bereits im Ab­

schnitt 2.3.1. angekündigte Klassifizierungskriterium von zyklischen

Modellen zu entwick~ln.3 In einem rekursiven Model I ist der hier ver­

wendete Begriff iiner Schleife identisch mit einem Feedbackkreis.

Wenn interdependente Modelle nur Schleifen zwischen ihren endogenen

unverzögerten Variablen aufweisen, ist es dagegen wohl kaum mögl ich,

von einem Feedbackkreis zu sprechen, weil gemeinhin von der Auffas­

sung ausgegangen wird, daß ein Feedbackkreis verzögerte Rijckwirkun­

gen beschreibt.

Die Frage, ob ein vor! iegendes Modell zyklisch ist, läßt sich wie

folgt beantworten. Enthalten die primären Hypothesengleichungen au­

toregressive Variablen, dann liegt stets ein zykl isches Modell vor.

Sind solche autoregressiven Beziehungen nicht vorhanden, so ist ein

Modell nur dann zykl isch, wenn es zumindest eine Schleife enthält,

dieim Falle eines interdependenten Modells eine verzögernde Bezie­

hung enthalten muß. Besitzt das Modell eine Totalschleife, sö besitzt

das Modell einen Feedbackkreis, der alle endogenen Variablen umfaßt.

2 Siehe Seite 361
3 Siehe Seite 286
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2.5.2. Verknüpfungs- und Komplexitätsmaße dynamischer
Modelle

Bisher haben wir ein System durch Eigenschaften gekennzeichnet, die

anhand des entsprechenden Systemmodells aufzeigbar sind. In diesem

Sinne wurde von einem nichtl inearen oder einem offenen System gespro­

chen. Diesem Sprachgebrauch entsprechend müßte ein komplexes System

durch ein komplexes Modell darstellbar sein. Beim Begriff der Kom­

plexität ist jedoch eine solche Begriffsübertragung nicht möglich.

Oder anders ausgedrückt: es ist nicht generel 1 möglich zu sagen, daß

ein hoch (bzw. wenig) komplexes Modell auch ein hoch (bzw. wenig)

komplexes System repräsentiere.

Als Maß für die Komplexität eines Modells könnte man eine bestimmte

Gewichtung aus den Größen 'Stärke der Nichtl inearität ' , 'notwendige

Variablenzahl I und 'Verknüpfungsintensität der endogenen Variablen'

ansehen.

Die Größe oder Stärke der Nichtlinearität eines Modells ist schwer

präzise zu fassen. 4 Im folgenden soll der Begriff der Modellkomplexi­

tät ~llein anhand der Bestimmungsgrößen 'notwendige Variablenzahl I

und 'VerknUpfLJng$int~nsjt~ll Pr~.;zjs.iert werden.

Unter der 'notwendigen Variablenzahl ' soll die Zahl der Variablen

verstanden werden, die zur adäquaten Erfassung eines Systems erfor­

derlich ist. Von den notwendigen Variablen s1nd die interessieren­

den Variablen zu unterscheiden, d.h. die Variablen, welche der Mo­

dellentwickler für explikative, prognostische oder normative Zwecke

benötigt. Die Zahl der notwendigen Variablen ist daher größer oder

gleich d~r Zahl der interessierenden Variablen.

Die Bestimmung der Zahl der notwendigen Variablen ist nicht unproble­

matisch. Betrachten wir beispielsweise ein MA-Model l, cl.h. einen An­

satz·der Form

y(t} C(t} + I. (t) + I (t)
I a

C(t) = aY(t-l)

I. (t) = ß[C(t}-C(t-1)]
I

4 Vgl. Seite 272
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und unterstel len, den Modellentwickler tnteressiere allein die Va­

riable Y(t). Dann kann man zu der Auffassung kommen, die Zahl der

notwendigen Variablen sei drei. Da es jedoch nicht grundsätzlich aus­

geschlossen ist, daß ein Modellentwickler direkt die Endgleichungshy­

pothese (12.9), d.h.

Y(t} = (a-taß)Y(t-l) - aßY(t-2) + la(t)

formuliert und diese Hypothese ausreicht, um die interessierende Va­

riable Y(t) zu beschreiben, ist die Zahl der notwendigen Variablen

in' diesem Fa 11 1.

Im. Falle nichtlinearer Systeme ist jedoch nicht immer ein eindeuti­

ges Urteil m5glich, ~b sich die Zahl der notwendigen Variablen auf

die Zahl der interessierenden Variablen reduzieren läßt. Angesichts

dieser Sachlage kann 1etztl ich nur die Zahl der tatsächlichen Variab­

len eines Modells als eine klar definierte Bestimmungsgr5ße der Kom-

plexität herangezogen werden. Dies hat zur Folge, daß ein bestimmtes

System durch Modelle beschrieben werden k~nn, die zwar miteinander

logisch konsistent sind, sich aber in der Variablenzahl unterschei­

den. Es ist nicht von der Hand zu weisen, daß viele sozio5konomi.sche

Modelle dadurch I komp-l e)te-r 1 gemach-t werden, daß ihr·e Entwickler e.ine

Fülle von Zwischenvariablen einführen, mit der Folge, daß die Anzahl

der Gleichungen enorme Dimensionen annimmt.

Neben der leicht bestimmbaren tatsächlichen Anzahl der endogenen Va­

riablen eines Modells ist eine Maßeinheit für die Intensität der Ver­

knüpfung zwischen den endogenen Variablen zu entwickeln.

Als Maß der Komplexität eines Modells soll das Produkt aus der An­

zahl der Schleifen seiner Verknüpfungsmatrix mit der Zahl der vor­

handenen endogenen Modellvariablen dienen, d.h.

M d llk 1 't"t' [Anzahl der existie- Xo e Omp eXI a = .renden Schleifen
Anzahl der endoge- ]
nen Modellvariablen

Das in Abbildung 25.1 darges·te11t MA-Mode1l besitzt beispielsweise

die beiden Schleifen C,I. ,Y,C und C,Y,C. Seine Modellkomplexität be­
I

trägt daher M=2·3=6.

Der Begriff der Modellkomplexität ist a1 lein mode11- und nicht system-
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spezifisch aufzufassen. Gelingt es beispielsweise, von einem MA-Mo­

delI die Endgleichungen von Y, C und I. aufzustellen, dann besitzt
I

dieses Modell eine Komplexität von Null.

Der Wissenschaftstheoretiker HEMPEL verwendet, wie erwähnt, im Zusam­

menhang mit der Expl ikation des Begriffes einer wissenschaftlichen

Erklärung den Terminus 'Minimalgesetz ' . Unter der Zielsetzung, daB

die Redundanz eines Systems von Aussagen zur Beschreibung der Real j­

tät so niedrig wie mögl ich sein soll, ist es stets erstrebenswert,

solche Minimalgesetze zu ermitteln. Die Endgleichung einer endogenen

Variablen kann als ein derartiges Minimalgesetz aufgefaßt werden. 5

Der höchste Grad der Redundanzverminderung eines Modells, der durch

die Darstellung der Endgleichungen zum Ausdruck gebracht wird, führt

also zur Modellkomplexität Null. Der hier entwickelte Begriff der M~­

dellkomplexität erweist sich daher als ein Maß für die 'Formulierungs­

redundanz ' des Modells.

Betrachten wir unter diesem Gesichtspunkt noch einmal die verschie­

denen Versionen des MA-Modells, so besitzt die Endgleichungsversion

Y(t) =

l.(t)=
I

C(t}=

(<:t +<:t ß) Y(t - 1) - aß Y( t - 2 ) + I a ( t)

(<:ttaß)I.(t-l)- aßI.(t-2) + <:tßI (t-l)
I. 1 a

-(crtdß) C(t"'1}-äß-C(t-2) Tal- (t"-'l)
a

- aßI (t-2)
a

eine Modellkomplexität von

M=O'3=O

Der Ansatz

Y(t) = C(t) + I. (t) + I (t)
I a

I. (t) = ß[C(t}-C(t-l)]
I

C(t) = aY(t-l)

besitzt eine Komplexität von

M=2'3=6

während die Zustandsraumdarstellung des MA-Modells

5 Vg I. Se i te 46



360

[

y (d] [CI.+ßCI. 0
I.(t) = Cl.ß 0

I

c(t) CI. 0

- ß ] [Y (t -1 )] [1J
-ß li (t-1) + 0

o C(t-1) 0

das Komplexitätsmaß von

M=1'3=3

aufweist.

Die Berechnung der Anzahl der existierenden Schleifen eines Modells

5011 anhand eines Beispieles demonstriert werden.

Betrachten wir die durch die folgenden Funktionen zum Ausdruck kom­

menden VerknUpfung der endogenen Variablen eines dynamischen Modells

Y1 F[ Y2'Y3]
Y

2
F[Y

3
]

Y3 F(Y1'Y2]

dann lassen sich die hier zu Tage tretenden Verknüpfungen auch durch

das Schema

Gleichungsnr. Y
1 Y2 Y

3
0 -812 813

2 0 823

3 831 832 0

zum Ausdruck bringen, indem in jeder Zeile die abhängigen Variablen

durch einen leeren, die unabhängigen Variablen durch einen geschwärz­

ten Kreis gekennzeichnet sind.

In unserem Beispiel existiert eine Zweierschleife, weil Y3 die Glei­

chung fUr Y2 beeinflußt und Y2 wiederum die Gleichung von Y
3

. Man er­

hält, wie in dem nachfolgenden Schema graphisch demonstriert, eine

geschlossene Kette

Gleichungsnr. Y1 Y2 Y
3

0 ·12 813
2 ,--23
3 ·31 en--!
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Bezeichnen wir nunmehr die Koeffizienten einer beliebigen Verknüp­

fung5matrix mita .. , so wird anhand der graphischen Aufweisung einer
IJ .

Zweierschleife die allgemeine Behauptung evident: Ein Modell besitzt

so viele Zweierschleifen wie sich Eins werdende Koeffizientenpro­

dukte

mi t a,ßE{l ,2, ... ,n} und a:fß

seiner Verknüpfungsmatrix finden lassen.

Für das Auffinden einer Dreierschleife gilt eine analoge Betrachtung.

Eine Dreierschleife wird in -unserem Beispiel durch das folgenden Sche-

ma

Gleichungsnr.

2

3

beschrieben und durch die Koeffizientenfolge a,Z' aZ3 ' a3, charakte­

risiert. Analog zum Fall einer Dreierschleife können wir feststellen:

ein Modell besitzt so viele Dreierschleifen wie sich Eins werdende

Koeffi z'j enfenprodul<.fe--

a *a *a = 1aß ßy ya
mit a,ß,yf{l,Z, ... ,n} und a:J::ß:l=y

(25.4)

seiner Verknüpfungsmatrix finden lassen.

Aus den Beispielen einer Zwei~r- und Dreierschleife läBt sich die

Verallgemeinerung finden, daß es so viele über s Variablen führende

Schleifen gibt wie Koeffizientenprodukte

mit iv:fjv

und iv+1=jv

existieren, in welchen i"iZ, ... ,i s und j"jz,oo.,js Permutationen

der Elemente der Menge T bilden, welche eine Teilmenge von {1 ,Z, ... ,n}

ist. Eine n xn Verknüpfungsmatrix ist dann und nur dann unzerlegbar,

wenn sich für den Fall s=n zumindest ein Koeffizientenprodukt finden

läßt, welches die in (Z5.4) geforderten Beding~ngen erfUllt. 6

6 Zum Beweis [15Z,5.109]
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Da in diesem Fall sämtl iche endogenen Variablen von zumindest einer

geschlossenen Beeinflussungskette berührt werden. enthält das Modell

auf jeden Fall eine Totalschleife.

Damit.wird aber deutlich, daß ein Modell stets nur dann eine Tota1­

schleife besitzt, wenn seine Verknüpfungsmatrix unzerlegbar ist.

Besitzt ein Modell keine Totalschleife, cl.h. kann es in eine block­

triangulare Verknüpfungsmatrix mit unzerlegbaren DiagonaJblöcken um­

gewandelt werden, dann umfaßt jeder Diagonalblock zumindest eine

Schleife von der Dimension dieser unzerlegbaren Untermatrix, und auch

alle weiteren Schleifen niedrigen Grades hängen allein von der Kon­

stellation der Koeffizienten in diesen Untermatrizen ab.

Dies soll am Beispiel der Verknüpfungsmatrix (25.3) des dynamischen

Model15 (25.2) demonstriert werden. Ersetzt man die Einsen dieser Ma­

trix durch die Elemente a .. , so erhält man die Matrix
'J

a" a 13

a21 a22

a 32 a
31

a 43 a 44 a45

a 52 a 54 aSS

Nach dem Gesagten sind nur die Koeffizienten in den beiden Diagonal­

blöcken für die Schleifenbestimmung von Bedeutung. Es zeigt sich:

Im oberen Diagonalblock gibt es nur eine Dreierschleife

und im unteren die Zweierschleife
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Die Modellkomplexität beläuft sich daher auf M=2·S=10.

Zur Bestimmung der Schleifen in einer Verknüpfungsmatrix stehen be­

stimmte Algorithmen zur Verfügung. [49]

Im Rahmen des Simulationssystems IFICUS, welches zur Simulation so­

zioökonomischer dynamischer Modelle entwickelt wurde und große Ähn-

1ichkeiten mit dem Programmiersystem DYNAMO besitzt, ist ein Dienst­

programm KISS zur Erkennung von Kreisstrukturen entwickelt worden.

KISS (Kreise im Simulationssystem) erkennt und dokumentiert alle ver­

zögerten Kreisbeziehungen zwischen den endogenen Variablen eines Mo-
7 . 8

dells. KISS liefert folgende Informationen:

(1) Eine Statistik über die Anzahl der Kreise.

ERKANNT WURDEN 259 KREISE

(2) Eine Aufstellung der in einem Kreislauf berührten endogenen Va­

riablen:

1) AR IV EWTL QTWL WTL
TLR TLA

2) AR IV EWTL QTWL WTL
TLR TLA AK QLB LB
PER PR PM!BA PINQU DOMS
MB

3) DAR
4) PMABA PINQU REINP

Die unter 3) angegebene Variable kennzeichnet einen Fall, in dem ei­

ne endogene Variable allein von ihrer eigenen Verzögerung beeinflußt

wird. Im Sinne der von uns durchgeführten Definition darf man in die­

sem Fall nicht von einer Schleife reden.

(3) Eirie Statistik über die Häufigkeit, mit der eine endogene Variab­

le sowie bestimmte Kettenglieder mit dieser endogenen Variablen

in einem Kreis enthalten sind.

7 Das System ist wie DYNAMO nur auf rekursive dynamische Modelle aus­
gelegt. Unverzögerte Kreisbeziehungen, d.h. simultane Gleichungen
wären daher Model I ierungsfehler.

8 Beispiel entnommen [194,5.287]
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AR IST IN 140 IREIS(EN) ENTHALTEN
AR IV IN 140 KREIS(EN)
ASL IST IN 48 KREIS(EN) ENTHALTEN
ASL VR IN 48 KREIS(EN)
IV IST IN 140 KREIS(EN) ENTHALTEN
IV ETWL IN 79 KREIS(EN)
IV EWMA IN 61 KREIS(EN)
AR IV EWTL QTLW WTL
TLR TLA.

Die Stärke der Verknüpfung eines Modells kann auch durch eine weite­

re Maßzahl beschrieben werden, die in Analogie zu dem im Rahmen der

Input-Output-Analyse verwendeten Begriff eines Zlrkularit~tsgrades

dargestellt und als Rückführungsgrad bezeichnet werden 5011. Zur

Entwicklung dieses Begriffes gehen wir davon aus, daß es gelungen

ist, die blocktriangulare Strukturmatrix eines dynamischen Modells

zu entwickeln. Als Beispiel nehmen wir die auf Seite 333 dargestellte

Matrix. Denken wir uns in dieser Matrlx alle Einsen Ober der Haupt­

diagonalen gleich Null gesetzt, dann erhält man die folgende Matrix.

Xl X2 X3 X4 Xs X6 X7 Xe X9
X .

1

X
·····1·

2

X3

X4

Xs 1 1

X6 1

X7 1

Xe 1

X9 1 1

Diese Matrix beschreibt ein System, in dem sich die endogenen Vari­

ablen in rekursiver Weise beeinflussen. 9 Das Pfeildiagramm a zeigt

9 Vgl. zum rekursiven Aufbau eines Systems von Variablen Seite 316ff
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den sich ergebenden Zusammenhang. Im Gegensatz zum Pfeildiagramm b

des ursprünglichen Modells enthält es keinen Feedbackkreis, weil die

nach oben führenden Pfeile, im folgenden Rückführungen genannt, ab­

geschnitten sind.

Es liegt nahe davon auszugehen, daß in einem Modell mit wachsender

Anzahl der Rückführungen auch die Modellkomplexität zunimmt, wei I

X3

X4

Xs
X2

ß Xl

? X6

L::=::~':: 0 ......- ...

o
o

- ..0
a b c

Abb. 25.2 Pfeildiagramme eines multivariablen Modells

damit (tendenziell) auch die Zahl der vorhandenen Feedbackkreise

wächst. Die Zahl der Rückführungen ist jedoch kein präziser Begriff.

Zur Verdeutl ichung betrachten wir die Pfeildiagramme bund c in Ab~

bi ldung 25.2. Beide beschreiben dasselbe Modell bei unterschiedl ichen

Anordnungen der endogenen Variablen. Legt man nunmehr fest, daß die

nach oben führenden Richtungspfeile als Anzahl der Rückführungen an­

zusehen sind, so besitzt das Modell im Fall b fünf, im Falle c dage­

gen nur zwei Rückführungen. Ihre Anzahl hängt daher von der Anordnung

der Variablen ab. Wegen dieser Mehrdeutigkeiten wollen wi r einen prä­

ziseren Rückführungsbegriff einführen, der als die Minimalrückführung

eines Modells bezeichnet wird. Er resultiert aus folgender Uberlegung:
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in dem Pfei ldiagramm eines Modells wird eine Richtung als I rekursive

Richtung ' festgelegt. Auf der Grundlage dieser Festlegung wird die

Forderung erhoben, die Anordnung der Variablen zu finden, bei der

die Anzahl der in die nichtrekursive Richtung weisenden Pfeile mini­

miertwird ..Die unter dieser Bedingung aufweisbaren Rückführungen

sollen als die Minimalrückführungen eines Modells ~ezeichnet werden.

Unter diesen Umständen bildet auch jede Rückführung das Element zu­

mindest eines Feedbackkreises, 50 daß bei einer Reduzierung der Rück­

führungen stets auch die Zahl der wirkenden Feedbackkreise abnimmt.

Versucht man das beschriebene Extremierungsverfahren auf formaler

Ebene Bnhand der Verknüpfungsmatrix eines Modells vorzunehmen, ~o

lautet die entsprechende Vorschrift: Finde durch Zeilen- und Spal­

tenaustausch (Permutationen) die Verknüpfungsmatrix des ~odells mit

der Eigenschaft, daß die Summe der Elemente über der Hauptdiagonalen

minimiert wi rd.

Das Verfahren zur Ermittlung einer derartigen Matrix wird von HELM­

STÄDTER als Triangulation bezeichnet [SO]. Diese Namensgebung ist

irreführend, da man gewöhnl icherweise in der Mathematik darunter die

Gewinnung einer Dreiecksmatrix versteht. Im folgenden soll daher

spezi ellimHinblick au-f-die hierz-ur Dis-kuss ionstehend-e Frage von

derErmitt~ung einer rückführungsminimalen Verknüpfungsmatrix ge­

sprochen werden. Es stehen verschiedene Algorithmen zur Realisierung

rückführungsminimaler Verknüpfungsmatrizen zur Verfügung. [113]

Man kann sich fragen, welche Einsichten aus einer rückführungsmini­

malen Verknüpfungsmatrix gezogen werden können. Definiert man unter

Zugrundelegung einer rückführungsminimalen Verknüpfungsmatrix das

Verhältnis der rückführenden zur Gesamtzahl der Pfeile als Rückfüh­

rungsgrad, dann sinken mit wachsendem Rückführungsgrad die Chancen,

durch 'Kappen ' der Rückführu~gen ein in der Komplexit~t reduziertes,

aber dennoch empi risch akzeptables Modell zu erhalten. Die rückfüh­

rungsminimale Verknüpfungsmatrix gibt zudem darüber Auskunft, welche

Beziehungen für eine derartige Komplexitätsreduzierung überhaupt in

Frage kommen.
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Präzise ergibt sich bei Vorl iegen einer rückführungsminimalen Ver­

knüpfungsmatrix der Rückführungsgrad t aus 10

n n
t='Zx .. j 'Zx. ..

i>j 'J i ,j=l IJ

X.. beschreiben hierbei die Elemente der rückführungsminimalen Ma-
IJ

trix. Es stellt sich die Frage nach dem Rückführungsgrad des durch

die Pfeildiagramme b. und c in Abbildung 25.2 beschriebenen Modells.

Die Ermittlung der rückführungsminimalen Verknüpfungsmatrix soll

ohne Anführung eines streng formalen Verfahrens anhand dieses Mo­

dells demonstriert werden.

Wir erinnern uns, daß bereits ein Verfahren beschrieben wu~de, auf­

grund dessen die auf Seite 333 beschriebene Verknüpfungsmatrix des

Modells in ihre blocktriangulare Form überführt wurde. Zur Ermitt­

lung der rückführungsminimalen Matrix genügt es, isol iert im Rahmen

der einzelnen Diagonalblöcke, die Zahl der über der Hauptdiagonalen

1iegenden nicht Null werdenden Elemente zu minimieren. Zu diesem

Zweck betrachten wi r die auf Seite 338 angeführte blocktriangulare

Verknüpfungsmatrix des Modells.

In unserem Beispiel sind nur zwei Blöcke mit Einser-Elementen be­

setzt. Ein Austausch der Spalten und Zeilen von X4 und X
5

im ersten

Block zeigt, daß sich die Zahl der Einser-Elemente über der Haupt­

diagonalen nicht verändert. ·lm Falle des zweiten Blocks sind 4!=24

Permutationen möglich, unter denen die Anordnung Xl' X6 , X9, X7
rückführungsminimal ist.

Das Pfeildiagramm c in Abbildyng 25.2 repräsentiert daher den Fall

einer Minimalrückführung. Man erkennt, daß sich unter insgesamt zwölf

10 Der Begri~f des Rückführungsgrades ist nicht identisch mit dem
von HELMSTÄDTER eingeführten Begriff des Zirkularitätsgrades,
weil im Rahmen der statischen Input-Outputrechnung die x .. Wert­
größen repräsentieren, so daß aer Zirkularitätsgrad zuglk~ch den
quantitativen Einfluß der Variableneinflüsse berücksichtigt. Im
vorl iegenden Fall werden die Einflüsse gleichgewichtig behandelt,
weil bei nichtl inearen dynamischen Beziehungen eine Erfassung des
Beeinflussungsausmaßes durch eine Maßzahl kaum möglich sein dürfte.
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Einflußpfeilen zwei r~ckfUhrende Pfeile befinden, d.h. der RUckfUh­

rungsgrad des Systems beträgt 0,166.

Zusammenfassend zeigt Abbildung 25.3 die ursprüngl iche Verknüpfungs­

matrix des betrachteten Modells sowie die aus ihr abgeleitete rück­

führungsminimale Matrix.

X, X2 X
3

X4 X
5

X6 X
7

X8 X9

Xl ~ 1 1

X2 ~ 1

X
3 ~

X4 " 1

X5 1 1 ~
X6 1 ~
X7 1 ~ 1

X8
,

"-X9
1 1 ~

a

x X . X
5

X···· X, X····· X· X7 X3 4 2 6 9 8
X

3 ~
X4 ~

,
X5 1 1

'"X
2 1 ~

Xl 1 ~ 1

X6 1 ~
X9 1 1 '"X7 1 1 ~
X8

,
'"b

Abb. 25.3 Verknüpfungsmatrix eines primaren Modellansatzes (a) so­
wie die rückführungsminimale Verknüpfungsmatrix desselben
Modell s (b)



2.5.3. Subsystemabspaltung in dynamischen Modellen

Ein dynamisches Modell beschreibt stets nur einen Teilbereich der

Realität, d.h. ein bestimmtes Subsystem. Dieses Subsystem ist, wie

die Erfahrung zeigt, fast nie von dem restlichen System völlig iso­

I iert, sondern wird von ihm beeinflußt. Beeinflussungen des Restsy-

stems kommen in offenen Modellen durch die Wahl bestimmter Verläufe

der exogenen Variablen zum Ausdruck, während sie in geschlossenen

Modellen einfach vernachlässigt werden. In diesem Falle tut man so,

als ob es keine Außeneinflüsse gäbe.

Dieses Vorgehen kann, wie eine Untersuchung von SIMON und ANDO zeigt,

im Falle linearer geschlossener Systeme unter bestimmten Umständen

gerechtfertigt sein. [1791

Die Frage nach der Zulässigkeit einer solchen Subsystemanalyse soll

am Beispiel eines aus vier Variablen bestehenden Differenzengleichungs­

systems

y(t) = A· Y(t-1)

erörtert werden, welches durch

y (t) 0,20 0,50 : 0,05 0,00 Y, (0),
I

Y (-t-) o 30 -04-0 .I 010-0- ,,.
und Y(O)

- Y CO}
Y(t) 2 A -, , l' , = 2----------r---------

Y (t) 0,04 0, , 0 : 0,40 0,45 Y3 ( 0 )
3 I

Y4 (t) 0,13 0, OS: 0,50 0,30 Y4 (0)

beschrieben wird.

Betrachtet man die Koeffizienten von A.in den Nebendiagonalblöcken,

so kann m~n feststel len, daß sie im Vergleich zu den Koeffizienten

in den Hauptdiagonalblöcken relativ kleine numerische Werte besitzen

mit der Folge, daß offenbar zwischen den Variablengruppen Y, und Y2
sowie Y

3
und Y4 nur geringfügige Einwirkungen zum Tragen kommen.

Es I iegt die Frage nahe, ob die Subsysteme Y, und Y2 sowie Y
3

und Y4

nicht isoliert voneinander u'ntersucht werden können. Isoliert heißt

in diesem Fall, daß man die in den Nebendiagonalblöcken von A befind­

lichen Koeffizienten Null setzt, was durch die Beziehung
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Y(t) = A*Y(t-l) (25.6 )

O~2 O~5
I 0 0I
I

A* 0,3 o~ 4 : 0 0
mi t ----------~----------

0 0 I 0,4 0,45I
I

0 °
I

O~5 0,3I

zum Ausdruck kommt.

Die Beziehungen zwischen A* undA können durch

A = A* + e:C (25.7)

beschrieben werden~ wobei C als Verbindungsmatrix bezeichnet wird,

weil sie die Verbindung zwischen den beiden Subsystemen beschreibt.

Die Konstante E, die hier für eine später erfolgende Uber1egung ein­

geführt wird, soll den Wert 1 besitzen.

Sind die numerischen Werte der Elemente der Verbindungsmatrix (wie

im vor1 iegenden Fall) relativ niedrig im Vergleich zu den numerischen

Werten der Elemente in den Hauptdiagonalblöcken von A,' 'so kann man

die Matrix A als eine annähernd zerlegbare Matrix bezeichnen und ana­

log dazu das eine solche Matrix enthaltende Modell als ein annähernd

z:erl~gp<3res Modell ...
Ersetzt man in (25.5) die annähernd zerlegbare Matrix A durch die

zerlegbare ~atrix A* und definiert

A* = [:i ~~]
so können beide SubsystemeAf und A* isoliert untersucht werden, und

2
zwar anhand der Beziehungen

[Yl(t}] A* [Y1(H)]
Y2(t)

1 Y2(t-l)

und

[Y3(t)] = A* [Y3(Hl]
y 4 (t)

2 Y4(t-1) (25.8)
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Im folgenden wollen wir der Frage nachgehen, in welchem Umfang es be­

rechtigt ist, eine derartige isolierte Subsystemanalyse durchzufüh­

ren. Wir betrachten dazu nur das Beispiel für A~.

Definiert man die Nebendiagonalblöcke der Matrix A in allgemeiner

Form, d.h. durch

0,2 0,5 I a 13 a14I
I

0,3 0,4 I
I a23 a24

A I= ---------r-----------
a31 a32

I 0,4 0,45I
I
I 0,5 0,3a41 a42 I
I

so läßt sich aus dem Ansatz (25.5) auf analytischem Wege die Bezie­

hung

[

Y3{t-3)]

. Y
4

(t-3)

(25.9)

ableiten. In dieser Darstel lungsform sind die Variablen Y
3

und Y4 des

Subsystems allein in ihrer ·Abh~ngigkeit von den verzögerten Variablen

des eLgenenSubsystems_besch.r-ieben. .Dennoch ..erf-aßt.di·eseDarstellung

die Y
3

und Y4 berUhrenden Interdependenzen zwischen den beiden Sub­

systemen. Die Beziehung (25.9) beschreibt daher den tatsächlichen

Verlauf "der Variablen Y
3

und Y4 in Abhängigkeit von ihren verzöger­

ten Ausprägungen, während (25.8) die durch die Annahme einer isolier­

ten Subsystemanalyse vereinfachte Form darstellt. Die Frage nach der

Zulässigkeit e~ner isolierten Subsystemanalyse kann daher auf die Fra­

ge reduziert werden, ob im Hinbiick auf den Zeitverlauf von Y
3

und Y4
(25.8) als eine hinreichende Approximation der Beziehung (25.9) ak­

zeptiert werden kann.

Um dieser Frage nachzugehen, soll (25.9) stärker konkretisierr wer­

den. Durch geeignete Umformungen erhält man:
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und

mi t den folgenden Abkürzungen:

a = 0,5a41 + 0,4a 42 - a
32

g b = g + 0,5

c = a13a31 + a42 aZ3 - 0,49 d = 0,3

e = a14 a41 + a42 a24 - 0,45g 0,4 a31- 0, 3 a 32
f

0,2 a41 +0, 3 a42 a31
9 = 0,Za31+0,3a3Z

a31 i =

j 0,5 a31 + 0,4a32 - ia42 0,4
a41

k =
1 = a31 a13 - a3Za 23 - 0,5 i 0,45m = i +
n =.a 14a

31 + a32a24 - 0,3 i
0,4a41-0,3a42

P =
a41

Für die Matrizen A~l), AJ2) und A~3) ergibt sich:

Ai! )" {<:+kl ':+fl]
(l-kp)

A~2) =

°3 .(~+ u-mp)
a41 .

(e-fd)

[(a 41 a24-o,09)atl -np]"

[ (a Z4a31- 0, 13 5)_a_ - feil
a 31

Aus (25.6) und (25.7) erkennt man, daß zwischen den Elementen der Ne­

bendiagonalblöcke von A und C die Beziehung

a. . sc ..
I J I J

gi 1t.
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Ersetzt man nun in den Matrizen A~l), A
2
(2), A

2
(3) die a .. durch E:C ..

L I J I J
und führt den Grenzübergang E:+Q mit A+A* durch, so folgt EC ..+0.

IJ
Daraus folgt:

b+O,5, d+O,3, k+O,4, m+O,45

Die übrigen Ausdrücke a, c, e, f, i, 1, j, n, p, g verschwinden. Für

die Matrizen All), A~2) und A~3) ergeben sich die Ubergänge

A(2 ) f ~. ~] A(3) ______ [~ ~]2 ------ 2

A(1) [km] = [0,4 0,45] = A*
2 ------ b d 0,5 '0,3 2

d.h. es 1iegt das folgende isolierte Submodell vor:

[Y3(tl]= [0," 0,45] [Y3(t-1)]
Y4(t)· 0,5 0,3 Y4 (t-1)

Man kann daher ·feststellen, daß die Beziehung (25.9) in (25.8) über­

geht, wenn die Elemente der Verbindungsmatrix gegen Nul ~ streben.

In welchem Maß jedoch diese Vereinfachung (25.8) eine akzeptable Ap-
- --,

proximation des 'wahren' Modells (25.9) darstellt, hängt von den nu-

merischen Werten der Elemente der Verbindungsmatrix C ab.

SIMON und ANDO haben das hier beispielhaft dargestellte Problem in

systematischer Weise untersucht D79J. Unter Verallgemeinerung der bis­

her gebrauchten Matrizenschreibweise soll A* eine blockdiagonale Ma-

A*
1

A* 0
2

A*
A~

0 I

.
A*

n

trix sein, die ein vereinfachendes A*-Modell beschreibt, welches aus



374

einem A-Modell mit einer annähernd zerlegbaren Matrix A gewonnen wur­

de. Die Verknüpfung zwischen beiden Matrizen kann in Ubereinstimmung

mit dem angeführten Beispiel durch (25.7) beschrieben werden.

SIMON und ANDO haben nunmehr nachgewiesen, daß sich unter Zugrunde­

legung der Beziehung (25.7) bei hinreichend kleinem E stets ein Zeit­

rau~ von der Periode 0 bis zur Periode T angeben läßt, in dem der

Zeitverlauf der Variablen des vereinfachten A*-Model ls annähernd mit

dem Zeitverlauf übereinstimmt, den die entsprechenden Variablen des

A-Modells beschreiben. Diese Feststel Jung läßt sichanhand des erör­

terten Beispiels illustrieren.

Als tolerierbare Abweichung des Unterschiedes zwischen den Variablen­

werten des A2 und A~-Modells wurd~ zehn Prozent angenommen. Für den

Spaltenvektor der Anfangswerte Y(0)=[Y 1(0) 'Y2(0) ,Y
3

(O) ,Y4 (0)] wur­

den die Werte Y(O)=[lOO,200,300,400] gewählt.

Abbildung 25.4 zeigt den Zusammenhang zwischen verschiedenen Werten

von s und dem Zeitbereich, in welchem die als zulässig angesehene Ab-

1

0,5 --tl

0,4 ----4 2

0,3 3
0,25 4
0,2 6
0,15 9
0,1 21
0,05 --.. ..

5 10 15 20 25 PERIODE
25.4 Abhängigkeit zwischen dem Koeffizientenwert s der Verbindungs­

matrix sC und dem Zeitraum, in welchem die Verlaufsabweichung zwi­
schen den Variablen des AZ- und Ai-Modells unter zehn Prozent liegt.
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weichung von nicht mehr als zehn Prozent vorlag.

Das Theorem von SIMON und ANDO erschüttert die gelegentlich vorgetra­

gene Aufassung, isol ierte Subsystemanalysen seien im Sinne einer ganz­

heitl ichen Systemerfassung generell zu verwerfen. Seine praktische

Anwendbarkeit ist. jedoc~ begrenzt, denn es kann nicht als Kriterium

fungieren, ob in einem gegebenen Fal I eine is01 ierte Subsystemanaly­

se angemessen ist oder nicht. Die Entscheidung über den Erfolg einer

derartigen Untersuchung hängt von der Struktur der Verbindungsmatrix

8C ab, die im Einzelfall aber nicht bekannt ist. Selbst wenn EC be­

kannt wäre, würde das Theorem keinen Hinweis liefern, ob eine be­

stimmte Subsystemanalyse akzeptabel ist.

SIMON und ANDOs Theorem kann daher nur als Ermunterung zur Entwick­

lung von isolierten Submodellen gedeutet werden: es ist eine Chance

gegeben, akzeptable Teilbereichsmodelle zu entwickeln; ob dies im

Einzelfall auch tatsächlich gelungen ist, zeigt allerdings erst die

empirische Uberprüfung des entwickelten Ansatzes.

2.6 . Determin istische--und stochastische-Modell·formen

Der fund~mentale Unterschied zwischen deterministischen und stocha­

stischen Model len erklärt sich aus den grundsätzlich unvereinbaren

'Weltsichten', die diesen Modellen zugrunde liegen. Als Folge davon

besitzen auch die Implikationen beider Modellformen einen grundle­

gend andersartigen Charakter: den Implikationen deterministischer Mo­

delle in Form sicherer Behauptungen stehen die Wahrscheinlichkeitsbe­

hauptungen stochastischer Modell implikationen gegenüber. Der Unter­

schied zwischen beiden Modellformen wirkt sich bis auf das anzuwen­

dende mathematische Instrumentarium zur Aufdeckung dieser Implikatio­

nen aus: über die Beachtung der Vorschriften der Algebra hinausgehend,

verlangt die Implikationenaufdeckung stochastischer Modelle die Ein­

haltung bestimmter statistischer Grundgesetze, die in den sogenann­

ten Kolmogoroffschen Axiomen ihren Niederschlag gefunden haben.

Weil im Wissenschaftsbetrieb die Aufdeckung von Modell impl ikationen
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fast aussch1 ieß1 ich anhand von deterministischen Modellen erfolgt,

wurden die bisherigen Betrachtungen stillschweigend auf die Ermitt­

lung deterministischer Modellimplikationen eingeschränkt, obwohl im

Rahmen der diskutierten Modelltypen auch stochastische Varianten und

daher auch die Aufdeckung stochastischer Imp1 ikationen denkbar wäre.

Als erstes wird anhand von zwei Beispielen die Ermittlung des Zeit­

verlaufes des Erwartungswertes und der Standardabweichung der endo­

genen Variablen eines linearen stochastischen St5rgr6ßenmodells de­

mOhstriert. Dem schl ießt sich eine Er6r~erung Ober die Bestimmung

derselben Impl ikationen im Rahmen einer pseudoinduktiven Modeller­

schließung an. Neben einer kurzen Bemerkung zum praktischen Wert so­

genannter varianzreduzierender Verfahren im Rahmen einer pseudoin­

duktiven Varianzermittlung werden abschließend die Beziehungen zwi­

schen subjektiven Entscheidermode11en und stochastischen Modellen

dargestell t.

2.6.1. Deterministische Modellformen

Deterministische Modelle repräsentieren sichere Wenn-Dann-Aussagen

über die Real ität in Form empirisch interpretierter Differenzenglei­

chungen und algebraischer Gleichungen. Sind in einem deterministi­

schen Modell die vorherbestimmten Variablen numerisch spezifiziert,

d.h. die Wenn-Komponenten durch singuläre Tatsachenbehauptungen belegt,

dann liefern die Dann-Komponenten in Form der endogenen Variablenver­

läufe dem Modellanwender zumeist unbekannte Ineuel Tatsachenbehaup­

tungen. Diese'neuen ' Tatsachenbehauptungen, die vom zeitl lchen Stand-
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punkt des Modellanwenders gesehen meistens Prognosen sind, stellen

lmplikationen des deterministischen Modells dar und sind mit Hilfe

bestimmter deduktiver und pseudoinduktiver Methoden zu ermitteln.

Diese Methoden wurden in den verschiedenen Abschnitten des zweiten

Kapitels erörtert, so daß sie dem Leser bereits bekannt sein dürften.

2.6.2. Stochastische Modellformen

A. Begriffliche Klärung und empirische Interpretation

·Stochastische dynamische MZÄ-Modelle werden durch stochastische Dif­

ferenzengleichungen beschrieben, die in ihrer äußeren Darstel lungs­

form große Ähnlichkeit mit deterministischen Differenzengleichungen

besitzen.
r

Der stochastische Charakter der in die Gleichungen eingehenden sto­

chastischen Variablen kommt in der formalen Darstel lung allein da­

durch zum Ausdruck, daß die Wahrscheinlichkeitsverteilungen der sto­

chastischen exogenen Variablen zusätzl ich anzugeben sind. Als Bei­

·spiel sei die stochastische Investitionshypothese angeführt'

s(t) ist hierbei eine stochastische Variable, die einer Normalvertei­

lung mit dem Erwartungswert v=O und der Standardabweichung a=konstant

angehört. Man erkennt, daß die endogene Variable I. ebenfalls eine
I

stochastische Variable ist. Die endogenen Variablen eines stochasti-

schen dynamischen Modells werden daher durch ihre Wahrscheinl ich~eits­

verteilung charakterisiert.

Wie bei den deterministischen Modellen die wichtigs~e Implikation die

Ermittlung des Zeitverlaufes der endogenen Variablen ist, so ist bei

stochastischen Modellen die Bestimmung des zeitlichen Verlaufes der

Wahrscheinlichkeitsverteilung ihrer endogenen Variablen die zentrale

Aufgabe der Impl ikationenaufdeckung.

In den meisten Fällen begnügt man sich mit der Bestimmung des zeitli­

chen Verlaufes des Erwartungswertes und der Standardabweichung der

·1 Vgl. Seite 74
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Wahrscheinlichkeitsverteilung der endogenen Variablen, zumal diese

Parameter einige Verteilungstypen erschöpfend charakterisieren.

Der Erwartungswert spielt bei der Analyse stochastischer Modelle ei-

ne entscheidende Rolle. Betrachtungen über Sensitivi~äten, Multipli­

katoren und dynamische Verhaltensweisen werden oft unter Verwendung

des Erwartungswertes als endogener Variable analog zu deterministi­

schen Modellen vorgenommen.

Es läge nahe, von der Annahme auszugehen, daß die Werte der Verläufe

der endogenen Variablen eines deterministischen Modells mit den Ver­

läufen der Erwartungswerte des entsprechenden stochastischen Modells

übereinstimmen. Träfe diese Annahme zu, so könnte man stets die Un­

tersuchung der Erwartungswerte eines stochastischen Modells an sei­

nem wesentlich einfacher zu handhabenden deterministischen Äquivalent

vornehmen. Wie HOWERY und KELEJIAN jedoch gezeigt haben, führt die

Determinisierung nichtlinearer Modelle nicht zwingend zu Verläufen

der endogenen Variablen, di.e dem Erwartungswert entsprechen (94].

Oie generelle Unterstellung, die Verläufe der endogenen Variablen

eines nichtl inearen determinisierten Modells könnten als die Erwar­

tungswerte des stochastischen Modells angesehen werden, ist deshalb

falsch.

Der Ubergang zu einem determinisierten Modell stellt zudem auch ~ine

Informationsbeschränkung dar, weil prinzipiell ermittelbare Informa­

tionen über andere Parameter der Wahrscheinlichkeitsverteilung wie

zum Beispiel über den Verlauf der Standardabweichung auf Jeden Fall

verloren gehen.

B. Deduktive Analyse stochastischer Modelle

Ein deterministisches lineares Differenzengleichungssystem wird da­

durch stochastisiert, daß man von der Unterstellung ausgeht, zumin­

dest einer der Koeffizienten oder eine exogene Variable sei nur durch

eine Wahrscheinlichkeitsverteilung beschreibbar. Im Rahmen dieses Mo­

delltyps verwendet man, wie erwähnt, in den Wirtschafts- und Sozial­

wissenschaften fast ausschl ießlich sogenannte Störgrößenmodelle. 2

Es wird dabei unterstellt, daß die sogenannte Störgröße oder Schock-

2 Vgl. Seite 40



379

variable durch eine Normalvertei lung mit dem Mittelwert Null und ei­

ner unveränderten Standardabweichung beschrieben werden kann.

Als Beispiel wurde die Hypothese der induzierten Investitionen I. des
I

MA-Mode 11 s

I. (t) = ß[C(t)-C(t-l)] + e:(t)
I .

angeführt, in der e:(t) die Störgröße repräsentiert. Man muß sich

darOber klar s~in, daß in Fällen, in denen (wie im MA-Modell) alle

endogenen Variablen eine Totalschleife bilden, durch e: auch alle en­

dogenen Variablen des Systems stochastisch verseucht werden, d.h.

gen~rell nur Informationen Ober ihre Wahrscheinl ichkeitsverteilungen

zur Verfügung stehen.

Nehmen wir vereinfachend an, daß die Konsumfunktion C(t) determini­

stischer Natur ist, d.h.

C(t) = aY(t-l)

so gelangt man unter Berücksichtigung der Definitionsgleichung

y(t) = C(t) + I. (t} + I (t)
I a

und unter analoger Anwendung der Endgleichungsbestimmung im determi­

nistischen Fal1 3 zu der stochastischen Endgleichung von Y

Y(t) = (a+a ß) Y( t - 1) - aß Y( t - 2) + I ( t ) + e:( t}
a

(26. 1)

Unterstellen wir jedoch eine ebenfalls stochastische Konsumfunktion

(26.2)

so erhalten wir, wie man sich leicht Oberzeugen kann, die stochasti­

sche Endgleichung

Y(t) = (a+aß)Y(t-l) - aßY(t-2) + I (t) + n(t)
a

mit n(t) = (l+ßhl(t) - ß~.t{t-1) + e:(t}

Generell läßt sich in Analogie zu den Endgleichungsbestimmungen de­

terministischer Systeme feststellen, daß es im Falle eines linearen

Störgrößenmodel ls mit konstanten Koeffizienten immer dann mögl ich

ist, eine stochastische Endgleichung zu ermitteln, wenn die Determi­

nante der Operatormatrix des entsprechenden determinisierten Modells

3 Vgl. Seite 36f.
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ungleich Null ist. 4

In den stochastischen Endgleichungen eines linearen Systems treten

dabei dieStörgrößen E 1 ,E 2 , ... ,E n der Hypothesengleichungen als Li­

nearkombinationen ihrer verzögerten und unverzögerten Werte auf.

Die Methoden zur Analyse stochastischer linearer Differenzenglei­

chungen der beschriebenen Art gehen auf Arbeiten von YUlE, WOlD und

SlUTSKV zu rück. [222], [224], [182]

Sie sollen im folgenden kurz erörtert werden. Gehen wir davon aus,

daß es gelungen ist, durch entsprechende Umformung~n eine stochasti­

sche Endgleichung der allgemeinen Form

aufzustellen. Nach dem Postulat der ungestörten Uberlagerung setzt sich

der Zeitverlauf von Y(t) aus zwei Komponenten zusammen: der determi­

nistischen Komponente D(t), welche durch den Eingang E(t} und die An­

fangswerte bewirkt wird und der stochastischen Komponente S(t), wel­

che auf e(t) zurückzuführen ist, d.h. es gi lt:

V(t) = D(t) + S(t}

Die stochastische Komponente S(t) kann in ihr sequentielles Äquiva­

lent umgeformt werden, d.h. in die Form5

(26.5)

Hierbei stellt g(T) die Gewichtsfunktion der Endgleichung dar.

Die Gewinnung einer Aussage über die Dichtefunktion von V(t) ist grund­

sätzlich immer dann mögl ich, wenn es anhand der statistischen Eigen­

schaften von € gel ingt, die Dichtefunktion von S(t) zu ermitteln.

Um die Abhängigkeit zwischen der stochastischen Variablen € und S(t)

in (26.5) aufzuweisen, müssen wir auf einige bekannte Sätze der Wahr­

scheinlichkeitstheorie zurückgreifen. 6

5, Der Erwartungswert einer Summe von v unabhängigen Zufallsvariab­

len, deren Gl ieder mit einem konstanten Vielfachen multipliziert

sind, berechnet sich nach:

4 Siehe im einzelnen Seite 245
5 Vgl. Seite 295f.
6 Zum Beweis dieser Sätze siehe [216,S.74,97 und 141]
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S2 Die Varianz eIner Zufallsvariablen, die aus der Summe von v unab­

hängigen Zufallsvariablen gebildet wird, entspricht der Summe der

Varianzen der sie bildenden Zufallsvariablen, d.h.

v v
var.~ €(i) =.~ var €(i)

1=1 1=1

S3 Die Varianz eines konstanten Vielfachen einer Zufallsvariablen ent­

spricht der mit dem Quadrat dieser Konstanten multipl izierten Va­

rianz der Zufallsvariablen, d.h.

var (ad
2

= a var E:

S4 Wenn die unabhängigen Zufallsv.ariablen dl),E:(2), ... ,dv) einer

Normalverteilung entstammen, dann ist auch die lineare Kombination

dieser Zufallsvariablen normalverteilt.

Nach Satz S1 ist aufgrund der Beziehung (26.5) auch der Erwartungs­

wert von S(t) Null, da· voraussetzungsgemäß der Erwartungswert von €

Nu 11 se i n so 11.

Nach der Bestimmung des Erwartungswertes wenden wir uns der Ermitt­

lung der Varianz von S(t) zu. Da die Störgrößen e(t-,) unabhängig

voneinander sein 50'11 en, kann man den Satz- Si- aufd-i-e Bez-j ehung

(26.5) anwenden, d.h.

00

var S(t) = ~ var g(,)e(t-,)
'[=0

Da die Varianz von €(t-,) fUr ,=0,1,2, ... konstant sein soll, d.h.

var €(t-,)=var €, gilt gemäß Satz S3

00 2
var S(t) = var e~ g (-r)

T=O
(26.6)

Die Varianz von S(t) bestimmt sich damit aus dem Produkt der Varianz

von € und einer unendl ichen Summe. Die Beurteilung, unter welchen Be­

dingungen var S(t) einen endlichen Wert besitzt und damit eine sto­

chastische Stabil ität vorl iegt, läuft damit auf die Frage hinaus, un­

ter welchen Bedingungen die unendliche Summe
00 2
~ 9 (-r) (26. 7)

T=O
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einen endl ichen Grenzwert besitzt. Die Gewichtsfunktion g(1) eines

1inearen Systems läßt sich, wie wir gesehen haben, durch die Funk­
7tionslösung

beschreiben. Der Ausdruck g2(1") wird durch

2 n n
g (1") = ~ ~ b.b.(A.A.)t

i=l j=l I J I J

dargestellt .. Falls sämtl iche Wurzeln der Funktionslösung IA.I<l, dann
I

hat die unendl iche Summe

~ 2 00 n n
~ g (1) = L ~ L b.b.(A.A.)1"

t=O 1"=0 i=1 j=1 I J 1 J

einen ehdl ichen Grenzwert. Denn für jedes Glied b.b.(A.A.)1" in (26.9)
I J I J

gilt in diesem Fall IAiA j 1<1. Eine geometrische Reihe besitzt bekann-

termaßen den Summenwert

o 1 2 3 1a + a + a + a + ...+ a 1 1"+1-a

'-a (26.10)

~

~ b.b.(A.A.)1"
1=0 1 J I j

Daher berechnet sich die Summe eines Gliedes b.b.(A.A.) aus (26.9)
I J 1 J

mi t a=A. A.
.1 J l ...tA..X.yT+J

b.b.[(A.A.)O+(A.A.) '+ ... +(A.L)1"] "A\ b.b.
IJ IJ IJ IJ - •. IJ

I J

für 1 +~ führt dies für Ial <1 zu dem Grenzwert

1
1-A A. b.b.• • I j

1 J

Da diese Beziehung für jeden Ausdruck in (26.9) gilt, hat auch (26.9)

einen endl ichen Grenzwert. Die For?erung, daß im Falle stochastischer

Stabil ität die Absolutwerte sämtlicher Wurzeln kleiner als Eins sein

müssen, ist nicht nur hinreichend, sondern auch notwendig. Denn fin­

det sich nur eine Wurzel A. mit IA. 1>1, dann besitzt der Ausdrucks s
b b (A A )1 keinen Grenzwert, womit auch die unendliche Summe (26.9)s s s s
keinen Grenzwert besitzt. Die Folge ist, daß ein lineares Störgrös-

senmodell • dessen deterministisches Äquivalent ein stabi les Verhal-

7 Vgl. Seite 204
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ten aufweist, stets dann auch stochastische Stabilität besitzt.

Um die stochastische Stabilität eines derartigen Modells zu beurtei­

len, kann man sich daher auf die Analyse seines deterministischen

Äquivalentes beschränken. Will man allerdings neben der Beurteilung

der stochastischen Stabil ität auch die Höhe der Varianz ermitteln,

so ist wegen (26.6) die Summe (26.]) zu berechnen. Ist E: normalver­

teilt, so ist S(t) wegen des Satzes S4 ebenfalls normalverteilt. Da

eine Normalvertei lung durch ihren Erwartungswert und ihre Standard­

abweichung vollständig beschrieben werden kann, ist die Wahrschein­

lichkeitsverteilung von S(t) damit eindeutig gekennzeichnet.

Dieser Fall soll an hand von zwei Beispielen demonstriert werden. Wir

wenden uns dabei nicht direkt einer stochastisierten Version des uns

schon bekannten MA-Modells zu, sondern werden uns zuvor mit dem noch

einfacheren Fall eines Modells beschäftigen, welches durch eine sto­

chastische Differenzengleichung ersten Grades beschrieben wird.

a) Analyse eines stochastischen Modells der Lager- und Bestellpolitik

Im folgenden Modell wird die Lager- und Bestellpol itik eines Betrie­

bes beschrieben. Der stochastische Charakter des Modells resultiert

aus der Tatsache; daß es ei-ne e-xogen-e Vari-able, die Absatzmenge, ent­

h~lt, von welcher allein die Dichtefunktion bekannt ist. Es werden

folgende Größen verwendet: 8

L (t)

L
p(t)
p

R(t)

A( t}

N(t)

N

e:( t)
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Die Produktionsmenge in der Periode t bestimmt sich aus der durch­

schnittl ichen Produktionsmenge P und einer Komponente R(t), die die

Abweichung zwischen dem angestrebten und dem real iS'ierten Lagerbe­

stand in der Vorperiode berücksichtigt.

p(t) = P + R(t)

Diese Komponente wird als ein konstantes Vielfaches a der Abweichung

zwischen angestrebtem und realisiertem Lagerbestand der Vorperiode

A(t-l) gewählt, d.h.

R( t) = aA (t -1)

Die Abweichung A(t) bestimmt sich aus der Differenz des realisierten

La.gerbestandes L(t) mit dem angestrebten Besta'nd L, d.h.

A(t) = L - L(t)

Unter Berücksichtigung der Definitionsgleichung des Lagerbestandes

L(t) = L(t-l) + p(t) - dt) - N

folgt als Endgleichung für p(t) und A(t)

p (t) = (1 -:a )P( t -1) + aN + ad t - 1)

A{t}- = (1 -a)A (t -1) - P+e-(t) + N

Aus den Endgleichungen für p(t) und A(t) erkennt man, daß p(t) und

A(t) sich stets dann durch stochastische Stabilität auszeichnen, wenn

11-a\<1. Der Verlauf des Erwartungswertes der endogenen Variablen p(t),

d.h. D(t), ergibt sich aus der Funktionslösung des entsprechenden de­

terministischen Äquivalentes und ist

Die Gewichtsfunktion g(T) wird durch

beschrieben. Damit wird

Mit der Summenformel (26.10) gi lt
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t 2
~ g (.r) =

"[=0

1- ( 1-a ) 2 ( t+ 1)
2

1- ( l-a)

und damit bestimmt sich nach (26.6) der zeitliche Verlauf der Varianz

durch

var p(t)
1_(1_a)2(t+l)
-"""'-----'---=2- va r (ad

1- (r-a)
(26.11)

Der die stochastische Stabil ität kennzeichnende Grenzwert der Varianz

P ergibt sich, wenn man t in (26.11) gegen unendl ich laufen läßt undg
wi rd

var P
9

1= --'="2 var (ad
2a-ci

2
a

1 a
2 va r E: = 2"';a va r E:

2a-a

Da a ein deterministischer Parameter ist, der zudem eine Kontrollva­

riable darstellt, kann es von Interesse sein, welche Sensitivität

die Varianzen der endogenen Variablen bezüglich der Änderung von a

besitzen.

VAR
VAR P

8
g

VAR A
g

7

6

5

4

3

2

1

0,4 0.8 1.2 1.6 2.0

Abb. 26.1 Die Varianz der produzierten Menge p(t) und der Lagerbe­
standsabweichung A(t) in Abhängigkeit von dem Faktor a
unter der Annahme var <:=1 und t-+ 00
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Im Falle stochastischer Modelle erweitert sich damit der Bereich der

Untersuchungsmögl ichkeit, indem man die Empfindl ichkeit der Varian­

zen bestimmter endogener Variablen im Hinblick auf bestimmte kriti­

sche Parameter untersuchen kann.

b) An'alyse eines stochastischen MA-Modells

Zur Analyse eines linearen stochastischen MA-Modells gehen wir von

der uns bereits bekannten stochastischen Endgleichung

Y(t) = bY(t~l) - cY(t-2) + I (t) + E(t)a
mit b a + aß

und c = aß

aus. Diese besitzt die Gewichtsfunktion

. "[ "[

g(-r) = b,A, + bZ,AZ

womit sich g2("[) durch

g2("[) = b~A~"[ + b~A;"[ + Zb
1
b

2
(A

1
A

2
)"[

(26.12)

(26.13)

(26.14.)

bestimmt. Die Summen dieser drei Komponenten bestimmen sich für

jA, ,A21<' nach der Summenformel (26.10), d.h.

t
bZ ~ X'2"[

1 "[=0 1

Mit (26.6) ermittelt sich der Zeitpfad der Varianz var Y(t) aus

[

(1_A 2 (t+l))b 2 (1_A2(t+l))b2 .(l-(A A )t.+1)2b b J
var Y(t) 1 1 2 2 1 Z 1 2va r € 2 + 2 +

l-A, '-A 2 1-A 1A2

(26.15)
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Gemäß (21.75) sind die Koeffizienten der Gewichtsfunktion (26.14)

bei ungleichen Wurzeln

Mit

b ~
Al = - + ..j~-c2 -4 und

b jb2 I

A =-- -....--c
2 2 't

(26.16)

folgt

und

b r;;r'
(I-VT- d

j 2 '
2 E_- c4 .

(26.17)

Setzt man die Parameter b1 und b2 in Gleichung (26.15) ein, 50 erhält

man

var y(t)

(26.18)

Mit der Reduzierung der Koeffizienten bund c auf die strukturellen

Parameter ~ und ß des MA-Model 15 gemäß (26.13) ergibt sich schl ieß­

1ich der gewünschte Ausdruck, der die zeitliche Entwicklung der Va­

rianz von Y(t) in Abhängigkeit von den Ausprägungen des Multipl ika­

tors ~ und des Akzelerators S beschreibt, d.h.
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var y(t) = var E:

[1-(~ +)(n+'4B)
2

_nB)2(t+1)][ n+
2
nB +j(n+~B)2 -nB]2

[1- ((et+
2
et B) +J (et+T1 B) 2 - etB; 2] [(et+etB) 2- 4etB ]

(26.19)

Dieser volumin6se Formelausdruck zeigt, welche engen Grenzen einer

deduktiven Untersuchung stochastisc~ linearer Systeme ~esetzt sind.

Schon in etwas weniger einfachen I inearen Systemen wird eine Analyse

dieser Art äußerst aufwendig. In diesen Fällen wird man.sich in der

Regel mit stochastischen Simulationen begnügen.

Läßt man den Zeitindex t in Gleichung (26.19) gegen unendlich stre­

ben, so erhält man die Varianz von Y(t) bei Vorl iegen eines Gleich­

gewichtes. Diese wird durch

var Y= var l+etß
E 2 22 2 3 3 2l+etß-et -2et ß-2et ß +et B+2et ß

(26 :20)

beschrieben.

Gleichung (26.20) erm6glicht die Aufstellung eines H6henliniendia­

grammes der Varianzmultipl ikatoren in Abhängigkeit von et und ß. Als

Varianzmultipl ikator wird dabei der in (26.20) angegebene Faktor be­

zeichnet, dessen Multipl ikation mit var E die Gleichgewichtsvarianz

var Y ergibt. Man erkennt, daß mit wachsendem a die Varianz var Y

stärker zunimmt als mit wachsendem ß. Es zeigt sich, daß im Bereich

der Grenzl inie zum instabilen Bereich et=4ß(1+ß)2 die Varianzmultipl i­

katoren sehr empfindl ich auf Parameteränderungen reagieren.

Die Ermittlung der einzelnen Koordinatenwerte für var Y in Abhängig­

keit von et und ß hätte im Falle einer pseudoinduktiven Analyse, d.h.



der Durchführung von stochastischen Simulationen, einen beträchtl j­

chen Rechenaufwa~d zur Folge gehabt.

2,0LO

M=lOOOOO
/ ...___M=500

~~~:=~~_~ M=lOO

Cl(

0,0
0,0

0,5

Abb. 26.2 Höhenlinienverlauf der Varianzmultipl ikatoren der Varia­
blen Y eines MA-Modells in Abhängigkeit von a und ß

~- ~. -~ --

Neben dem erörterten Verfahren zur Analyse linearer Störgrößenmodel-

le gibt es eine Reihe von Einzelformen stochastischer Modelltypen, für

welche eine Ermittlung des zeitl ichen Verlaufs der Dichtefunktion

der endogenen Variablen mögl ich ist. Eine generelle Theorie existiert

jedoch nicht. In den letzten Jahren ist ein Verfahren entwickelt wor­

den, das in beschränktem Umfang ein Urteil über die stochastische

Stabil ität nichtlinearer Modelle zuläßt. Dieses auf BUCY und KUSHNER

zurückgehende Verfahren zur Beurteilung der stochastischen Stabil i­

tät nichtl inearer stochastischer ~ifferenzengleichungenberuht auf

einer Ausdehnung der deterministischen Stabil itätstheorie vonLJAPUNOW

auf stochastische Fälle. [27], [121]

Auch in diesem Fall ergeben sich aber dieselben Schwierigkeiten bei

der Wahl einer geeigneten LJAPUNOW-Funktion, die schon im determini­

stischen Fall geschildert wurden. 9 Sei der Analyse ökonomischer Zu­

9 Vgl. Sei te 265
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sammenhänge ist dieses Verfahren der stochastischen Stabilitätsanaly­

se von TURNOVSKY zur Untersuchung von Marktgleichgewichten verwendet

worden. [213]10

C. Pseudoinduktive Analyse stochastischer Modelle

a) Grundlagen der Parameterschätzung stochastischer Modellimplikationen

Mangels geeigneter deduktiver mathematischer Verfahren zur Analyse

stochastischer Modelle bedient man sich heute vorwiegend einer Unter­

su·chungsmethode, die wir bereits im Einführungsteil als pseudoindu·k­

tive Modellerschl ießung bezeichnet habe~.11

Die Impl ikationen eines stochastischen Modells werden hierbei durch

Simulationsexperimente am Modell ermittelt. Vorab stellt sich die

Frage, was man unter der Simulation eines stochastischen dynamischen

Modells zu verstehen hat.

Betrachten wir die stochastische Endgleichung

Y(t) = 1,89Y(t-1) - O,99Y(t-2) + 4.103 + s{t}

Y(O) = 60.109 und Y(1) = 65' 109
(26.21)

wobei E(t) einer Normalverteilung mit dem Mittelwert 0 und der Stan­

dardabweichung 109 angehören soll. Eh"re Simulation des Zettp-fades· \Ion

Y(t) kommt dadurch zustande, daß in jeder Periode t eine Stichprobe

aus der E zugrunde 1iegenden Normalvertei1ung gezogen wird, und der

ermittelte numerißche Wert von E damit eine sukzessive numerische Be­

rechnung von Y ermöglicht. Wenn vom Ziehen einer Stichprobe gespro­

chen wird, so ist dies nicht allzu wörtlich zu nehmen. Die Stichpro­

ben weruen mit Hilfe von Computerprogrammen, den sogenannten Pseudo-
12zufallszahlengeneratoren, erzeugt.

10 Eine ökonomische Analyse stochastischer Differentialgleichungssy­
steme mit Hilfe von stochastischen LJAPUNOW-Funktionen hat WEINBERG
vorgenommen. [217J

11 Vgl. Seite 99
12 Zur Entwicklung von Programmen, welche in der Lage sind, Zufalls­

zahlen bestimmter Dichtefunktionen zu erzeugen siehe [146]
Von Pseudozufal lszahlen spricht man, werl es dem Wesen einer Zu­
fallszahl an sich widerspricht, wenn sie von einer bestimmten Pro­
grammroutine erzeugt wird. Dennoch werden die so erzeugten Zahlen
als Zufallszahlen akzeptiert, wenn sich zeigt, daß alle einschlä­
gigen Tests sie als Zufallszahlen bestätigen.
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Im Falle des obigen Beispieles kann man im Rahmen der Simulations­

sprache DYNAMO die Endgleichung (26.21) durch die Instruktion 13

Y. K= 1. 89*VE 1 (Y. K, 60 E9) - o. 99 *VE2 (Y . K, 60 E9 ,65 E9) +4 E3+NORM RN (0, 1 E9)

darstellen. Der Ausdruck NORMRN(O,l E9) bildet hierbei die Anweisung,

eine normalverteilte Zufallszahl mit den geforderten Parametern ih­

rer Ausgangsverteilungzu lieferh.

Durch wiederholte Simulationen eines Modells erhält man s Zeitverläu-
. i

fe Y (t) mit (1=1,2, ... ,5) der endogenen Variablen Y. Diese Zeitver-

läufe dienen als Ausgangsbasis der pseudoinduktiven Modelluntersu­

chung.

Auf der Grundlage dieser Zeitreihen ist es möglich, eine Information

Ober die zeitl iche Entwicklung des Erwartungswertes und der Varianz

der endogenen Variablen zu erhalten.

Eine Schätzung des Erwartungswertes ~(t) erhält man durch

1 n .
~(t)=- ~ yl(t)

n i =1

während die Varianz o2(t) anhand von

(26.22)

geschätzt werden ka~n.

Da für die Schätzung des Wertes der Varianz cr2 (t) der tatsächliche

Erwartungswert ~(t) erforderl ich ist, dieser jedoch kaum bekannt sein

dUrfte, so behilft man sich oft damit, daß p(t) in (26.23) durch ~(t)

ersetzt wird.

Mit Hilfe sogenannter Vertrauensbereiche kann man die Genauigkeit

der Schätzung des Erwartungswertes und der Varianz beurtei len.

Nach dem zentralen Grenzwertsatz sind die Schätzwerte von·~ bei ge­

nügend großem n (n>30) annähernd normalverteilt und besitzen den Mit­

telwert f.l sowie'die Varianz (l/n. Dabei ist es unerheblich, durch wel­

che Verteilung Y(t) beschrieben wird.

13 Zur Erklärung siehe im einzelnen Seite 522ff.
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Wenn ~ normalverteilt ist, dann ist es auch die Verteilung

)1-)1 ;--"1
z = - vn

a

welche den Mittelwert Null und die Varianz Eins besitzt. Für diesen

Vertei lungstyp läßt sich die Wahrscheinl ichkeit y bestimmen, mit der

die Realisation von z in das Intervall ±c. fällt, d.h.. Y

Hieraus folgt die Beziehung

(26.24)

welche besagt, daß der Bereich

(26.25)

den unbekannten Mittelwert ~ mit der Wahrscheinl ichkeit y einschließt.

Der Sicherheitsfaktor c wird üblicherweise anhand einer der. folgen-. y

den drei Fehler-Intervalle gewählt.

Wahrscheinlichkeit, daß 11 in Sicherheitsfaktor
das Fehleri ntervall fä 11 t cy

95 % 1,96

99 % 2,58

99,9 % 3,29

Da die für (26.25) erforderliche tatsächfiche Standardabweichung cr

nicht bekannt ist, muß sie durch den aus der Stichprobe ermittelten

Schätzwert a ersetzt werden.

Ist die Verteilung von Y eine Normalverteilung, so wird die Zufalls­

variable

)1-].1 . fI
T = --rvna

durch eine t-Vertei lung mit n-1 Freiheitsgraden beschrieben. a* ist



393

hierbei eine Zufallsvariable, von der 0 einen Beobachtungswert re­

präsentiert. Unter Verwendung einer t-Verteilungstafel kann man den

Wert für c mi t dem Vert rauensbere ich
'Y

(26.26)

ermi tte 1n.

Bei einer Stichprobe von n>30 ist die Beziehung auch auf bel iebige

Vertei lungen von Y anwendbar. Die t-Verteilung nähert sich in die­

sem Fall einer Normalvertei lung so, daß zur Bestimmung des Interval­

les in (26.26) die angefUhrten Werte von c verwendet werden k5nnen.
y
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Abb. 26.3 Zeitl icher Verlauf des Erwartungswertes von Y(t)[Symbol
'YI] und seiner Schätzwerte Y10(t)[Symbol '1'"] und Y40(t)
[Symbol '4']. [Einheit T: Tausend]
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Abbildung 26.3 zeigt für das auf den Seiten 74 und 97 beschriebene

stochastische MA-Modell den analytisch berechneten Verlauf des Erwar­

tungswertes Y(t) sowie die Verläufe der Schätzwerte für Y(t) anhand
~ -

von zehn und vierzig Schätzungen Y10(t) und Y40 (t).

Eine analoge Darstellung I iefert Abbildung 26.4 für die Standardab­

weichung.
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Abb. 26.4 Zeitl icher Verlauf der Standardabweichung a der endogenen
Variablen Y(S) sowie ihrer Schätzwerte ~10(1) und 040(4)

In der Praxis werden derartige Ermittlungen stochastischer Impl ika­

tionen allerdings selten vorgenommen. Zumeist werden stochastische

Modelle determinisiert, und der Zeitverlauf des deterministischen

Äquivalentes wird als Erwartungswert interpretiert.
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b) Varianzreduzierende Verfahren im Rahmen der Parameterschätzung
stochastischer Modellimplikationen

Die Durchführung pseudoexperimenteller Schätzverfahren anhand stocha­

stischer dynamischer Modelle konzentriert sich fast ausschließl ich

auf die Schätzung der Erwartungswerte und Standardabweichungen ein­

zelner interessierender endogener Modellvariablen.

Hat man den Wunsch, den durch (26.15) beschriebenen Vertrauensbereich

zu vermindern,· so zeigt sich, daß dies mit einer überproportionalen

Erhöhung der Stichprobenanzahl n erkauft werden muß. Eine Verminderung

des Vertraue~sbereiches um den Faktor 10 erfordert beispielsweise ei­

ne Erhöhung der Stichprobenanzahl um den Faktor 100. Dieser überpro­

portionale Mehrbedarf an Simulationsläufen kann zu einer Erhöhung

der Rechenzeit führen, die auch bei einer Verwendung der heute zur

Verfügung stehenden Hochleistungsrechner ins Gewicht fällt. Zur Ab­

schwächung des Konku rrenzverhä hn i sses zwi sehen Rechenze i tbedarfser­

höhung und Verminderung des Vertrauensbereiches dient die Anwendung

sogenannter varianzreduzierender Verfahren.

Ist für die Schätzung von ~ beispielsweise ein bestimmter Vertrauens­

bereich vorgegeben, so ist es unter Anwendung varianzreduzierender

Verfahren mögl ich, die Zahl der zur Einhaltung dieses Bereiches er­

forderlichen Simulationen n zu vermindern .. Der Grund hierfür ist
e

folgender: Es läßt sich zeigen, daß zwischen der zur Einhaltung ei-

nes bestimmten Vertrauensbereiches (unter Vorgabe einer bestimmten

Sicherheitswahrscheinl ichkeit) erforderlichen Stichprobenanzahl ne
und der Varianz 0

2 der betrachteten Zufallsvar~ablen die Beziehung

2
n = bo (t)e b>O (26.27)

gi I t. [109, S. 106]

Gelingt es nunmehr, die stochastische Struktur eines Mode1.ls so zu

verändern, daß die interessierende Variable zwar denselben Erwartungs­

wert behält, aber ihre Varianz vermindert wird, dann kann wegen (26.27)

die für den angestrebten Vertrauensbereich erforderl iche Stichproben­

anzahl vermindert werden. Wenn also die Varianz um die Hälfte redu-
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ziert wird, kann n um ein Viertel gesenkt werden.
e

Die Existenz dieser Beziehung zwischen n und 0
2 bildet den Ausgangs-, e

punkt fOr die Entwicklung varianzreduzierender Verfahren.

Die theoretische Fundierung dieser Methoden ist inder Literatur aus­

führl ich dargestellt [132], [109], [137]. Sie werden jedoch insbeson­

dere bei MZÄ-Modellen kaum angewendet. Hierbei spielt sicher eine Rol­

le, daß das Verfahren einer stochastischen Simulation und die daran

anknüpfende Parameterschätzung keine weitgehenden statistischen Kennt­

nisse voraussetzen, während dies bei der Anwendung varianzreduzieren­

der Verfahren der Fall ist. Selbst mit statistischen Methoden weit­

gehend vertraute Anwender scheinen offenbar höhere Rechenzeiten der

Entwicklung eines der Varianzreduzierung dienenden Computerprogram­

mes vorzuziehen.

Wegen der geringen praktischen Relevanz sollen daher bis auf diese

kurzen Bemerkungen vari3nzreduzierende Verfahren nicht weiter erwähnt

werden.

D. Subjektive Entscheidermodelle und stochastische Analyse

Wie erwähnt, werden in dynamischen Entscheidermodel len die unbeeln­

fluß-ba-renParameter du-reh subjektive S-chä--tzungen--der Mod-e-ll-anwel1de-r

ermittelt.
,4

Das Endergebnis ist ein deterministisches Modell. Der­

artige Modelle können jedoch als determlnisierte stochastische Model­

le gedeutet werden, in welchen der stochastische Parameter durch den

vom Modellanwender subjektiv geschätzten Erwartungswert oder den häu­

figsten Wert ersetzt worden ist. Geht man davon aus, daß die gesamte

Information über die subjektiven Wahrscheinl ichkeitsverteilungen der

einzelnen Parameter in das Modell mit einfließen sollen, so gelangt

man von dem ursprüngl ich deterministischen Modell zu einem stochasti­

schen Modell. Dieses Modell gestattet Aussagen über die -subjektiven

Wahrscheinlichkeiten, mit denen bestimmte Verläufe der endogenen Va­

riablen auftreten. Solche zusätzl ichen Informationen sind fOr die Be­

urteilung der prognostischen Qualität der aufgestellten Modell hypo­

thesen von eminenter Bedeutung.

14 Vg 1. Se i te 150
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Betrachten wir beispielsweise ein subjektives determinisiertes Ent­

scheidermodel 1

Y(t) = O,97Y(t-l) + 120 (26.29)

so zeigt sich, daß dieses Modell gegen den Gleichgewichtspfad 4000

konvergiert. Nehmen wir nunmehr an, daß der Parameter von 0,97 als

h~ufigster Wert der folgenden subjektiven ·Wahrscheinlichkeitsvertei­

lung gewählt wurde, dann ist die Wahrscheinl ichkeit, daß ein Para­

meter realisiert wird, der gr6ßer als Eins ist, h6her als derumge­

kehrte Fall. Damit ist die Wahrscheinl ichkeit h6her, daß das System

Abb. 26.5 Subjektive Wahrscheinl ichkeitsverteilung eines Parameters

explodiert und daher nicht stabil ist. Liegt dieser Informationsstand

vor, dann w~re es fOr einen Modellanwender nicht sinnvoll, von der

Hypothese (26.29) auszugehen. Es zeigt sich somit, daß die Entschei­

dung, ob eine angenommene Hypothesengleichung sinnvollerweise zu ak­

zeptieren ist, erst dann getroffen werden kann, wenn die subjektive

Wahrscheinlichkeitsverteilung der Parameter mitberücksichtigt wird.

Diese Einsicht legt es nahe, nicht mehr mit deterministischen Ent­

scheidermodel len zu arbeiten, sondern allein ihre stochastisierte

Form zu verwenden. Als Ausweg bietet iich ein 'Val idierungsverfahren'

an, mit dem man ein deterministisches Modell nachträgl ich daraufhin
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überprüfen kann, ob es sich weiterhin als Prognoseinstrument verwen­

den läßt. Dieses Verfahren einer Hypothesenüberprüfung durch Sensi­

tivitätsanalysen läßt sich etwa folgendermaßen umreißen:

Zeigt sich, daß nur eine geringfügige Änderung eines oder mehrerer

subjektiv geschätzter Parameter zu einem grundsätzlich anderen Sy­

stemverhalten führt, dann wird die empirische Gültigkeit der unter­

stellten Hypothesen erschüttert. Im anderen Fall bewährt sich die un­

tersuchte Hypothese. Diesen Schlußfolgerungen kann auf der Basis, daß

von einem entsprechenden subjektiven stochastischen Entscheidermodell

ausgegangen wird, eine methodisch befriedigende Rechtfertigung gege­

ben werden. Einer Parameteränderung liegt bei dieser Betrachtungswei­

se die Annahme zugrunde, daß die geringfügige Änderung eines Parame­

ters (genauso wahrscheinl ich ' ist wie der Ausgangswert. Führt diese

Änderung jedoch zu einem grundsätzl ich anderen Systemverhalten, so

kann man daraus schließen, daß das eine Systemverhalten genauso wahr­

scheinl ich ist wie das andere. Als Folge davon ist eine für prakti­

sche Zwecke geeignete Prognose nicht mögl ich, weil das Modell stark

voneinander abweichende Alternativen mit annähernd gleichen Wahr­

scheinl ichkeiten auszeichnet.

Würde el n entsprec-hendes s-t-ochast-i sche-s Mo-delI zar VeTf-ti-gung-- s-tehen,

so könnte man diese Argumentation allerdings durch die Angabe subjek­

tiver Wahrscheinl ichkeiten in exakterem Maße belegen als in der recht

uns~stematischen Form einer Sensitivitätsanalyse.




