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2. Formen und ErschlieBungsmethoden
dynamischer MZA-Modelle

Wihrend bisher die allgemeinen Fragen des Aufbaus, der Analyse sowie
der empirischen Akzeptierbarkeit dynamischer Modelle behandelt wur-
den, wendet sich dieses Kapitel den speziellen Typen dynamischer Mo-
delle zu. Ausgehend von bestimmten polaren Begriffspaaren dynamischer
Modelle, werden die formale Struktur dieser Modelltypen, ihre empi~-
rische Interpretation, die speziellen Verfahren ihrer Implikatio-
nenaufdeckung und die Existenz typenspezifischer Implikationen er-

ldutert.

2.1. Lineare und nichtlineare Modellformen

Die Unterscheidung zwischen linearen und nichtlinearen Modellen re-
su]tiert aus dem Umstand, daB bgide'Modellformen sowohl verschiede-
ne Methoden der Hypothesengewinnung durch statistische Schdtzungen,
als auch der ImplikationenerschlieBung verlangen. Die Klassifizierung
ist auch insofern fruchtbar, als sich fiir beide Modellformen typen-
spezifische empirisch interpretierbare Implikationen aufweisen las-
sen.

Die Abgrenzung zwischen linearen und nichtlinearen Modellen filhrt

zur Teilklasse der linearen Modelle, fir die eine geschlossene Theo-
rie der Implikationenaufdeckung zur Verfligung steht. Diese Theorie
linearer dynamischer Modelle wird in dem folgenden Abschnitt einge-
hend er6rtert; Ihre Darstellung liefert grundlegende Einsichten lber
die Verknlipfung zwischen Modellpr@missen und Modellimplikationen. So-
wohl dié formelmdBige Aufweisung dieser Verknlipfungswege, als auch
die formale Prdzisierung der Modellimplikationen, schafft eine pra-
zise und eindeutige Basis flir die konkrete Durchflihrung, aber auch

generelle Bewertung dynamischer Modellanalysen.
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Die wesentlich kiirzeren Ausflhrungen liber nichtlineare dynamische Mo-
delle charakterisieren die Formen nichtlinearer Hypothesen und versu-
chen, eine Ubersicht liber den Stand der Verfahren zur deduktiven im-

plikationenaufdeckung zu geben.

2.1.1. Lineare Modeliformen

In der Algebra spricht man immer dann von einer linearen Funktion,
wenn sich die abhiingige Variable aus der Summe der mit einem konstan-
ten Wert multiplizierten unabhdngigen Variablen und einer Konstanten

ergibt. Als Beispiel sei der Ausdruck
Y = 0,5 + 0,3Z + 10

angeflihrt.
in analoger begrifflicher Verwendung kdnnte man unter einem linearen
dynamischen Modell einen Zusammenhang verstehen, in dem alle endoge-
nen Variablen durch eine Linearkombination der ‘zeitverdnderlichen en-
dogenen und exogenen Variablen bestimmt werden. Als. Beispiel sei auf
den Ansatz
(t)

t)

Y, 0,5Y1(t-1) + 0,7E(t-1) + Yz(t-2) + 100
Y 0,3Y2(t-2) + 1,1Y1(t-1)

2(

verwiesen. Diese begriffliche Fassung der Linearitdt ist jedoch fir
dynamische Modelle zu einschrédnkend. Im vorliegenden Fall handelt es
sich vielmehr um die allerdings wichtigste Teilklasse linearer Model-

le: den linearen Modellen mit konstanten Koeffizienten. Zu den linea-

ren Modellen zdhlen jedoch ebenfalls die linearen Modelle mit zeit~-

variablen Koeffizienten.

Das angefiihrte Beispiel wiirde in diese Modellklasse ilibergehen, falls

dfe_GIeichung von Y2 durch

£
Yo(t) = 0,37V, (t-2) + 1,1¥,(t-1)

ersetzt wlirde. Der Koeffizient vor Yz(t-Z) verdndert sich in diesem

Fall mit der Zeit, d.h. es handelt sich um einen zeitvariablen Koef-

fizienten. Wihrend wir uns den linearen Modellen mit zeitvariablen
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Koeffizienten nur relativ kurz zuwenden, werden die linearen Modelle
mit konstanten Koeffizienten intensiv erdrtert, da sie in groBem Um-

fang zur Modellierung sozialer Systeme verwendet werden.

A. Lineare Modellformen mit zeitvariablen Koeffizienten

Modelle dieses Typs werden relativ selten zur Beschreibung sozialer
Zusammenhdnge verwendet.
Als Beispiel sei das bereits beschriebene Modell von VIDALE und WOLFE

angefihrt. Es wurde dufch folgende Beziehung beschrieben.]
U(t) = rW(e=1) - [L”!(_g;ll»r;-]]u(t-w

Man erkennt, daB es sich um eine Differenzengleichung ersten Grades
mit einem zeitvariablen Koeffizienten handelt. Denn die Werbeausga-
ben W(t-1) 3ndern sich in der Zeit.

Nach der Einordnung des Modelltyps stellt sich zum einen die Frage,
welche wiinschenswerten Implikationen es in diesem Ansatz aufzudecken
gibt, und zum anderen, welche Methoden der ErschlieBung von Modell-
implikationen fﬁr.diesen Modelltyp. zur Verfiigung stehen.

Von praktischem Interesse diirfte der Einsatz unterschiedlicher Werbe-
strategien auf den Umsatz sein. Man kann beispielsweise die prozyk-

lische Werbepolitik

Wit) = au(t-1) a>0
mit der antizyklischen Politik
w(t) = bW-U(t-1)] b>0, W>0
oder der zyklusneutralen Politik
wit) = A A>(0

vergleichen.

Als Implikation ist daher vor allem der Zeitverlauf des Umsatzes U

von Interesse. Damit stellt sich die Frage, ob es m8glich ist, eine
Funktions1dsung linearer Modelle mit zeitvariablen Koeffizienten zu

entwickeln.

1 Siehe Seite 25
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Generell 13Bt sich sagen: Flir Differenzengleichungen ersten Grades

mit variablen Koeffizienten gibt es einen alligemeinen Ansatz zur Be-
stimmung einer Funktionsl®sung. Flir Differenzengleichungen hdheren
Grades existiert keine generelle Methode zur Ermittlung von Funktions-

" 2
I6sungen.
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Abb. 21.1 Zeitverlauf des Umsatzes bei verschiedenen S&ttigungs-
niveaus S. bis S, im Falle einer prozyklischen Werbe-

politik W{t)=0,1;U(t-1)

Z Vgl. (83,5.59]



Wir wollen uns mit dieser generellen Methode nicht befassen, da sie
wegen ihrer Beschrankung auf Gleichungen ersten Grades flir prakti-
sche Anwendungen nahezu bedeutungslos ist.

Bei derartigen Modellformen sollte man daher von vornherein versuchen,
den Zeitpfad mit Hilfe von Regressionsl8sungen zu ermitteln. Gehen
wir von den Von VIDALE und WOLFE ermittelten Werten flir die Parame-
ter von r=0,5, $S=5000 und ¢ =0,1 aus und unterstellen einen Anfangs-

wert von U(0)=500, so ermittelt sich die Regressionsldsung nach

5W(t-1)

Uct) = [0’5000 +0,1-170(t-1) + 0,5W(t-1)

Die Sensitivitdt des Zeitverlaufes von U bezliglich des S&ttigungsni-
veaus S zeigt Abbildung 21.1.3
Man erkennt, daB die Umsatzentwicklung eine starke Sensitivitdt be-
ziiglich des S&ttigungsniveaus aufweist. Nach diesem Beispiel wollen
wir uns nunmehr den linearen Modellen mit zeitkonstanten Koeffizien-

ten ;uwenden.

B. Lineare Modellformen mit zeitkonstanten Koeffizienten

Dieser Modelltyp muB aus zwei Griinden sehr ausfilihrlich behande}lt wer-
den. Zum einen gehdren viele der heute verwendeten Modelle diesem

Typ an. Auch unser Standardbeispiel eines MA-Modells f&11t, wie man
leicht erkennt, in diese Modellkategorie. Zum zweiten steht, wie er-
wdhnt, fiir diesen Modelltyp eine geschlossene Theorie der Implika-
tionenaufdeckung zur Verfligung. Dies ist von genereller Bedeutung,
weil prinzipiell jedes nichtlineare Modell durch ein lineares Modell
approximiert werden kann, so daB Einsichten {iber den Charakter linea-
rer Modelle auch filir die Beurteilung nichtlinearer Modelle von Inter-
esse sind.

Es ist heute Mode geworden, unter Verwendung einfach zu lernender Si-
mulat%onssprachen komplexe nichtlineare dynamische Modelle zu simulie-
ren, ohne dabei liber Kenntnisse des strukturellen Aufbaus und der Ana-

lysemethoden derartiger Modelle zu verfligen. Nach Ansicht des Verfas-

3 Zur Simulationstechnik siehe Seite 522ff.



sers ist unter diesen Umst&nden ein ernsthaftes Arbeiten mit dynami-
schen Simulationsmodellen kaum mdglich. Auch wenn im Rahmen der heu-
te vorwiegend praktizierten Simulationen dynamischer Modelle die im
weiteren zu erdrternde Theorie nicht unmittelbar zur Anwendung kommt,
so liefert ihre Kenntnis dennoch fruchtbare Leitlinien und Beurtei-
lungsprinzipien fiir das Arbeiten mit dynamischen Modellen. So erhal-
ten Konzepte und Begriffe, wie Gleichgewichtszustand eines Systems,
Stabilitdtstypen, Multiplikator oder Verhaltensweisen von Systemen,
erst durch ihre Explizierung im Rahmen eines Kalkiils die Pr&zision,
die zu einer klaren Beurteilung ihres Stellenwertes von Bedeutung
ist.

Da die Bestimmung des Zeitverlaufes einer endogenen Variablen die
Ausgangsbasis filir die Aufdeckung fast s&mtlicher relevanter Modell-
implikationen darstellt, wollen wir uns im folgenden ausfihriich mit
der Ermittlung der Funktionsl&sung einer endogenen Variablen beschdf-
tigen. .Anhand einer linearen Endgleichung zweiten Grades werden die
verscﬁiedenen Typen von Funktionsl&sungen hergeleitet und auf den
Fall einer Endgleichung beliebigen Grades verallgemeinert. Auf die-
ser Basis erfolgt eine Erdrterung mathematisch eindeutig beschreib-
barer typenspeszischer implikationen linearer Modelle. AbschlieBend
wird die Theorie linearer Systeme unter Verwendung der Operatoren-

und Matrizenrechnung in einem umfassenden Rahmen behandelt.

a) Zeitpfadermittlung durch Funktionslésungen

Die Bestimmung der Funktionsldsung einer endogenen Variablen Y er-
folgt wie erwdhnt anhand ihrer Endgleichung. Fassen wir die Kompo-

nenten der exogenen Variablen in (12.10) mit E(t) zusammen, d.h.

E(t) =n§0 ghE(t-n) | (21.1)

dann erhalten wir die Erkl&rungsform

Y(t) = w1Y(t-1) - mzY(t-Z) S wnY(t-n) + E(t) (21.2)

und die Standardform



Y(t) + a,Y(t-1) + a,Y(t-2) +...+ anY(t-n) = E(t) (21.3)

1 2

welche uns im folgenden als Ausgangsbasis dienen sollen. Man bezeich-

net (21.2) und (21.3) als Endgleichungen n-ten Grades, wenn a bzw.

wo + 0 sind. Entsprechend dieser Festlegung ist die Endgleichung der

Variablen Y in (12.9) eine Endgleichung 2-ten Grades. Wie erwdhnt,

ist es oft notwendig, erst die Endgleichung einer Variablen zu er-

mi'cte].n.l+ A

Es bieten sich verschiedene Verfahren an. Das sogenannte Einsetzungs-

verfahren wurde bereits zur Berechnung der Endgleichung von Y, (12.9),

angewendet.5 Seine Anwendbarkeit dirfte aber wohl zumeist auf Model-

le mit nicht mehr als vier bis finf Variablen beschrénkt bleiben,

da der Rechenaufwand mit wachsender VariablénZahl stark ansteigt.

Betrachten wir beispielsweise das anfangs bereits kurz erwdhnte, noch

recht einfache Modell der Anspruchsniveauanpassung von SIMON. und MARCH,

welches zuvor kurz beschrieben werden soll [128,S.48].

Das Modell beschreibt die Beziehung zwischen den fiir das Verhalten

einzelner Organisationsteilnehmer relevanten psychischen Variablen:

Zufriedenheitsniveau (Z), Anspruchsniveau (A), Suchintensitdt (S) und

erwartete Belohnung (B). Die das Modell konstituierenden Hypofhesen

werden durch folgende S&tze gekennzeichnet:

(1) Je niedriger das Zufriedenheitsniveau (Z) einer Verhaltensein-
heit, um so stirker wird ihre Suchintensitst (S) nach neuen Al-
‘ternativen sein.

(2) Je hoher die Suchintensitdt (S), um so hBher ist die erwartete
Belohnung (B).

(3) Je hdher die erwartete Belohnung (B), um so hdher das Zufrieden-
heitsniveau (Z). |

(L) Je hdher die erwartete Belohnung (B), um so hdher wird das An-
spruchsniveau (A).

(5) Je hdher das Anspruchsniveau (A), um so hBher das Zufriedenheits-
niveau (Z).

L Zur exakten mathematischen Kennzeichnung linearer Systeme, von de-
nen eine Endgleichungsform berechenbar ist, siehe Seite 24k

5 Vgl. Seite 37 f.
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Dieses verballogische Aussagensystem wird durch folgende Gleichungen

formalisiert:
Satz 1: S(t) = B[Z-Z(t)] mit Z>0, g>0 (21.4)

Z stellt das S&ttigungsniveau der Zufriedenheit dar, bei dessen Er-

reichen die Suchintensitd&t zum Erliegen kommt.
Satz 2: B(t+1) - B(t) = y[S(t)-b-cB(t)] ~ mit y>0, b>0, c>0 (21.5)

Aus der Beziehung erkennt man, daB eine bestimmte Suchintensitdt in
Hhe von [b+cB(t)] erforderlich ist, um die erwartete Belohnung kon-
stant zu halten.

Satz 3 und 5: Z(t) = B(t) - A(t) (21.6)
Satz 4: A(t+1) - A(t) = a[B(t)-A(t)+al] a>0, a>0 (21.7)

In dieser Gleichung kommt die zusdtzliche Hypothese zum Ausdruck, daf
zur Aufrechterhaltung des Anspruchsniveaus eine erwartete Belohnung
in Hohe von [A(f)-a] erforderlich ist.

Wie man sich liberzeugen kann, ist die Ermittlung der Endgleichung

von A(t) durcHaus kein trivialer EinsetzungsprozeB. Die Gleichungen

(21.5) und (21.7) werden zuerst auf die Erkl&rungsform

B(t) = [1—cy]8(t-1) + yS{t-1) - vb (21.8)
A(t) = [1-alJA(t-1) + aB(t-1) + aa . (21.9)
tiberfiihrt.

(21.6) in (21.4) ergibt:
s(t) = 8Z - gB(t) + BA(t) ©(21.10)

Verschiebt man das Zeitargument in (21.10) um eine Periode und setzt
den S(t-1) erkl&renden Ausdruck in (21.8) ein, so ist das System auf

die Gleichungen (21.9) und (21.11) reduziert.
B(t) = [1-cylB(t-1) + yBZ - vBB(t-1) + ygA(t-1) = vb  (21.11)
Formt man (21.9) um, so ergibt sich

B(t-1) =%A(t) +-j;'[u-1]A(t-1) - & (21.12)

& Das Modell wurde von SIMON und MARCH in stetiger Form entwickelt
und ist im folgenden in Differenzengleichungsform umgewandelt.
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Wenn der Zeitindex von B(t) eine Periode nach vorne geschoben wird,

so ergibt sich aus (21.12)
B(t) = %-A(t+1) + é{a-1]A(t) - a ’ (21.13)
Setzt man (21.12) und (21.13) in (21.11) ein, so folgt

%A(tﬂ) f-};[a-l]A(t) = i - [1-cﬂ[—£— A(t)+-(];-[a-1]A(t-1)—a] + yET

— ‘YB[]; A(t)+%[a-1]l\(t-1)-a] + yBA(t=1) = vb
oder
A(t+1) + [a-1]A(t) - ca = [1-cy][A(t)+[a-l]A(t-1)-§a] + yRaZ -
- yBIA(t)+[a-1]A(t-1)-aal +yBaA(t-1) - ayb
oder
A(t+1) + [a-1]A(t) = A(t) + [a=1]A(t=1) - cyA(t) - cyl[a-1]A(t-1) +
+ aacy + aByZ - yRA(t) - ypla-1]A(t-1) +
+ aayB + yBaA(t-1) - ayb.
faBt man die Glieder nach Verzdgerungen von A(t) zusammen, ergibt
sich
A(t+1) = [2-a-cy-yB]A(t) + [a-1-cya +cy+YB) mit=1) + adcy + ofyZ +
+ aayf - ayb |
‘Eine Verschiebung des Zeitargumentes um eine Periode liefert die Er-
kldrungsform der Endgleichung
A(t) = [Z;G'CY'YB]A(t‘1) - [u-]—cya+cy+YB]A(t-2)q+ cacy + aBYZ +
+ aayB - ayb

Das beschriebene Einsetzungsverfahren ist im aligemeinen nur flir die
Ermittlung von Endgleichungen ersten und zweiten Grades zu empfehlen.
In anderen Fallen ist es zu umstdndlich und sollte durch Verfahren,

welche mit Operatoren arbeiten, ersetzt werden. Diese Verfahren wer-
den jedoch erst spdter besprochen, weil weitere mathematische Voraus-

setzungen zu ihrem Verstdndnis erforderlich sind. Da wir uns im fol-
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genden ausschlieBlich mit der Funktionsldsung von Endgleichungen er-
sten und zweiten Grades befassen, reicht das Einsetzungsverfahren

fiirs erste aus.

Zur Ermittiung der FunktionslBsung einer endogenen Variablen ist es
Wichtig, zwischen homogenen und inhomogenen Endgleichungen zu unter-
scheiden. Eine homogene Endgleichung liegt vor, wenn E(t) in (21.2)
oder (21.3) den Wert E(t)=0 (t=0,1,...) annimmt. Wird E(t) dagegen
durch einen Zeitpfad beschrieben, der nicht stdndig Null ist, dann

spricht man von einer inhomogenen Endgleichung. Der Ausdruck

A(t) = 0,5A(t=1) + 0,3A(t-2) (21.14)
ist damit eine homogene Endgieichung, wdhrend

A(t) = 0,5A(t=1) + 0,3A(t-2) + 10t (21.15)

eine inhomogene Endgleichung darstellt.

aa) Funktionsldsung von Endgleichungen ersten Grades

a) Funktionsi8sung homogener Endgleichungen ersten Grades

Eiine homogene Endgleichung ersten Grades nimmt mit n=1, w,=a und

E(t)=0 (t=0,1,...) in (21.2.) die Form

(1) = aY(e-1) ' (21.16)
an. Unterstellen wir, es sel beispielsweise die Gleichung

¥(t) = 0,3Y(t-1) (21.17)

mit dem Anfangswert Y{0)=100 gegeben. Die Regressionsl&sung von (21.17)
138t sich recht einfach ermitteln. Wir wollen aber Y(t) als eine Funk-

tion eines geschlossenen Formelausdruckes F(t), d.h.
Y(t) = F(t) ' (21.18)

beschreiben, mit der Folge, daB man durch Einsetzung von beispiels=~
“weise t=10 in die rechte Seite von (21.18) einen numerischen Wert fir
Y(10) erhilt.

Zu diesem Zweck betrachten wir das folgende Schema



Y(1) = 0,3v(0) = 0,3'Y(0)
Y(2) = 0,3v(1) = 0,3%v(0)
Y(3) = 0,3(2) = 0,37Y(0)
Yit) = 0,3Y(t-1) = 0,3tv(0)

in welchem die Variablenwerte zu den verschiedenen Zeitpunkten durch
sukzessive Einsetzung der jeweils Uber jeder Zeile stehenden Glei-
chungen auf Y(0) =zurlickgefiihrt werden.

Das Schema flihrt zu der Funktionsldsung
Y(t) = v(0)0,3" £=0,1,2,... ' (21.19)

Fiir Y(0) k&nnen wir den unterstellten Wert 100 einsetzen und erhal-

ten die Funktionsl18sung
Y(t) = 100%0,3" (21.20)

Man erkennt, daB flir 100 jeder beliebige Anfangswert Y(0) hdtte ge-
widhlt werden kdnnen, ohne die Gliltigkeit der L®&sung zu verletzen. Er-
setzt man in dem entwickel ten Schema den Wert 0,3 durch die einen be-
liebigen Wert reprisentierende Zahl a, so zeigt sich, daB die Herlei-
tung auch fiir die Verallgemeinerung gilt und zu der allgemeinen L&-

sung von (21.16)

Y(t) = Y(0)a® (21.21)
fihrt.
Die vorangegangene Betrachtung legt es nahe, zwischen zwei Arten von
Funktionsl18sungen einer Endgleichung zu unterscheidenf den generel-
len und den speziellen Ldsungen.
Die spezielle L&sung einer Endgleichung beschreib£ den numerisch kon-
kreten Verlauf einer endogenen Variab]en Y(t). Das ist stets nur dann
méglich, wennn die Parameter und Anfangswerte der Endgleichung fir Y
numerisch konkretisiert sind. (21.20) ist eine spezielle L&sung. Wir

erkennen, daB in diesem Fall sowohl die Anfangswerte als auch die Ko-

effizienten der Endgleichung einen numerischen Wert besitzen.
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Generelle L&sungen kann man nach anfangswertgenerellen und parameter-

generel len LOsungen unterscheiden.

In anfangswertgenerellen L8sungen werden die Anfangswerte nicht durch
Zahlen, sondern durch Buchstaben definiert. Sie umfassen damit den
gesamten Bereich alternativ mdglicher Anfangswerte. Gleichung (21.19)
ist hierflir ein Beispiel.

Parametergenerelle L3sungen zeichnen sich dadurch aus, daB auch die
neben den Anfangswerten in der L&sung auftretenden weiteren Parame-
ter durch Buchstaben reprédsentiert werden. Eine parametergenerelie
L6sung umfaBt daher die Gésamtheit aller mdglichen Einzell8sungen.
Mit diesen Unterscheidungen zeigt sich schon der Vorteil einer Funk-
tions16sung gegenliber einer Regressionsldsung.

Mit einer Regressionsl®sung kann man nur den Zeitverlauf ermitteln,
der durch eine spezielle FunktionslBsung beschrieben wird. Mit einer
pakametergenerellen Lésung wie (21.21) kann man gewissermaBen auf ei-
nen Blick die Eigenschaft des Systems beurteilen. So wird beispiels-
weise im Falle ]a]<1 das System gegen Null konvergieren. Bei einer
Untersuchung des Systems anhand von Regressionslidsungen wire es da-
gegen nicht moglich, diesen Konvergenzbereich durch beliebig viele

RegressionsiGsungen zwingend abzuleiten.

B) FunktionslBsung inhomogener Endgleichungen ersten Grades

Wihlen wir in (21.2) n=1, E(t)*0 (t=0,1,...) und setzen w,=a, dann
erhalten wir die inhomogene Endgleichung ersten Grades
v(t) = av(t-1) + E(t) (21 .22)

Unser Ziel ist es, die parametergenerelle Funktionsl&sung von (21.22)
ZUu gewinnen. .

?o]gendes Verfahren filihrt zu einer ersten Gliederung des L3sungsan-
satzes:

Wir unterstellen die Existenz einer speziellen L&sung der inhomoge-
nen Gleichung und wollen sie als Y(t) bezeichnen. Fir Y(t)=0,5Y(t-1)+
+50 ist beispielsweise Y(t)=100 eine spezielle L¥sung.

Die Subtraktion der Komponenten der speziellen Ldsung Y von dem An-
satz (21.22)
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Y(t) = aY(t-1) + E(t)
-[Y(t) = a¥(t-1) + E(t)]
Y(t) - Y(t) = a[Y(t=1)=-Y(t~1)] (21.23)

ist deswegen statthaft, weil ex definitione auf jeder Seite der Glei-
chung die gleichen Werte subtrahiert werden.

Definiert man
- 7(t) = Y(t) - Y(t) (21.24)
und setzt (21.24) in (21.23) ein, dann folgt:
Y(t) = a¥(t-1) (21.25)
-Gleichung (21.24) nach Y(t) aufgeldst ergibt:
Y(t) = Y(t) + Y(¢) (21.26)

Setzen wir fiir Y(0)=C, dann bestimmt sich die Funktionsidsung von
Y(t) nach (21.21) mit

Y(t) = cat (21.27)
Mit (21.27) in (21.26) folgt:
Y(t) = Ca® + V(t) (21.28)

Gleichung (21.28) liefert eine generelle Information liber die Form
der Funktionsldsung einer ihhomogenen Endgleichung ersten Grades,
namiich:

Satz 21.1: Die parametergenerelle FunktionsliBsung einer Endgleichung

ersten Grades bestimmt sich aus der Summe der parametergenerellen

Funktionsi®sung ihrer homogenen Form Ca® und einer speziellen L&sung
Y(t).

Ein offenes Problem bleibt lediglich, eine spezielle Funktions18sung
zu finden. Es sei schon vorWeggenommen, daB 'die Kunst', eine belie-
bige. inhomogene Differenzengléichung zu 18sen, darin besteht, eine
sie befriedigende spezielle L8sung zu bestimmen. Da derartige spe-
zielle L&sungen bereits von anderen gefunden wurden, ist es lberfils-
sig, hier die Auffindung dieser L&sungen im einzelnen zu erdrtern.
Wir wollen uns lediglich exemplarisch mit dem Speziaifall einer inho-

mogenen Endgleichung



Y(t) = a¥(t=1) + E E=konstant

befassen. Die spezielle L8sung gewinnt man, wenn man von der gedank-
lichen Vorstellung ausgeht, das System befdnde sich auf einem Ni-

veaugleichgewicht, d.h. es sei Y(t)=Y(t-1)=Y(t) und damit
Y(t) = a¥(t) + E

womit sich Y(t) nach
7 L E
Yit) = =

ermittelt. Setzen wir die spezielle L3sung in Gleichung (21.28) ein,
so erhalten wir

Y(t) = ca® + 2= (21.29)
Es handelt sich um eine parametergenerelle L8sung, in der der Ein-
fluB eines bestimmten Anfangswertes Y(0) in (21.29) jedoch nicht ex-
plizit zum Ausdruck kommt. Da der Anfangswert Y(0) der L&sung (21.29)
jedoch durch die Wahl von C bestimmt wird, geschieht die Explikation

von Y{0) auf folgende Weise: In der O-ten Periode muB die Beziehung
Y(0) = ca® + E/(1-a)

gelten. Die Aufldsung dieser Gleichung liefert
¢ =Y(0) - [E/(1-3)] (21.30)

Die Einsetzung von (21.30) in (21.29) liefert die parametergenerelle

LSsung
Y(t) = [Y(0)-E/(1-a)]a" + E/(1-a)

Lediglich im Falle a=1 versagt das geschilderte Verfahren. In diesem

Fall bestimmt sich die spezielle LOsung aus:
Y(t) = Et

Die Zurlickfiihrung des Parameters C in Gleichung (21.28) auf die Koef-
fizienten und Anfangswerte ergibt

Y(0) = Ca® + E%0

d.
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C = Y(0)
und damit die L&sung

Y{(t) = Y(0) + E=t

Zusammenfassend gilt: Satz 21.2: Die Funktionsl®sung der inhomogenen

Endgleichung Y(t)=aY(t-1)+E, bestimmt sich nach

[Y(O)’E/(1’a)]at + E/(1-a)  flr a%l
Y{t) =
Y(0) + Et fur a=1
Als Beispiel sei die inhomogene Gleichung

Y(t) = 0,5Y(t=1) + 100 mit Y(0)=50

angefiihrt. Entsprechend Satz 21.2 ergibt sich die Funktionsl&sung:

Y(t) = -150%0,5° + 200

Regressionldsung Funktionsi8sung
t Y(t) d,SY(t-1) 100 | Y(t-1) Y(t) —150*0,5t O,St 200
0 50 - - ~ 50 -150 1 200
1 j125 25 100 50 | 125 -75 U 45 200
21162,5 | 62,5 100 125 162,5 -32,5 0,25 200
3 [181,25 81,25 100 | 162,5 | 181,25 | ~18,75 0,125 | 200
4 1190,6251 90,625 100 | 181,25[ 190,625 | =-9,375 0,0675 | 200

Tab. 21.1 Regressions- und Funktionsldsung einer inhomogenen Diffe-

renzengleichung ersten Grades

Die Ubereinstimmung der Funktionsl1dsung mit der entsprechenden Re-

gressionsldsung bis zur vierten Periode zeigt die Tabelle 21.1.
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ab) Funktionslésung von Endgleichungen zweiten Grades

o) Funktionsldsung homogener Endgleichungen zweiten Grades

aa) Funktionslidsung homogener Endgleichungen zweiten Grades mit un-

gleichen Wurzeln

Wihlen wir in (21.3) E(t)=0 (t=0,1,...) und n=2, so erhalten wir die

homogene Endgleichung zweiten Grades
¥(t) * a;¥{t-1} # a,¥(t-2} =0 (31.51)

Von dieser Gleichungsform soll die parametergenerelle Funktionsi&-
sung gefunden werden. Die Aufgabe besfeht also darin, einen Ausdruck
zu finden, der die Endgleichung (21.31) .identisch Null macht.

Dieser Ausdruck kann, wie eslsich gezeigt hat, nach folgendem Verfah-
ren gefunden werden:

Definieren wir a;=a sowie a2=b, dann folgt
Y(t) + aY(t-1) + bY(t-2) =0 (21.32)

In einer ersten Einschrankung unterstellen wir, daB der Formelaus-

druck
Y(t) = a ' (21.33)

eine Funktionsl®sung von (21.32) sei. Die Einsetzung von (21.33) in
(21.32) ergibt

LI R L T (21.34)

Es zeigt sich, daB nicht jedes beliebige A die Gleichung (21.31) be-
friedigt, sondern nur die Werte, die auch Gleichung (21.34) befrie-
digen. Um diese A-Werte zu ermitteln, dividieren wir Gleichung (21.34)

durch At’z und erhalten die sogenannte charakteristische Gleichung

2% h o b b B " (21.35)

Es lassen sich fiir A zwei Werte, A1 und Az, finden, die die charak-

teristische Gleichung (21.35) befriedigen und sich nach
A =gt ‘/'%Z'b (21.36)

ermitteln. Allund xz werden auch als die Wurzeln der charakteristi-
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schen Gleichung bezeichnet. Man erh3lt damit (im Falle ungleicher

Wurzeln) zwei Funktions18sungen:
el = (21.37)
und

Y(t)

. _
A, ‘(21.38)

Demonstrieren wir das Auffinden der zwei Funktionsi8sungen an einem

Beispiel: Mit a=1,5 und b=-1 erhalten wir die homogene Endgleichung
Y(t) + 1,5Y(t-1) - Y(t-2) = 0 ‘ (21.39)

Anhand von (21.36) bestimmen sich die Wurzeln x1=0,5 und x,=-2. Set-
zen wir die L8sung Y(t)=0,5t in Gleichung (21.39) ein, so zeigt sich
mit

0,5% + 1,5%0,5%" - 0,572 = 0

(0,52 + 1,5%0,5-1)0,5°2 = 0

(000,572 = 0

daB Y(t)=0,5t eine Ldsung von Gleichung (21.39) darstellt. Dasselbe
gilt fir k2=-2. Ermittelt man eine Regressionsi8sung von Gleichung
(21.39), so erkennt man, daB der Zeitverlauf durch die Festlegung von
Y(0) und Y(1) eindeutig bestimmt ist. Es liegt nahe, nach den Anfangs-
werten der L&sungen Y(t)=0,5% und Y(t)=-2" zu fragen. Flir die erste
»ist Y(0)=1, Y(1)=0,5, flr die zweite Y(0)=1, Y(1)=-2.'

Nunmehr wird deutlich, daB die zwei Funktionsl&sungen spezielle Funk-

" tionsli8sungen reprdsentieren, d.h. nur bezliglich bestimmter Anfangs-
werte gelten.

Da wir jedoch eine anfangswertgenerelle Funktionsldsung von Gleichung
(21.32) gewinnen wollen, ist es notwendig, eine Funktionsldsung zu
finden, in der die beiden Anfangswerte in allgemeiner Form, d.h. durch
Buchstabensymbole ausgedriickt werden.

Es gilt: Satz 21.3: 3ind A% und AE zwei spezielle Funktionsl@sungen

der Endgleichung Y(t)+aY(t=1)+bY(t-2)=0, so ist die Linearkombina-

tion

5 t
C]A1 + Czkz

ihre anfangswertgenerelle Funktionsl®sung.




181

Da die Gleichungen

Af + axf'] + ba =0

und

T =] =2

Xz i akz + blz 0

die Endgleichung befriedigen, gilt dies auch fiir die Multiplikation

aller Glieder der Gleichungen mit beliebigen Konstanten C1 und C,, d.h.

2’
E t-1 =2
t t-1 t=2
Die Addition beider Gleichungen liefert den Ausdruck
t t £~ 1 t-1 t=2 t-2
(c1x1+czx2) + a(C]X] +CZA2 ) + b(C1k] +C2k2 Yy =0  (21.40)
Definiert man
£ t j
Yit) = C,Ay + Cg (21.41)

so erkennt man, daB die Einsetzung dieses Ausdrucks in (21.40) zur
Endgleichung (21.32) fihrt, d.h. Gleichung (21.41) stellt ebenfalls
eine Funktionsl8sung von (21.32) dar. Es fragt sich jedoch, ob (21.41)
auch die anfangswertgenerellé Funktionsldsung reprdsentiert. Unter-
stellen wir, daB dies der Fall sei, so erfolgt die'humerische Konkre-

tisierung von C, und C, anhand der Anfangswerte Y(0) und Y(1) auf-

1 2
grund der Beziehung
v(0) = ¢ + )
. 1 (21.42)
Y(1) = Ay + C2y

Man erkennt, daB die geeignete Wahl von C. und C, alle m8glichen An-

fangswertkombinationen Y(0), Y(1) zum Aus;ruck b%ingt, Gleichung
(21.41) also tatsdchlich die anfangswertgenerelle Funktionsl@sung
bildet. Sind die Anfangswerte Y(0) und Y(1) im Einzelfall vofgegeben,
so gelangt man durch die Aufldsung des Gleichungssystems (21.42) zur

Konkretisierung von C1 und C2

C, = AzYioz;Y(1) _ 51 4
2 1
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C, = iil%ﬂ%iiill (21.44)
172
Die parametergenerel le Funktionsidsung einer homogenen Endgleichung

zweiten Grades mit ungleichen Wurzeln bestimmt sich demnach durch

¥(t) =2‘_'Z.Y.(_Q:Y_(_L).)\t +_>\_1_Y_(_g_)_:_Y_(_1_)_)\t , (21.45)
Xz-l1 1 A1'X2 2

Bisher wurde (ohne Begriindung) einschrénkend angenommen, daB das be-
schriebene Verfahren vdn ungleichen Wurzeln ausgeht. Es liegt damit
die Frage nahe, ob diese Einschrdnkung nicht aufhebbar ist. Dies ist
jedoch nicht mdglich. Vielmehr erweist sich diese Einschrankung nun-
mehr auch als zwingend notwendig, um das Gleichungssystem (21.42)
16sbar zu machen. Denn stets nur im Falle A=}, ist (21.42) nicht

auf }18sbar.

aB) Funktionsl@sung homogener Endgleichungen zweiten Grades mit

gleichen Wurzeln

In diesem Fall ist als parametergenerelle Funktionsldsung ein ande-

rer Ansatz zu wdhlen. Uberlegungen haben gezeigt, daB der Ansatz

die parametergenerelle Funktionsl8sung liefert. Die Prazisierung der

Koeffizienten C, und C, anhand der Anfangswerte ergibt somit

1 3
Y(0) = [c]+0*c2}x°
Y(1) [c]+1*czjx‘

Die Aufl@sung nach C1 und C2 liefert

]

5

Ry

Y (0)
Y(1)/x - Y(0)

Die parametergenerelle Funktionsi8sung einer homogenen Endgleichung

zweiten Grades mit gleichen Wurzeln ergibt sich damit aus

Y(t) = [Y(0)+t((Y(1)/2)-Y(0)) A" (21.46)
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ay) Numerische Beispiele von Funktionsi&sungen homogener Endglei-

chungen zweiten Grades

Im folgenden sollen drei Beispiele zur Ermittlung der Funktfonslﬁsung
einer homogenen Differenzengleichung zweiten Grades beschrieben wer-

den. Sie sind so gewdhlt, daB folgende Fille zur Anwendung kommen:

Fall 1: Wurzeln sind reell und verschieden, d.h. a2/4>b
Fall 2: Wurzeln sind konjugiert komplex, d.h. a2/4<b
Fall 3: Wurzeln sind reell und gleich, d.h. a’/l=b

Der Begriff konjugiert komplexer Wurzeln wird spdter erdrtert. Es ge-

nligt, vorldufig zu wissen, daB sich in diesem Fall flir A, und i, zwei

1 2
Ausdriicke finden lassen, die man als konjugiert komplexe Wurzeln be-

zeichnet.

(1) Beispiel zum Fall gleicher Wurzeln

Es ist die Funktfons]ésung der Gleichung
Y(t) + 4Y(t-1) + 4y(t-2) =0 (21.47)

mit Y(0)=50 und Y(1)=100 zu bestimmen. Die Wurzeln der charakteri-

stischen Gleichungen werden durch

A= X1 = kz = -2 i, h-L' = -2
ermittelt. Mit der parametergenerellen Funktionsldsung (21.46) er-
gibt sich:

Y(t) = [50+t[(100/-2)-5011(-21"
und damit

Y(t) = [50-100t][-2]"

Tabelle 21.2. zeigt den Zeitverlauf der Variablien Y fiir 5 Perioden

in Form der Funktions- und Regressionsl&sung



Funktions18sung Regressionslidsung
: vE) = V(o) =

t| 50-100t| -2 [50-100t](=2) " || =4y (t=1)=-4Y(t-2) | -L4Y(t-1) | -4Y(t-2)
0 50 1 50 50 = -

1] -50 -2 100 100 - -

2| =150 +4 -600 -600 -400 -200

3 | =250 -8 2000 2000 2400 -400

L | -350 +16 -5600 -5600 -8000 2400

Tab. 21.2 Funktions- und Regressionsldsung einer homogenen, linearen
Differenzengleichung zweiten Grades mit gleichen Wurzeln

(2) Beispiel zum Fall reeller und verschiedener Wurzeln

Wir betrachten die Gleichung
Y(t) + 1,5Y(t-1) - ¥{(t-2) =0

lhre Wurzeln bestimmen sich durch

= -0)75 + v -1-[,;_5—+1

mit Y(0)=50 und Y(1)=100

A = 40,5
h, = =0,75 - V=41 = -2,0
Funktionsldsung Regressions18sung

t |80(0,5)%|-30(-2)" |¥(t) Y(t) | -1,5v(e-1) | ¥(t-2)
0 80 <20 50 50 =" -
1 L0 60 100 100 - ~
2 20 =120 -100 -100 =150 +50
3 10 240 250 250 150 100
4 5 -480 -475 -475° =375 -100

Tab. 21.3 Funktions- und Regressionsldsung einer homogenen, linéaren
Differenzengleichung zweiten Grades mit unglieichen Wurzeln

Da A1 ungleich Xz ist, und k1 und kz reell sind, gilt die parameter-

generelle Funktionsi8&sung (21.45),

di:h,




_ =2#50-100 t 0,5#50~-100 ey -
Y(t) = —*:5:675—(0,5) +.——E?§;§——-( 2)
und damit
Y(t) = 80(0,5) " - 30(-2)°

Aus Tabelle 21.3 ergibt sich der identische Zeitveriauf im Falle ei-

ner Funktions- und Regressionsldsung.

(3) Beispiel zum Fall konjugiert komplexer Wurzeln

Als Ausgangspunkt wdhlen wir die Endgleichung
Y(t) =4y (t-1) +13Y(t-2) =0 mit Y(0)=50 und Y(1)=100 (21.48)

Die Wurzeln dieser Endgleichung bestimmen sich mit

Ap =2 +VB-137= 2 4351
Ay =2 =VE-T3' = 2 - 347

2
Bezeichnen wir zur Abklirzung v-T=i, so folgt

Xy =2+3i  und 2, =2 - 3i

Man spricht in diesem Fall von konjugiert komplexen Wurzeln. Ent-
sprechend der parametergenerellen Funktionsl&sung (21.45) ergibt sich

durch Einsetzen die spezielle Funktionsldsung der Endgleichung (21.48)

o "0 - " I
¥{t) = (—2+3ié?0+100(2+3i)t 4 (2+3i)2?-100(2_3i)t
und damit
V(e) = 25(2631) % + 25(2-31)" (21.49)

Zur Berechnung von Y(t) ist es notwendig, eine Potenzierung von i
durchzuflihren.

e ] ; & s i & .5,
Mit i =+-1T wird i7=-1, 13=—|, 14=1, |5=|. Anhand dieser Beziehun-

gen 18Bt sich die Funktionsli8sung in Tabelle 21.4 ermitteln.



Y(t) =
t| (2+3i)° 25(2+31) ¢ (2-31)% | 25(2-31)¢ 25(2+31)+25(2-31)
0 1 25 1 25 +50
11 2+3i 50+75i 2-3 50-75i 100
2| -5+12i  |-125+300i -5-12i |-125-300i -250
3| ~46+91  |-11504225i ~46=9] [-1150-2251 -2300
4| -119-1201 |-2975-3000i  |-119-120i [-2975+3000] -5950
5| 122-597i | 3050-14925i | 122+597i | 3050+14925] 6100

Tab. 21.4 Funktionsldsung einer homogenen, linearen Differenzenglei-
chung zweiten Grades mit konjugiert komplexen Wurzeln

Die entsprechende Regressionsldsung zeigt Tabelle 21,5

(o) =
t Ly (t-1) -13Y(t-2) by {t-1)-13Y(t-2)
0 = - 50
1 - = 100
2 400 -650 -250
3 -1000 -1300 -2300
L -1 =9200 +3250 =5950
5 -23800 +29900 +6100

Tabelle 21.5 RegressionsiBsung einer homogenen, linearen Differen-
zengleichung zweiten Grades mit konjugiert komplexen
Wurzeln

Man erkennt, daB die Funktions- und Regressionsl®sungen miteinan-

der libereinstimmen. Angeéichts der beiden L&sungen liegt die Frage
nahe, welche Vorteile in diesem Fall eine Funktionsldsung gegeniiber
ihrer entsprechenden Regressionsldsung aufweist. Denn die Funktions-
18sung (21.49) ermdglicht wegen des Auftretens von | keine {liberschau-
bare Beurteilung des Zeitverlaufes von Y(t).

Im Falle von Endgleichungen, in deren Wurzeln der Ausdruck i auftritt,
wird diese Uberschaubarkeit wiederhergestellt, wenn man dievFunktions—

16sung .in ihre sogenannte trigonometrische Form Uberflihrt. Es 188t
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sich vorausgreifend beispielsweise zeigen, daB die Funktionsidsung un-

seres Beispiels, d.h.

Y(t) = 25(2+3i)% + 25(2-3i)¢t

auch durch die Funktion
Y(t) = 3,605555[50c0556°18" ]

beschrieben werden kann. Diese Darstellungsform erlaubt eine besse-
re Beurteilung des Systemverhaltens. Daher wollen wir uns im ndch-
sten Abschnitt mit dem Problem der Bestimmung der trigonometrischen

Formen von Funktionsl&sungen befassen.

a8) Trigonometrische Form der Funktionsl&sung homogener Endgleichun-

gen zweiten Grades mit konjugiert komplexen Wurzeln

Stellt man bei der Analyse einer Endgleichung zweiten Grades fest,
daB b>a2/h, dann erh&lt man als Wurzeln der charakteristischen Glei-

chung Ausdriicke wie zum Beispiel

A

1 2 + 3i

Az = 2 = 31

Derartige Ausdrlicke bezeichnet man als komplexe Zahlen. Komplexe Zah-
len setzen sich aus zwei Komponenten zusammen: einem .Realteil, d.h. 4
einer reellen Zahl und einem imagindren Teil, d.h. einer mit i multi-
plizierten reellen Zahl. Zwei komplexe Zahlen werden als konjugiert
komplex bezeichnet, wenn sie sich nur im Vorzeichen ihres Imagindrtei-
les unterscheiden. Ist eine kompiexe Zahl die Wurzel einer charakte-
ristischen Gleichuﬁg, so ist ihr konjugiert komplexes Gegenstiick stets
auch eine Wurzel dieser charakteristischen Gleichung. Komplexe Zahlen
lassen sich geometrisch auf der sogenannten GauBschen Zahlenebene dar-
stellen. Diese GauBsche Zahlenebene wird durch ein rechtwinkliges Ko-
ordinatensystem beschrieben, dessen Abszissenwerte die Realteile ei-
ner komplexen Zahl beschreiben,Awéhrend die Ordinatenwerte die Achse
der imagindren Zahlen bilden. Jeder komplexen Zahl mit einem bestimm-
ten Real- und Imagindrteil entspricht daher ein bestimmter Punkt in

der GauBschen Zahlenebene.



IMAGINARTEIL

&= REALTEIL

Abb. 21.2 Darstellung eines Paars konjugiert komplexer Wurzeln in
der GauBschen Zahlenebene

Bezeichnen wir eine konjugiert komplexe Wurzel mit'A1’i=diBi, so ist
der geometrische Ort beider Wurzeln aus Abbildung 21.2 zu erkennen.
Komplexe Zahlen kSnnen in der GauBschen Zahlenebene auch durch ande-
re MaBsysteme als das bisher beschriebene kartesische Koordinatensy4
stem gekennzeichnet werden. Als ein weiteres System zur Kennzeich-

nung der Lage komplexer Zahlen bietet sich das Polarkoordinatensy-

stem an. Eine komplexe Zahl kann in einem Polarkoordinatensystem er-
schopfend durch die Lange eines vom Nullpunkt>ausgehenden Fahrstrah-
les und dem Winkel ¢ dieses Fahrstrahles mit der positiven Halbach-
se dargestellt werden. |

Abbildung 21.3 zeigt eine derartige Polarkoordinatendarstellung einer
komplexen Zahl. Der Winkel des Fahrstrahles wird auch Abweichung ge-

nannt.
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b = - - - - - -

Abb. 21.3 Kennzeichnung einer komplexen Zahl in einem Polarkoordi-
natensystem

Die GroBe r bezeichnet man als den Modul oder Absolutbetrag der kom-

plexen Zahl. Er berechnet sich nach dem Satz des Pythagoras aus:
W T ~ (21.50)

Weiterhin bestehen die Beziehungen

sine = £ (21.51)
und
cosy = % | (21.52)

Die konjugiert komplexen Wurzeln

>\1=0.+Bi
und
>\2=a-Bi
werden mit (21.51) und (21.52)

Ay = r(cosv+ising)

A, r(cose-ising)
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Nach dem Satz von Moivre gilt flr die Potenzen von Ay und Agt

A? = (a-i—Bi)t = rt(coswt+isin¢t)
t ¢ ¢ fOr t=0s2,35» (21.53) -
Ay = (a~Bi) = r (cospt-isinegt)

Setzen wir die Ausdriicke fur Af und kz in die allgemeine Funktions-

18sung (21.41) ein, dann folgt

Y(t) =, (arsi) " + C,la-pi) "
oder 7
| Y(t) = rt[C1(cos¢t+isin¢t)+C2(coswt-isin¢t)]
oder ;
Y(t) = rt[(C1+C2)cos¢t+(C1-C2)isinwt] x (21.54)

Unter Verwendung der Definition von C, und C, in (21.43) und (21.44)
folgt

WY (0)=Y(1) . A1¥(0)-Y(1)

C, +C

und
T Y(0) | ' (21.55)
Fur (C]-Cz)i in (21.54) gilt

4 -Y(1 Y(0)-Y(1),.
(C,-C,)i = (Azyiozk SDRS i 1XY( ))I
2 4] 1 2
und mit x]’2=ai8i folgt

(C1-C2)i = [Y(1)-aY(0)1/B (21.56)

Beide Koeffizienten vor den trigonometrischen Funktionen sind daher
reell. Mit (21.55) und (21.56) in (21.54) erhalten wir die Funktions-

lasung

Y(t) = rt{Y(D)C°5¢t+[[Y(1)'GY(O)]/B]sin¢t} o
Definiert man

A=Y(0) und B = av(0)+2y(1)
und berlicksichtigt man, daB

und B =

o = -

N
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gilt, dann folgt
Y(t) = rt(Acoswt+Bcos¢t)

Der Winkel v berechnet sich wegen (21.52) mit

a a
¢ = arccos(?) = arccos(i?)

Zur Erhdhung der Ubersichtlichkeit widre es wlinschenswert, eine Funk-
tions18sung von Y(t) zu gewinnen, die im Gegensatz zu (21.57) nur von
einer trigonometrischen Funktion abhdngig ist. Das ist auf folgende

Weise mSgTich. Setzen wir

C1 + Cz = Dcosw (21.58)
C1 = C2 = Dsinw
so erhalten wir mit (21,54)
¥it) = rt(Dcoswcoswt+Dsinwsinwt)
oder
Y(t) = rtD(coswcoswt+sinwsin¢t) (21.59)

Unter Verwendung des elementaren trigonometrischen Zusammenhanges
coswcosPt + sinwsinet = cos(pt-w)

folgt aus (21.59)
Y(t) = r Dcos(pt-u) - (21.60)

Die Parameter D und w in (21.60) bestimmen sich aus (21.58) mit:

D = \/z(c%+c2) (21.61)

2
und
; _sinw  _ J;thZ
tanw = —— = C]+C2 (21.62)

Man erkennt, daB die Cosinusfunktion dieselben Werte flir t=0,2n,br
usw. -annimmt. Da sich die Funktion alle 2n/¢ Zeiteinheiten wiederho]f,
stellt sie eine periodische Funktion mit einer Zyklusl&nge von 2rn/¢
Zeiteinheiten dar. Als Beispiel ziehen wir die auf Seite 185 ange- |

fiuhrte Endgleichung

Y(t) - 4Y(t-1) + 13Y(t-2) =0
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jedoch mit den Anfangswerten Y(0)=20 und Y(1)=50 heran. Sie besitzt,

wie bereits festgestellt, die konjugiert komplexen Wurzeln

Der Modul r berechnet sich nach (21.50) aus
r = V22432 = 3,60555

Nach (21.51) wfrd

B = 3%3 = 0,832

‘Anhand einer trigonometrischen Tabelle bestimmen wir den Winkel v mit
0~56°18" . |
Mit (21.55) und (21.56) werden

C1 + C2 = 20
und
: ' , 1
(Cy=Cp)i = (50-2%20)/3 = —
Unter Zugrundelegung von Gleichung (21.54) ergibt sich
Y(t) = 3,60555t[20c0556018‘t+%?sin56o18‘t]

Zur Ermittlung der nur von einer trigonometischen Funktion abhdngi-
 gen LSsung der Endgleichung sind w und A zu ermitteln. Es ist gemiB
(21.62) )

tany = sioe =

- 203 6
Aus einer trigonometrischen Tabelle ermitteln wir: wz9°28'.

Nach (21.61) wird :
35,2, (25,2,
2\/;[(—§0 +(jr) ]

D

d.h.
D

20,276
Die Funktionsl®sung lautet mit (21.60)

Y(t) = 3,60555%%20,276cos (56°18't-9°28")



Zum besseren Verstdndnis des dynamischen Verhaltens eines Zeitverlau-
fes, welcher durch die Gieichungen (21.57) oder (21.60) beschrieben
"wird, ist es sinnvoll, die Sinus- und Cosinuskomponenten im Hinblick

auf ihren Beitrag zum Zeitverlauf etwas eingehender zu untersuchen.

Die Cosinus- und Sinusfunktion sind Fﬁnktionen, deren Ordinatenwer-

te in Abhdngigkeit von dem Winkel ¢ bestimmt werden.

Man erkennt, daB es sich um periodische Funktionen mit einer Periode
von 360° Grad handelt, die sich zwischen 1 und -1 bewegen.

In Gleichuné (21.54) treten die Ausdriicke cosyt und singt auf. Der _
Ausdruck vt charakterisiert ein bestimmtes WinkelmaB. Ist v beispiels-
weise 60°, so beschreibt cosb0t mit t=0,1,2,... die Ordinatenwerte

der Sinusfunktion bei den Abszissenwerten 00, 600, 120° usw.. Gra-
phisch gesehen wird aus der Cosinusfunktion in gleichbleibenden Ab-
szissenabstinden ein Ordinatenwert entnommen. In Abbildung 21.4 sind

diese Ordinatenwerte durch Punkte gekennzeichnet.

0 : ;- + B
90° 1800 27003600 4500 ?
- ] o
+ e - -+ — 4 =
O 1 2 3 4 5 6 T t

Abb. 21.4 Ordinatenwerte einer Cosinusfunktion in den Punkten ¢=60t
fir t=0,1,2,...



19k

Analoges gilt flr die Sinusfunktion. Die Ausdrilicke cosyt und singt
besitzen daher einen zwischen +1 und -1 fluktuierenden Verlauf. lhre
Multiplikation mit den Konstanten Y(0) bzw. [Y(1)-aY(0)1/8 in Glei-
chung (21.57) vergrdBert oder verkieinert die Amplitude ihres wellen-
férmigen Verlaufes. Der Ausdruck in der geschweiften Klammer der Glei-
chung (21.57) reprasentiert somit eine Uberlagerung von zwei Schwin-
gungen mit begrenztem Schwingungsausschlag. Entscheidend fiir die zeit-
liche Entwicklung erweist sich damit der Modul r. Ist r>1, so explo-

diert das System, wdhrend es im Falle r<l gegen Null konvergiert.

B) Funktionsl®&sung inhomogener Endgleichungen zweiten Grades

Eine inhomogene Endgleichung zweiten Grades, d.h.
Y(t) + aY(t-1) + bY(t-2) = E(t) (21.63)

besitzt eine Funktionsl®sung, die sich wie im Falle inhomogener End-
gleichungen ersten Grades aus der Summe der speziellen L8sung von
Gleichung (21.63) und der Funktionsldsung der entspréchenden homoge-
nen Endgleichung von (21.63) zusammensetzt.

Der Beweis ‘ergibt sich analog zum Fall einer Endgleichung ersten Gra-
des und wird daher kurz.gefaBt.

Ist Y(t) eine spezielle Ldsung von (21.63), so folgt aus

Y(t) + aY(t-1) + bY(t-2)

Y(t) + aY(t-1) + bY(t-2)

E(t)
E(t)

durch Subtraktion der unteren von der oberen Gleichung

Y(t) = V(t) + alY(t=1)=Y(t=-1)1 + b[Y(t-2)-Y(t-2)]1 = 0 | (21.64)
Definiert man

Y(t) = Y(1) - V(&) | | (21.65)
so folgt mit (21.64)

Y(t) + a¥(t-1) + b¥(t-2)=0 (21.66)
Die allgemeine L8sung von Y(t) ist im Falle ungleicher Wurzeln

VUR) & Boay + Bk (21.67)
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Aus Gleichung (21.65) folgt daher

Y(t) = c1xf + czx; + V(t) (21.68)

Im Falle gleicher Wurzeln ergibt sich unter Berlicksichtigung der in

diesem Falle zu verwendenden Funktionsl&sung der homogenen Glei-

chung:
Y(t) = [C1+tC2]At + V(t) | (21.69)

Im Falle ungleicher reeller Wurzein werden die Konstanten C1 und C2

durch:
Y(0) =C, +C, + Y(t)

Y1) = C;%

Mt CZAZ + Y(t)

auf die Anfangswerte und die spezielle L8sung zurlickgefiihrt und be-

stimmen sich mit
¢ o L) -F(6)Do-Y (1) +Y(t)

1 Ry
und _ _ (21.70)
o o= LY(0) V(e g4y (1) -V (¢)
2 e

Im_Falle gleicher Wurzeln bestimmen sich C1 und Cz aus dem Gleichungs-

system:
Y(0) = C, + Y(t)
Y(1) = (C44C) A + Y(t)
d.h.
¢, = Y(0) - Y(t)
und _ _ (21.71)
c, = Y _yg) 4 v(w)

Die spezielle L&sung Y(t) soll nur fiir den Fall E(t)=E=konst. be-
trachtet werden. Sind die Wurzeln ungleich, so ist als spezielle L&-

sung der Ansatz

E

Y(t) = e (21.72)

zu wdhlen. Bei gleichen Wurzeln dagegen ist auf den Ansatz
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Y =
(t) (a+2)2

zurickzugreifen.

(21.73)

Ein Beispiel soll das geschilderte Verfahren abschlieBen. Zu ermit-

teln ist die Funktionsl&sung der inhomogenen Endgleichung
Y(t) + 1,5Y(t-1) - Y(t-2) = 120

mit den Anfangswerten Y(0)=30 und Y(1)=80. Die Wurzeln ihrer charak-
teristischen Gleichung bestimmen sich nach (21.36) mit A1=0,5 und
k2=-2,0. Da die Wurzeln ungleich sind, wird die spezielle L&sung ent-
sprechend Gleichung (21.72) bestimmt, d.h.

120 _ 120 _
1+1,5-1 ~ 1,5 ~

Die Funktionsl®sung bestimmt sich nach Gleichung (21.68) durch
. )
)

Y(t) = 80

Y(t) = ¢, (0,5" + cz(-z)t + 80

Unter weiterer Spezifizierung von C; und C, gema (21.70) folgt

Y(t) = -40(0,5)% - 10(-2)* + 80

Funktionsl8sung _" Regressions]ésunb
tlo,5° 1(-2)F|-40(0,5) F|-10(-2) Y 80 |y(v) {ly(t) | -1,5y(t-1){y(t-2)] 120
01 1 -4o -10 80 | 30 30 » o -
10,5 -2 -20 20 80 | 80 80 - - -
12 10,25 4 -10 -40 80 30 30 -120 30 120
310,125 -8 -5 80 80 | 155 155 - 45 80 120
410,0625 .]6 ol -160 80 |-82,5/-82,5 -232,5 30 120

Tab. 21.6 Funktions- und Regressionsldsung einer inhomogenen, li-
nearen Endgleichung zweiten Grades mit E(t)=120

Tabelle 21.7 liefert eine zusammenfassende Ubersicht der verschiede-
nen parametergenerellen Funktionsi®sungen der homogenen Gleichung.
Den Fall einer inhomogenen Endgleichung mit einer exogenen Variablen
E(t)=E (E=konst.) zeigt Tabelle 21.8
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Beding- Wurzelﬁ der Bestimmung der Parameter generelle
ung charakt. Glei- Konstanten Funktionsl8sung
chung 3
I — — ——— 5 —— e R T
\ =__E+-1/az_b .. ;Y (0)-Y (1)
2 T 27 VE 1 LA et
b <%_ ; | Y(t)=C1>‘1+C2A-2
A= -2 -1/ -b
25773 I Y(U“)\]Y(O)
o P e
2 Az-k‘
% e 2 la t :
2 =3t iVig-bl} A=v(0) Y(t)=r [Acospt+Bsinet]
bs & ' ,
4 = -
Al=_§“., '%--bl B x aY(0)+2Y(1) Y =arccos ( =)
2
V|12 -5 L az-hb‘
: L N
= 2 = = =-3 _ €
b= | A=r,=A=-3 L0 . Y(t)=[c +tc, n
g =
A

Tab. 21.7 Parametergenerelle Funktionsldsungen der homogenen End-
gleichung zweiten Grades Y(t)+aY(t-1)+bY(t-2)=0

Bedin-| Wurzeln der Spezielle Konstante C1 und C2 Parametergenerelle
gung Endgleichung |L&sung Funktions18sung
“Y(t)) Ap=Y(1)+Y
5 M“"g‘* _z__ b . = (Y(0) Yitii 2=Y(1)+Y(t) . o
b <3~ . ,\/;T—' Y(t) et _2 1 Y(£)=C 2 +C, 2+ (1)
r=-5-Yi—0b C,=Y(0)-C,-¥(¢)
a al < ten .
A==5+i\|g—-bl A=Y (0)-Y(t) Y(t)=r [Acospt+Bsingt]
, £ ) 5
S 'aZ_b|V(t)=W;+‘E 5 a(F(8)-Y(0))-2v(1)42¥(¢) | ¥marecos(zp)
Bl R ) a a2 a-hb
-2 ir"b[ r= r'f'l——r—l
2 C,=Y(0)-Y(t)
b= h=-2 (== T _ v(e)=(c e 2t —E
(a+2) 7| Cp=mrtg—== -¥ (0) +Y (1) (a+2)

Tab. 21.8 Parametergenerelle Funktionsl&sungen der inhomogenen End-
gleichung zweiten Grades Y(t)+aY(t-1)+bY(t-2)=E
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ac) Funktionsidsung von Endgleichungen n-ten Grades

Das flir Endgleichungen ersten und zweiten Grades besprochene L8sungs-
verfahren gilt im Prinzip auch flir Endgleichungen beliebigen Grades:

Aus der homogenen Endgleichung n-ten Grades

Y(t) + a1Y(t-1) +ot anY(t-n) = 0

gewinnt man durch Substitution von Y(t-i)=>\n-l die charakteristische
Gleichung
x” + a An_1 +...+ a A+a =0
1 n-1 n

Nach dem GauBschen Hauptsatz der Algebra besitzt ein derartiges Po-
lynom n-ten Grades genau n Wurzeln A1,A2,..,Xn. Der auszuwdhlende LO-
sungsansatz hdngt von der Art der Wurzeln ab. Flr die Teilmenge der

reellen und verschiedenen Wurzeln ist der L&sungsansatz

t t ite t
C1A1 o CZAZ P w7k Cn_]kn_1 + CnAn
aufzunehmen.

Im Falle einer s-fach auftretenden gleichen Wurzel ist der Ausdruck

2 s=1,.t
(C]+C2t+c t +...+Cst i3

3
in die Ldsung mit einzufligen.

Falls ein Paar konjugiert komplexer Wurzeln s-mal vorliegt, ist der
Ausdruck

ty 2 s-1 2 s~-1, .,
r[(A1+A2t-+A3t f...+Ast )cospt + (B1+th+83t +...+Bst Ysinot]

in den LOsungsansatz einzufligen. In einer Endgleichung n-ten Grades
treten demnach n Konstante auf, die unter Vorgabe der Anfangswerte
Y(0),Y(1),...,Y(n-1) bestimmt werden k&nnen.

im Falle der inhomogenen Endgleichung
Y(t) + a]Y(f-1) oot anY(t-n) = E(t)

setzt sich die FunktionsiBsung stets aus einer speziellen Ldsung Y(t)
und der entsprechenden Funktionsldsung der homogenen Endgleichung
Y(t) zusammen.

Besteht der die exogene Variable beschreibende Formelausdruck aus ei-

: . " i . 2
ner linearen Kombination der Terme a , sinct, cosct, tp, dann ist
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zur Auffindung der speziellen L3sung ein als 'Methode der unbestimm-
ten Koeffizienten' bezeichnetes Verfahren anwendbar. [83,5.32f]
Endgleichungen, deren Grad h&her als drei ist, lassen sich allerdings
nicht mehr in Form parametergenereller Funktionsl&sungen darstellen. .
Nach einem Theorem von GALO! ist es nicht mdglich, die Wurzeln von |
Polynomen vierten Grades und hSher als Funktionen ihrer Koeffiiien-
ten auszudrilicken. [162,5.92f]

Die Wurzeln der charakteristischen Gleichung sind in diesen F&dllen
nur durch ﬁéherungen zu bestimmen. Es stehen dazu leistungsfdhige
EDV-Programme zur Verfiligung. Die wohl aufwendigste Bestimmung der
Wurzeln einer charakteristischen Gleichung wurde von HOWERY durchge-
fuhrt. Im Rahmen der Linearisierung eines dynamischen Modells der
amerikanischen Wirtschaft untersuchte er eine charakteristische Glei-

chung 56sten Grades und bestimmte ihre 56 Wurzeln. [92,S.654]

b) Empirische Kennzeichen linearer Systeme

Mit den Verfahren zur Ermittlung von Funktionsi&sungen haben wir ei-

ne Grundlage geschaffen, um bestimmte typenspezifische Implikationen

linearer Systeme zu erdrtern.

Wie erwdhnt, wird das Studium dynamischer Systeme oft unter Verwen-
dung des Prinzips eines schwarzen Kastens vorgenommen. Als Eingangs-
und AusgangsgréBen dieses schwarzen Kastens kdnnen die unverzdgerten
exogenen und endogenen Variablen angesehen werden. Viele empirisch
relevante Implikationen eines dynamischen Systems lassen sich dadurch
ermitteln, daB man unter Festlegung bestimmter Efngénge (d.h. Ver-
l3ufe der exogenen Variablen) die AusgSnge (d.h. die Verldufe der

endogenen Variablen) betrachtet.

E, (t) —_—_— . — i ¢
Eh (t) .—-—-—-"""" I Ym(t)

Abb. 21.5 Dynamisches System in der Deutungsweise eines schwarzen
Kastens '



In der Regelungstechnik werden derartige Ein- und Ausgangsuntersu-

chungen am System selbst durchgefiihrt. Wie erwdhnt, ist dies in den

wirtschafts- und sozialwissenschaftlichen Systemen aus praktischen
Griinden nicht m8glich. Man kann jedoch eine Schwarze-Kasten-Betrach-
tung am Modell durchfiihren, d.h. ein Modell eines Systems wird hin-
sichtlich der Beziehungen zwischen seinen Ein- und AusgangsgrdBen un-
tersucht.

Die artspezifischen Kennzeichen des Transformationsmechanismus zwi-
schen Ein- und Ausgd@ngen linearer dynamischer Systeme lassen sich in

Form 2zweier Postulate fassen, die als das Postulat der ungestdrten

'Uberiagerung und das Postulat der Addquanz von Ursache und Wirkung be-

zeichnet werden kdnnen. .

Das Postulat der ungestdrten Uberlagerung besagt, daB der durch eine
bestimmte EingangsgroBe bewirkte Zeitverliauf einer Ausgangsgr&Be un-
abh3ngig von anderen Eingdngen bestimmt werden kann. Der resultieren-
de AusgangsgroBenverlauf bestimmt sich dabei aus der Addition der iso-
liert ermittelten AusgangsgroBenverldufe beziliglich einer Eingangsgrds-
se. Der Zeitverlauf der endogenen Variablen Yv(t) kann daher in fol-

gen Komponenten zerlegt werden
v, () =AY (e)[E;] + AY () [E,] +...+ aY (£)[E ]

Hierbei ist AYv(t][Ej] die Komponente, die durch die exogene (Ein-
gangs)-Variable Ej bewirkt wurde.7
Zur Verdeutlichung des Prinzips der ungestdrten Uberlagerung wird die

Endgleichung eines MA-Systems
Y(t) = (a+ap)Y(t-1) - aBY(t-2) + 1_(t)

_herangezogen.'
Eine Endgleichung wird im Rahmen der Schwarze-Kasten-Betrachtung als

Ubergangsfunktion des schwarzen Kastens bezeichnet. Abbildung 21.6

zeigt die Deutung des Zusammenhanges zwischen den Variablen Y und Ia
eines MA-Modells in Form eines schwarzen Kastens:
7 Es wird unterstellt, daB sich das System im Gleichgewicht befindet.

Andernfalls miBte in die Gleichung ein weiteres Glied eingefiihrt
werden, welches den EinfluB der Anfangswerte zum Ausdruck bringt.
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Ia(t3 Y(td

Abb. 21.6 Interpretation eines MA-Systems als ein schwarzer Kasten

Als EingangsgriéBenverlauf sei die Sprungfunktion la(t)=100 gewdhlt.
Das System soll sich, wie erwdhnt, im Gleichgewicht befinden. Wir
wdhlen aus Einfachheitsgriinden Y(0)=0 und Y(1)=0. Nach dem Postulat
der ungestdrten Uberlagerung kann Y(t) beispielsweise dadurch ermit-
telt werden, daB man die Zeitverldufe der Sprunganworten von einem
EingangsverlauF'E1(t)=25 und Ez(t)=75 ermittelt und aufsummiert. Es
wird damit behauptet, daB die Summe der beiden endogenen Variablen
Y](t) und YZ(t)

Y](t) = (u+aB)YIﬁt-1) - aBY1(t—2) + 75
Yz(t) = (ums)vz(t»t) - aBYz(t-Z) + 25
Y1(t) + Yz(t) = (a+af3)[‘(1(t-1)+\'2(t-1)] - aB[Y](t-Z)-I-Yz(t-Z)] + 100

dem Zeitpfad der Differenzengleichung
Y(t) = (atap)Y(t-1) - aBY(t-2) + 100

entspricht. Dieser Fall liegt genau vor, denn durch die Einsetzung
von YI(t)+Y2(t)=Y(t) gelangen wir zu der gewdnschten Gleichung. Das
Prinzip der ungestdrten Uberlagerung ermdglicht eine wesentliche Ver-
einfachung der Analyse linearer Systeme, da die Einfllisse der exoge-

nen Variablen isoliert voneinander betrachtet werden k&nnen.

Durch das Postulat der Addquanz von Ursache und Wirkung wird ein wei-
teres Kennzeichen der Beziehungen zwischen Ein- und Ausgdngen eines
linearen Modells beschrieben.

Vergegenwdrtigen wir uns den beliebigen Verlauf einer EingangsgriBe
E(t). Diesef EingangsgrdBenverlauf bewirkt wegen des Postulats der
ungestorten Uberlagerung einen bestimmten isoliert zu betrachtenden
AusgangsgroBenverlauf Ye(t). Das Postulat der Addquanz von Ursache

und Wirkung besagt, daB eine k-fache Erhdhung (Verminderung) des Ein-
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gangsgroBenveriaufes kE(t) stets eine k-fache Erh8hung (Verminderung)
des AusgangsgroBenverlaufes, d.h. kYe(t), zur Folge hat.

Die Glltigkeit beider Postulate bringt zum Ausdruck, daB ein linea-
res dynamisches System eine ganz bestimmte von der HBhe der Eingdnge
unabhdngige 'Maschinerie' besitzt, die EingangsgréBen und Ausgangsgros-
sen umwandelt. Mit diesem durch die beiden Postulate bereits ndher

gekennzeichneten Transformationsmechanismus eines linearen dynami-

schen Systems wollen wir uns im folgenden ausfiihriicher beschaftigen.

ba) Ubergangsverhalten linearer Systeme

o) Allgemeine Kennzeichnung des Ubergangsverhaltens

Kennzeichnend fiir ein lineares dynamisches System ist, wie gesagt,
sein Transformationsmechanismus, d.h. die Art und Weise, mit der ei-
ne bestimmte EingangsgrdBe in eine AusgangsgroBe umgewandelt wird.
‘Die bisher erdrterten Prinzipien der ungestdrten Uberlagerung und der
Adaquanz von Ursache und Wirkung liefern eine Information Uber typi-
sche Kennzeichen aller linearen dynamischen Modelle. Im Hinblick auf

ein einzelnes System stellt sich jedoch die Frage nach der Art des

Transformationsmechanismus in diesem speziellen Fall. Zur Einzelkenn-

zeichnung linearer Systeme verwendet man sogenannte Testantworten.
Einem System, welches sich in einem Niveaugleichgewicht befindet,

wird eine standardisierte EingangsgroBe aufgeprdgt, die auch als Test-
funktion bezeichnet wird.

Als Testfunktionen werden am hdufigsten der Einheitsimpuls und der

Einheitssprung verwendet.

Ein Einheitsimpuls kennzeichnet eine EingangsgroBe, die im Zeitpunkt
t=0 Eins betrdgt und flir alle sonstigen Zeitpunkte Null ist, d.h.

w(oy o 1 fir t=0
E(E) = 1y fir te...=2,-1,1,2,...

Ein Einheitsprung wird gekennzeichnet durch:

3% - T e =01 52006
B = {) for t=-1.22.23. ...

Der von einem Einheitsimpuls (bei einem Niveaugleichgewicht von Null)
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hervorgerufene Verlauf der AusgangsgrdBe wird als Einheitsimpulsant-

wort Y¥(t) bezeichnet. Entsprechend leitet sich die Einheitssprung-

antwort Y*%(t) her, welche auf Seite 64 kurz gekennzeichnet wurde.
Die graphische Darstellung der beiden Testfunktionsverl&dufe zeigen
Abbildung 21.7 und 21.8.

'

A

Abb. 21.8 Einheitssprung als TestgrdBe eines dynamischen Systems

Lineare Systeme zeigen sehr verschiedene Arten von Testantworten.

Da im Prinzip unendlich viele Testantworten linearer Systeme mdglich
sind, ist es notwendig, in einem ersten Uberblick bestimmte Teilmen-
gen dynamisch linearer Systeme zu unterscheiden, die dasselbe quali-

tative Verhalten aufweisen. Um solche Teilmengen zu isolieren, be-

trachten wir die Funktionsldsung der Impulsantwort einer Endgleichung
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zweiten Grades. Die entwickelte Klassifizierung versuchen wir daran

anschlieBend auf eine Endgleichung beliebigen Grades zu libertragen,
Eine Einheitsimpulsantwort kann bei entsprechender Wahl der Anfangs-

werte durch eine homogene Endgleichung beschrieben werden. Im Falle

der Endgieichung
Y(t) = -ay(t-1) - bY(t-2) + E¥(t) Y (=1)=Y(-2)=0 (21.74)

ergeben sich die Werte Y(0)=1 und Y(1)=-a. Setzt man Y(0)=Z(0) und
Y(1)=Z(1), so beschreibt die homogene Endgleichung

Z(t) = -aZ(t-1) - bzZ(t-2)

mit 2(0)=1 und Z(1)=-a die Einheitsimpulsantwort, welche durch (21.74)
bewirkt wird.
Bei Wahl dieser Anfangswerte erhdlt man entsprechend Tabelle 21.7 die

Funktionsldsung der Einheitsimpulsantwort

a) im Falle reeller und ungleicher Wurzeln

“A1 Lt Ay Lt
Z(t) =A_2?J>T,""1 bt X, (21.75)

b) im Falle reeller und gleicher Wurzeln

2(t) = (1+t)A" (21.76)
und

c) im Falle konjugiert komplexer Wurzeln

—_—i singt] (21.77)
2
2V~ -4

Als Beispiel soll die Einheitsimpulsantwort des Volkseinkommens Y im

Z(t) = rt[cos¢t-

Rahmen des MA-Modells ermittelt werden. Die Endgleichung von Y lautet
gemdB (12.9):

Y(t) = (ataB)Y(t=1) - aBY(t-2) + la(t)

Die Wurzeln der charakteristischen Gleichung berechnen sich entspre-
chend (21.36) mit

_ ataB (u+a8)2_
M,aa="3 ¢ § B
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Abb. 21.9 Typische Einheitsimpulsantworten im Falle eines ged3dmpften
Systemverhaltens



Mit a=0,72 und B=0,25 werden k1=0,3 und l2=ﬂ,5, d.h. die Wurzeln sind
reell und ungleich. Gem3B (21.75) ergibt sich die Funktionsl8sung der

Einhei tsimpulsantwort
z(t) = 2(0,6)" - (0,3)°

Die Einheitsimpulsantwort einer Systemvariablen 188t einige Riick-
schllisse auf das dynamische Systemverhalten zu.

Sind in den Einheitsimpulsantworten (21.75) und (21.76) die Absolut-
werte der Wurzeln [A;|<1 und |A,[<1, dann weist das System ein ge-
démpftes oder stabiles Verhalten auf. Dasselbe gilt fiir r<1 im Falle
von Gleichung (21.77). Z(t) konvergiert hierbei gegen Null. Sind in
den Fallen (21.75) und (21.76) die Wurzeln M und Ay positiv und klei-
ner Eins, d.h. 0<x1’2<1, dann zeigt das System ein monoton geddmpf-
tes Verhalten. Typisch flir diese Verhaltensweise, die durch den Fall 1
in Abbildung 21.9 beschrieben wird, ist die fluktuationsfreie Ann3-
‘herung des Zeitpfades an den Nullpunkt. Das Achsenkreuz mit dem Ein-
heitskreis kennzeichnet die Gaussche Zahlenebene, aus welcher je-
weils die Werte der Wurzeln zu erkennen sind. _

Sind in den Einheitsimpulsantworten (21.75) und (21.76) die Wurzeln
negativ und gréBer minus Eins, d.h. D>k1.2>-1, dann ist das System

fluktuierend ged3mpft, da die Werte der Wurzeln im Zeitverlauf stdn-

dig ihre Vorzeichen wechseln. Ein Beispiel eines derartigen fluktuie-
rend geddmpften Verhaltens zeigt Fall 2 in Abbildung 21.9.,
Sind die Wurzeln dagegen konjugiert komplex, so liegt ein oszillato-

risch geddmpftes Verhalten mit einem Schwingungszyklus von 27 /¢ vor,

wie es durch Fall 3 beschrieben wird.
Ein System mit gleichen Wurzeln A,=A,=0,86 wird durch Fall L beschrie-
ben. Einheitsimpulsantworten dieser Art zeichnen sich durch einen ein-

gipfeligen Verlauf aus.

Im Falle eines instabilen oder unged3mpften Verhaltens sind zumin-

dest die Absolutwerte einer Wurzel in (21.75) und (21.76) oder der
Modul r in (21.77) groBer als Eins. Auch hier kann man, wie aus Ab-
bildung 21.10 ersichtlich ist, analog zu dem vorher Gesagten zwischen
monoton ungeddmpftem (Fall 5) und oszillatorisch ungeddmpftem Ver-
halten (Fall 6 und 7) unterscheiden.
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Abb. 21.10 Typische Einheitsimpulsantworten im Falle eines unge-
dampften Systemverhaltens
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Flir Systeme hdherer Ordnung bestimmen sich die Funktionsi@sungen der
Einheitsimpulsantworten aus den Komponenten der auf Seite 198 angege-
benen allgemeinen L&sungsansdtze. Man erkennt daher: Ist zumindest
eine Wurzel oder ein Modul grdBer als Eins, so ist das System unge-
dampft. Sind dagegen s&mtliche Wurzeln und Module kleiner als Eins,

so ist das System gedampft.

B) Stabilitdt als Spezialfall des Ubergangsverhaltens

Die Typisierung bestimmter Verhaltensweisen linearer Systeme steht
in enger Verbindung zu dem bereits erSrterten Stabilitdtskonzept dy-
namischer Systeme.8 Im Sinne dieses Koﬁzeptes kann man einen auf das
System wirkenden Einhéitsimpuls als eine Stérung interpretieren und
den Variablenveriauf Y(t) fiir t=041,..., der ohne die Aufprégung

des Einheitsimpulses realisiert worden wdre, als ungestdrten Zustand

oder Gleichgewichtspfad bezeichnen.

Jede endliche Stdrung eines Systems 1388t sich als eine Summe von Ein-
heitsimpulsen interpretieren. Wegen des Postulats der ungestdrten
Uberlagerung setzt sich die durch die Stérung bedingte Systemantwort
aus der Ordinatensumme der Einheitsimpulsantworten zusammen. |st déher
die Einheitsimpulsantwort begrenzt, so ist auch jede endliche St&rung
begrenzt, d.h. das betrachtete System ist stabil. Da ein System im
Falle von Wurzeln und Moduln, deren Absolutwerte k]eiﬁer als Eins
sind, eine gedampfte Einheitsimpulsantwort besitzt, ist es stets un-
ter diesen Bedingungen auch stabil. Diese Stabilitdtseigenschaft ist
unabh@ngig von der HGhe der Stérung, was zur Folge hat, daB ein 1i-
neares System im Falle von Stabilitdt stets global stabil ist. Wei-
terhin ist diese Stabilitdt stets asymptotisch, denn die geddmpfte
Einheitsimpulsantwort strebt, wie man zum Beispiel aus den Funktions-
18sungen (21.75) bis (21.77) erkennt, stets gegen Null.

Der Begriff eines stabilen Systems verlangt die Existenz eines Gleich-
gewichtspfades, und es stellt sich die Frage, wie in der Funktionsld-
sung einer linearen Differenzengleichung ein derartiger Gleichgewichts-

pfad zum Ausdruck kommt. Die Funktiopr ung einer inhomdgenen Diffe-

renzengleichung

8 Vgl. Seite 75ff
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Y(t) + a1Y(t-1) ta. ot anY(t-n) = E(t) (21.78)

setzt sich bekanntlich aus der generellen FunktionslGsung ihrer ent-
sprechenden homogenen Gleichung Y(t) und einer speziellen Funktions-

16sung Y(t) zusammen, d.h.
v(t) = ¥(t) + Y(t) (21.79)
Die generelle Funktionsldsung Y(t) besitzt hierbei die Form

v _ t %
Y(t) = Coxy +oout cnxn (21.80)

Soll das durch (21.78) beschfiebene System stabil sein, so darf eine
Stérung der HShe S, der das System ausgesetzt wird, nur zu einer Sy-
stemantwort flihren, deren aufsummierte Abweichungen vom Gleichgewicht
einen endlichen Wert ngeben. Man kann in diesem Fall von einer end-
lichen Systemantwort sprechen. Analog zur funktionellen Beschreibung
einer Einheitsimpulsantwort 138t sich die Stdrantwort eines Systems

durch die Funktions18sung seiner homogenen Endgleichung beschreiben,

wenn man als Anfangswerte
Y(0) = S/-an und  Y(1) = Y(2) = ... = Y(n-1) =0

wahlt.
Diese Darstellungsmdglichkeit aber macht deutlich, daB die HGhe der
Stérung S nur in den Koeffizienten C1 bis Cn zum Ausdruck Kpmmt, wdh-
rend die Frage, ob eine endliche Systemantwort gegeben ist, allein
von den Werten der Wurzeln ll bis An abhZngt. Da die generelle Funk-
tionsldsung Y(t), die die Systemst®rung zum Ausdruck bringt, stets
gegen Null konvergiert, wird der Gleichgewichtspfad des Systems stets
durch die spezielle L&sung Y(t) beschrieben, welche jedoch entschei-
dend von dem Verlauf der exogenen Variablen E(t) bestimmt wird.
Besitzt die exogene Variable beispielsweise einen Verlauf der Form
tpat, so kann die spezielle L8sung bzw. der Gleichgewichtspfad des
Systems durch einen Ausdruck der Gestalt

o’ (AgHA, tHA

2 P
ot +...+Apt )

beschrieben werden. Die Koeffizienten AD bis Ap bestimmen sich im kon-

kreten Fall in Abh&ngigkeit von den numerischen Werten der Parameter o
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sowie a, bis a, in (21.?8).9

FUr lineare Systeme zeigt sich damit, daB'ihr Systemgleichgewichtspfad

primdr exogen bestimmt wird. Diese Erkenntnis 13Bt an der befriedigen-
den Anwendbarkeit linearer Modelle Zweifel aufkommen, wenn gerade das
zentrale Element eines linearen Modells, sein Gleichgewichtspfad, kei-
ne endogene Erkl&rung zul&Bt. Hier deuten sich die Grenzen der Lei-
stungsfdhigkeit linearer Modelle im Hinblick auf eine addquate Wirk-

lichkeitsbeschreibung an.

y) Multiplikatoren als MaBzahlen des Ubergangsverhaltens

Der Begriff des Multiplikators kann durch folgende Uberlegung verdeut-

licht werden:

Wird einem System bei Null werdenden Anfangswerten in Periode 0 ein
Einheitsimpuls E* aufgeprdgt, so hat dieser - wie erwdhnt - eine be-
stimmte Impulsantwort Y(0), Y(1),... zur Folge. Die aufsummierten

Werte der Impulsantwort werden durch die unendliche Summe T;.JDDY(T) be-
schrieben. *

Falls das betrachtete System stabil ist, besitzt diese unendliche Su-
mme einen endlichen Grenzwert. Dieser Grenzwert wird als Multiplika-

tor oder praziser als Totalmultiplikator von Y bezliglich E bezeichnet.

Er beschreibt, anschaulich formuliert, die flir die gesamte'Zukunft
aufsummierten 'Wirkungen' einer 'Ursache' in HShe von Eins. Bezeich-
net man die Einheitsimpulsantwort eines stabilen Systems mit Y*(t),
dann bestimmt sich sein Multiplikator M mit

oo

M =T§Dy*(1) (21.81)

Als Interimsmultiplikator bezeichnet man die Komponenten Y¥(t) der

Einheitsimpulsantwort. |lhre Zahl ist unendlich. Von Interesse sind
jedoch vorwiegend die Interimsmultiplikatoren der ersten Periode, weil
sie darliber informieren, wie schnell ein System auf einen Eingang rea-
giert. Die Interimsmultiplikatoren werden durch die Funktionsldsung

einer Einheitsimpulsantwort beschrieben. Besteht ein System aus posi-

9 Die Anpassung dieser Koeffizienten erfolgt anhand der Methode der
unbestimmten Koeffizienten, siehe Seite 198f.
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tiven Interimsmultiplikatoren, so beschreibt die Halbwirkungszeit ei-

nes Systems die Zeitperiode, in der die aufsummierten Interimsmulti-
plikatoren die H&If te des totalen Multiplikatorwertes erreichen.

Nach der Definition des Multiplikators durch Gleichung (21.81) setzt

seine Ermittlung die L&sung einer unendlichen Summe voraus. Es exis-

tiert jedoch ein einfacheres Verfahren zu seiner Bestimmung. Wir ge-
hen von der Annahme aus, einem stabilen System mit Anfangswerten des
Betrages Null werde ein Einheitssprung aufgeprdgt.

Abbildung 21.11, zeigt einen derartigen Fall, in dem der Zeitpfad der
Einheitssprungantwort einem Gleichgewichtspfad M zustrebt. Denkt man
sich das System im Gleichgewicht, so befindet sich auch die Eingangs-
groBe vom Betrag Eins im Gleichgéwicht mit der AusgangsgrtBe vom Be-
trag M. M ist damit der Totalmultiplikator des Systems. Der Gleich-
gewichtspfad der HShe M wird jedoch durch die spezielle L&sung der

Endgleichung

Y(t) + an(t-1) oot anY(t-n) = E¥¥(¢)

beschrieben und ergibt sich analog (21.72) durch

1

"= T, kR
n

Da, wie wir spdter sehen werden, die Ungleichung
n
T§'| 1+a.> 0
eine notwendige Bedingung flir die Stabilitdt eines linearen Systems

bildet, muB M im Falle von Systemstabilitdt stets positiv sein, d.h.

1
ein stabiles System besitzt nur positive Totalmultiplikatoren. g

Die entwickelten Begriffe sollen am Beispiel eines MA-Systems verdeut-
licht werden:

Wir wdhlen o=0,9861 und g=0,7894. Unter der Annahme, daB Ia(t) durch
einen Einheitsimpuls beschrieben wird, erhalten wir die Endgleichung

der Einheitsimpulsantwort
Y(t) = 1,7647Y(t-1) - 0,7785Y(t-2)
mit Y(0)=1 und Y(1)=a+aB

10 Zur angefiihrten Bedingung siehe Seite 215
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Abb. 21.11 Uberlegung zur Bestimmung des Totalmultiplikators eines
dynamischen Systems
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Der Totalmultiplikator M bestimmt sich nach (21.82) mit

1 1

Ul s v e

womit M den Wert M=?2.annimmt.

Die Interimsmultiplikatoren werden durch die Einheitsimpulsantwort
des Systems beschrieben, welche gemd&B (21.76) und mit l1=12=0,8826
die Funktions1dsung

Y*(t) = (1+t)0,8826°

besitzt. Der Verlauf der Interimsmultiplikatoren wird durch Abbil=-
dung 21.12 beschrieben, aus der auch die Halbwirkungszeit des Systems

zu erkennen ist.
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§) Koeffizientenkriterien des Ubergangsverhaltens

Zur Gewinnung der Funktioﬁsiﬁsung einer Endgleichung ist es stets not-
wendig, die Wurzeln der charakteristischen Gleichung zu ermitteln,

Bei Endgleichungen hdher als dritten Grades ist, wie erwdhnt, die Er-
mittlung der Wurzeln nur noch mit Hilfe iterativer Verfahren méglich.
Hat man einen Rechner zur Hand, so ist dies kein Problem, denn es ste-
hen eine Reihe leistungsfdhiger Programme zur Errechnung der Polynom-
wurzeln zur Verfligung. So ist es beispie]swefse mit den heute ge-
brduchlichen Programmen moglich, auf einer mittleren Anlage Polynome
10ten Grades in weniger als einer Sekunde Rechenzeit zu 18sen, wenn
alle Wurzeln reell sind, wdhrend man etwa zwei Sekunden bendtigt,

wenn die meisten Wurzeln komplex sind. [12]

Flir eine schnelle Beurteilung der Stabilitdt eines linearen Systems
bieten sich jedoch auch Verfahren an, mit denen man allein anhand der.
Koeffizienten einer Endgleichung zu einem Urteil gelangt.

Diese sogenannten Koeffizientenkriterien, die die Erflillung bestimm-

ter aus den Koeffizienten gebildeter Ungleichungen fordern, sollen
im folgenden ertrtert werden. Wir wollen zwischen zwei Typen unter-

scheiden: vollstdndigen und unvollistdndigen Koeffizientenkriterien.

Vollstdndige Koeffizientenkriterien geben die notwendigen und hin-
reichenden Bedingungen flir die Stabilitdt eines Systems an. Unvoll-
standige Bedingungen kennzeichnen dagegen nur entweder notwendige'
oder hinreichende Bedingungen.

Die knappsten und lbersichtlichsten Bedingungen wurden von JURY ent-
wickelt und stellen eine wesentliche Vereinfachung der Schuhr-Cohn-
Kriterien dar, die heute noch in der wirtschaftswissenschaftlichen
Literatur verwendet werden. (Siehe zum Beispiel [15])

Ein System mit der Endgleichung
Y(t) + a1Y(t-1) +...+ apY(t-n) = E(t)

ist dann und nur dann stabil, wenn die folgenden Ungleichungen er-
fullt werden. [104]



13
=)
N

ne=3 1) 1 + a, ta, t a3 >0
2) 1 -3 +a,- a; > 0
3) |a3| <1
L) a% -1 < 333 - 3,
n=4 1) 1 + a; ta, tagra > 0
2) 1 - a; +a, - 2, ta, > 0
3) "1 - a% - a2, - a3 >0
L) 13- aﬁ - a,a, + a3 > 0 , ) i
5) aj + 23,3, + 838, =3, - a, - a3 -3 -aa, -

-33 + aha3a1 +1 >0

JURYs Kriterien sind filir Endgleichungen beliebigen Grades formuliert.

Wir beschrdnken uns jedoch auf den Fall von Endgleichungen zweiten

bis vierten Grades, da im Falle von Endgleichungen hSheren Grades die

Zahl der Ungleichungen stark zunimmt und die Ausdriicke so unilbersicht-

lich werden, daB sich eine praktische Anwendung nicht mehr empfiehlt.

Notwendige Stabilitdtsbedingungen sind flir das Vorhandensein von Sta-
bilitdt erforderlich, garantieren jedoch keine Stabilitdt. Systeme,
die die Notwendigkeitsbedingungen nicht erfiillen, sind aber auf je-
den Fall instabil. Die Bedingungen 1) und 2) des Jury-Kriteriums fiUh-
ren verallgemeinert zu den folgenden notwendigen Stabilit&tsbedingun-

gen einer Endgleichung n-ten Grades:

Besonders a) gibt einen ersten Eindruck lber das Modellverhalten.
Weitere notwendige Bedingungen flir die Stabilitdt einer Endgleichung
lauten: [1,S5.215-219]

-

n=2 Iazl <1, 131] <2
n=23 133|<1,-1<32<3,la~ll{3
ne=4 lagl <1, |a3| <h, -2<a, <6, la;| < &

Eine hinreichende Stabilit3tsbedingung liefert:

1>]a,| + lay| +eout 2|
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In den Wirtschaftswissenschaften werden manchmal Modelle in der Er-

kldrungsform einer homogenen Endgleichung, d.h.

Y(t) = m}Y(t-T) - qu(t-Z} oot wnY(t-n)

verwendet, wobei Wy W .. positive Werte sein sollen. Eine hinrei-

: 2"
chende Stabilitdtsbedingung fiir diesen Typ ist: [197,S.104ff.]

>w_ >0

> Wt > B
1 m«l w mn_.l n

2
d.h. das System ist stabil, wenn die Koeffizienten mit zunehmender

Verzbdgerung der endogenen Variablen abnehmen.

-bb) Verhaltensdiagramme linearer Systeme

Die Wurzeln einer Endgleichung bestimmen sich aus ihren Koeffizien-
ten. Im Falle von Endgleichungen zweiten Grades mit den Koeffizien-
ten a, und a, liegt es nahe, ein Verhaltensdiagramm dieses Endglei~-
chungstyps aufzustellen. In einem derartigen Verhaltensdiagramm wer-
den die Koeffizientenausprdgungen als Ordinaten- bzw. Abszissenwerte
definiert. Indem die Bereiche unterschiedlichen Systemverhaltens durch
Ungleichungen mit a, und a, beschrieben werden ktnnen, erhdlt man im
a1/a2 Kocrdinatensystem bestimmte Fldchenbereiche unterschiedlichen
Verhaltens.

Abbildung 21.13 zeigt das Verhaltensdiagramm der Endgleichung

Y(t) + aIY(t—1) + azY(t-Z) = E(t)

Die Gleichungen a1=az+1, a2=-a]-1 und a2=1 folgen aus JURYs Koeffi=-
zientenkriterien auf Seite 214, Die schraffierten Flichen beschrei-
ben den Bereich stabilen Verhaltens. Es ist jedoch eine wesentlich
differenziertere Klassifizierung des Systemverhaltens méglich. Man
kann 14 Fldchenbereiche unterscheiden, in denen unterschiedliche Ver-
haltensweisen auftreten. Als Beispiel seien die ersten flinf Bereiche
angefiihrt:

| Oszillatorisches stabiles Verhalten (Wurzeln konjugiert kom-

plex, Modul kleiner als Eins)

Il Oszillatorisches instabiles Verhalten (Wurzeln konjugiert
komplex, Modul groBer als Eins)

1l Monoton stabiles Verhalten (beide Wurzeln positiv und kilei=-
ner als Eins)
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IV Monoton instabiles Verhalten (beide Wurzein positiv, eine
groBer, eine kleiner als Eins)

V Monoton instabiles Verhalten (beide Wurzeln positiv und gros-
ser als Eins)

usw.

Abb. 21.13 Verhaltensdiagramm einer linearen Endgleichung zweiten
Grades

Manche Fldchenbereiche wie IV und V fallen in dieselbe Klassifizie-

rungskategorie.

Die Ermittlung der verschiedenen Verhaltensbereiche hat sich an der
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Wurzelgleichung

v Vv
*M,2 " 5 %}"az (21.83)

zu orientieren.

Der Fall gleicher Wurzeln wird durch a%=haz beschrieben. Im Falle kon-
jugiert komplexer Wurzeln muB die Ungleichung a%4<h32 erfillt sein.
Diese Bedingung gilt damit flr die Fldchen | und II.

Es empfiehlt sich, zur weiteren Klassifizierung anhand von Gleichung

(21.83) Ausdriicke zu finden, in denen a, und a, direkte Funktionen

von A, und Ay darstellen. Aus Gleichung (21.83) folgt

l] + kz = -a,
oder

a; = =(4,+,) (21.84)
Mit -

I L

12 7 TR TR Y R g

folgt

MA, = a, (21.85)

Anhand von (21.84) und (21.85) kann man auf relativ einfache Art die
'Bereichsabgrenzungen finden, indem man von typischen Wertebereichen
der Wurzeln ausgeht. Beispielsweise wollen wir den Bereich des Sta-
bilitdtsdiagrammes, flir den das System ein monoton stabiles Verhal-
ten aufweist, ermitteln.

Wir wissen bereits, daB nur die Flachen 11, VI, XI'1 und IX inFrage kom-
men. Flr den Fall monotoner Stabilitdt gilt, daB beide Wurzeln posi~-
tiv und kleiner als Eins sind. Daher muB im Falle positiver Wurzeln

auch ihr Produkt 1112 >0 sein. Gleichung (21.85) erfordert deshalb:

a2 >0

Damit kommen nur noch die Fldchen VI und Il in Frage. Da beide Wur-
zeln positiv sein sollen, muB gem3dB (21.84) aI<0 sein. Es zeigt sich
also, daB allein die durch Flﬁche_!ll gekennzeichneten Koordinaten-
werte von a, und a, ein monoton stabiles Verhalten aufweisen.

Abbildung 21.14 zeigt einige ausgewdhlte Impulsantworten verschiede-

ner Verhaltensbereiche.
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Abb. 21.14 Einheitsimpulsantwort und Lage der Wurzeln der charakteri-

stischen Gleichung fiir ausgewZhlte Beispiele einer Endglei~-
chung zweiten Grades
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- <
-

t 4 -+ -
5 10 1.5

Abb. 21.15 Verhaltensdiagramm eines MA-Systems mit ausgewdhlten Ein-
heitssprungantworten

Die Entwicklung von Verhaltensdiagrammen ist besonders dann ange-
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bracht, wenn das betrachtete Modell genau zwei strukturelle Parame=-
ter enthdlt. In diesem Fall ist es sehr instruktiv, ein Verhaltens-
diagramm zu entwickeln, dessen Koordinaten durch die (empirisch in-
terpretierbaren) strukturellen Parameter gebildet werden. Denn man
erkennt, wie die Verdnderungen dieser Parameter zu unterschiedlichen
Verhaltensweisen fiihren. Im Beispiel eines MA-Systems kann anhand der

Endgleichung
Y(t) = (ataB)Y(t-1) - aBY(t-2) + 1_(t)

das in Abbildung 15.8 auf Seite 92 bereits angeflihrte Verhaltensdia-
gramm flir die Parameter o und B entwickelt werden.

Abbildung 21.15 zeigt das Verhaltensdiagramm eines MA-Systems ein-
schiieBlich der Impulsantworten ausgewdhlter Parameterkombinationen.
Jeder Impulsantwort ist das Koordinatensystem einer GauBschen Zahlen-
ebene mit einem Einheitskreis zugeordnet. Es beschreibt die Lage der
Wurzeln der charakteristischen Gleichung im Falle der betreffenden
Parameterkombination. '

Die Entwicklung derartiger Verhaltensdiagramme zeigt die Sensitivi-
t3t des Modells bezliglich der Parameter a und B und liefert damit

wichtige Hinweise fiir seine Gliltigkeit.

c) Hohere Analysemethoden linearer Systeme

ca) Verwendung von Operatoren in linearen Systemen

Zur Untersuchung von Differenzengieichungssystemen ist es oft sehr

vorteilhaft, mit sogenannten Verschiebungsoperatoren zu arbeiten.

Ein Verschiebungsoperator kann als ein Symbol angesehen werden, mit
dessen Hilfe verzbgerte Variable in einer anderen Schreibweise aus-
gedrlickt werden. Mit dem Ausdruck K" kann die verzdgerte Variable
X(t-n) durch

KX (t) = X(t=n) (21.86)

ersetzt werden.
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Die Differenzengleichung
Y(t) + 0,5Y(t-1) + 0,3¥(t-2) = E(t) + 1,1E(t-1)

wiirde unter Verwendung dieser Operatorenschreibweise die Gestalt
Y(t) + 0,5 1¥(t) + 0,3K™2¥(t) = E(t) + 1,1K 'E(t)

annehmen. Der Ausdruck K wird als Verschiebungsoperator bezeichnet.
Die Einflhrung einer derartigen Schreibweise der verzbgerten Variab-
len ist deswegen sinnvoll, weil sich zeigen 18Bt, daB der Verschie-
bungsoperatbr verschiedenen Regeln der Algebra gehorcht. Man kann mit

K" daher Operationen wie mit einer Zahl durchfiihren.
Die Gliltigkeit der wichtigsten algebraischen Regeln sei anhand von

Beispielen aufgezeigt:

(1) Es gilt das Kommutativgesetz, d.h. der Fall a+b=b+a wird erfiillt.
So ist die Beziehung

K3¥() + K2v(t) = K2Y(t) + K 3v(t)
zuldssig, weil auch die entsprechende Differenzengleichung
Y(t-3) + Y(t-2) = Y(t-2) + Y(t-3)
gliltig ist.
(2) Ebenso gilt im Falle einer Multiplikation das Kommutativgesetz,
d.h, a+b=b.a
Dies erkennt man an dem Beispiel
K3 (K2)3v(e) = [K2(K)I¥(e) = K™Y (¢)

Der Ausdruck [K-3(K-2)]Y(t) entspricht Y(t-5). Denn es ist
K2Y(t)=Y(t-2) und damit K 3Y(t-2)=Y(t-5). Fur den Ausdruck [K™Z(K™3)1v(t)
erglbt sich mit K 3Y(t) =Y(t-3) dae Gestalt [K~ (Y(t 3))] und damit

(Y(t 3)) 1=Y(t-5)

(3) Ferner ist sowohl fiir die Additionen als auch Multiplikationen

das Assoziativgesetz anwendbar, d.h.

+c) = (a+b) + ¢

a(bC) (ab)e
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Als Beispiel sei die Beziehung
K-I[K-1+1]Y(t} =[K-2¢K71]Y{t)

angeflihrt. Wie man durch schrittweise Rlickumwandlung der Glieder auf
beiden Seiten der Gleichung erkennt, ist die Beziehung gliltig.
Auf die Verwendung von Operatoren werden wir spdter noch mehrmals

stoBen. Als erster Anwendungsbereich sei auf die vereinfachte Ermitt

lung der Endgleichung linearer Systeme verwiesen. Die Ermittlung der
Endgleichung im Falle des dynamischen Modells der Anspruchsniveauan-
passung wurde auf Seite 171 beschrieben. Die Verwendung von Verschie-
bungsoperatoren vereinfacht das Verfahren wesentlich. _
Mit der Einflihrung des Verschiebungsoperators K "X(t)=X(t-n) erhilt
man aus (21.6) bis (21.9)

s(t) = g[Z-2(¢)]

B(t) = vyIK 'S(t)-b1/[1-K l+ycK ']
Z(t) = B(t) - A(t)

Alt) = oK 'B(t)+al/[1-K '+ak ']

Man kann mit den sich ergebenden Gleichungen wie in einem linearen
Gleichungssystem A(t) berechnen. Durch sukzessives Einsetzen und Frei-

stellen von A(t) gelangt man zu der Gleichung:

A(t) = [Z-u-CY'YBlK-1A(t) - [a-I-cya+cY+YB]K-2A(t) + qacy + aByZ +
+ aayR - ayb

Die Rlicktransformation X(t-n)=K-nX(t) fiihrt schlieBlich zu der uns
bereits bekannten Endgleichung

A(t) = [Z-u—cv-yslA(t-J) + [a=1=cya+cy+yBlA(t=2) + aacy + aByZ +
+ aayB - ayb

Den durch eine Transformation der Form (21.86) in die Gleichungen ein-

gebrachten Operator nennt man einen Rickwdrtsoperator, da er negati-

ve Hochzahlen besitzt. Oft wird jedoch auch mit Vorwdrtsoperatoren

gearbeitet, d.h. Operatoren mit positiven Hochzahlen. Beide Darstel-

lungsformen sind ineinander Uberfiihrbar. Die Differenzengleichung

Y(t) + 0,5Y(t=1) + 0,3Y(t-2) = E(t) + 1,1E(t~1)
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flihrte bei Anwendung eines Riickwdrtsoperators zu der Form

1

Y(t) + 0,5K7 'Y (t) + 0,3K72Y(t) = E(t) + 1,1K E(t) (21.87) -

Bezeichnet man mit n den hdchsten Verztgerungsgrad einer Endgleichung,
dann ist in diesem Fall n=2. Die Multiplikation von Gleichung (21.87)
mit K2 fihrt zur Darstellung der urspriinglichen Differenzengleichung

in Form von Vorwdrtsoperatoren, d.h.
K2Y(t) + 0,5KY(t) + 0,3Y(t) = KPE(t) + 1,1KE(t) (21.88)

Verallgemeinernd kann man feststellen, daB in diesem Fall von der

Transformation
X(t-n) = K" x(t)

ausgegangen wird. Diese Darstellungsweise hat den Vorteil, daB das
sich ergebende Operatorenpolynom dieselbe Form wie die charakteri-~
stische Gleichung der zugrunde liegenden Differenzengleichung besitzt.
Sie ist immer dann empfehlenswert, wenn schon die Endgleichung eines
Systems vorliegt, weil n dann als numerischer Wert zur Verfiligung
steht.

Bevor wir uns dem generellen Fall der Ermittliung von Endgleichungen
~unter Verwendung von Operatoren im Rahmen der Matrizenrechnung zuwen-
den, wollen wir kurz auf bestimmte Verfahren eingehen, die es gestat-
ten, Endgleichungen anhand der sukzessiven Umgestaltung von graphi-

schen Systemdarstel lungen zu ermitteln.

cb) Endgleichungsbestimmung anhand graphischer Systemdarstellungen

Der Leser wird sich erinnern, daB wir bei der Behandlung der graphi-
schen Darstellung von Systemen die Beschreibung dynamischer Systeme
anhand von Block- und SignalfluBdiagrammen erwdhnten. Es wurde an die-
ser Stelle darauf hingewiesen, daB SignalfluB- und Blockdiagramme, in
denen'Operatorendarstellungen der Ubergangsfunktion verwendet werden,
allein dem Zweck dienen, die Endgleichung des betrachteten Systems

auf einfache Weise zu errnittxa'ln.]1 Die hier zur Anwendung kommenden

Methoden sollen im folgenden behandelt werden.

11 Vgl. Seite 65
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«) Endgleichungsbestimmung anhand von Blockdiagrammen

Abbildung 21.16 zeigt noch einmal die Darstellung eines MA-Systems

im Rahmen der beiden Diagrammtypen. Die Operatorenform der Ubergangs-
funktion ergibt sich durch die Einfllhrung des Rlckwdrtsoperators

K "x(t)=x(t-n).

I (1)
a

YEt)

c(t)

€ltr)

Abb. 21.16 Block- und SignalfluBdiagramm eines MA-Systems unter Ver-
wendung eines Rickwdrtsoperators

Im Falle der Hypothese der induzierten Investition
1. (t) = 2[C(e)-C(t-1)]
wird mit (21.86)

. (t) = 2[c(t)-K 'c(t)]
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oder
1 (t) = 2-2k" "¢ (t)

Der Ausdruck Z—ZK-1, welcher die beiden unverzdgerten Variablen C und

| miteinander verknlipft, wird als Operatoreniibergangsfunktion von C

nach | bezeichnet. Es ist Ublich, sie in den entsprechenden Block
des Diagrammes einzutragen oder lber der entsprechenden Strecke des
SignalfluBdiagrammes anzufiihren.

Bezeichnet man die ermittelte Operatoreniibergangsfunktion mit G(K),
d.h.

G(K) = 2-2K

dann 13Bt sich die Investitionshypothese durch

Ii(tJ = G(K)C(t)

beschreiben.
Eine Beziehung zwischen einer Ein- und Ausgangsgr&Be, welche durch

die Standardform der Endgleichung (12.10)
Y(t) + a1Y(t-1) +o..1 anY(t~n) = gOE(t) - gIE(t-l) oot gSE(t-s)

beschrieben werden kann, besitzt daher unter entsprechender Verwen=-
dung eines Riickwdrtsoperators eine Operatoreniibergangsfunktion der

Form -1 -7 =
gg+g]!{ +g2K +,,.+gsK
G(K) =

=1
1+a1K +a2

Im folgenden sollen Verfahren beschrieben werden, mit denen unter Zu-

Ko ga. kD
n

grundelegung der Operatoreniibergangsfunktion von Verhaltensgleichun-
gen die totale Ubergangsfunktion eines Modells ermittelt werden kann.
Diese Ermittlung vollzieht sich anhand der sukzessiven Umgestaltung
bestimmter Block- und SignalfluBdiagramme. ‘

Die zu beschreibenden Verfahren sind primdr im Rahmen der Regelungs-
theorie flir stetige Systeme entwickelt worden, lassen sich jedoch ana-
log auch fiir zeitdiskrete Systeme verwenden. Ihre Anwendung besteht
darin, daB bestimmte Bldcke eines Blockdiagrammes unter Berechnung

der neuen Ubergangsfunktion durch einfache Vorschriften zu einem ein-

zigen Block zusammengefaBt werden. Man kann drei Grundtypen der Zu-
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sammenfassung von Blockdiagrammgliedern unterscheiden.
Erstens: die Zusammenfassung von Parallelgliedern. Hier gilt die Vor-
schrift

— GI(K) Yl(t)
+‘
ECt) ‘ _ECo Y(t)
— Y(t) == —p G1(K)+G2(K) —

+

Yz(t)

Abb. 21.17 Ermittlung der Ubergangsfunktion eines linearen dynami-
schen Systems im Falle paralleler Glieder

Die Glltigkeit dieser Zusammenfassung wollen wir uns anhand des Glei-

chungssystems

Y1(t) = U,5Y1(t-l) + E(t) + 1,1E(t-1)
Yz(t) = o,zvz(:—1) + 0,3E(t)

Y(t) = Y](t) + Y, () (21.89)
klar machen, welches bei EinflUhrung eines Rlckwdrtsoperators durch

v1(t)[1-o,5x"] - 141,06 el (21.90)

Y, (£)[1-0,2K'] = 0,3E(t) (21.91)

beschrieben wird.

Die Aufldsung der Gleichungen (21.90) und (21.91) nach Y1 und Y2 und
ihre Einsetzung in Gleichung (21.89) liefert: '

-1
1+1,1K_1 E(E)

1-0,5K 1-0,2K

oder -1
1-0,5K 1-0,2K

Der erste und zweite Ausdruck in.den Klammern sind jedoch mit der Ope-

0,3

Y(t) = =

E(t)
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ratoreniibergangsfunktion GI(K) und GZ(K) identisch. Denn es sind

141,1K”!

- und G (K) = - -
1-0,5K

G, (K) = o5
1 2 1-0,2K !

Die Addition von'G1(K) und GZ(K) liefert die totale Ubergangsfunk-
tion

) -1 -2
. 1,3t0,75K -0,22K
1-0,7K 1 40,1K "2

und mit der Riicktransformation des Operators ihre entsprechende End-

G(K)

gleichung
Y(t) - 0,7Y(t-1) + 0,1Y(t-2) = 1,3E(t) + 0,75E(t-1) - 0,22E(t-2)

Die zweite Vorschrift bezieht sich auf die Zusammenfassung kaskadie-

render Glieder. Es gilt das Reduktionsschema:

ECt) YCt) ¥Ced _ ECt) ¥ CeD
— G, (K) ——®= G,(K) ——— = — G1(K)'GZCK) ———

Abb. 21.18 Ermittlung der Ubergangsfunktion eines linearen dynami-
schen Systems im Falle kaskadierender Glieder

Die Richtigkeit dieser Reduktion.- kann leicht aus der Verallgemeine-
rung des folgenden Beispieles erkannt werden. Zwei kaskadierende Sy-

steme kdnnen durch

Y(t) = 0,3Y(t-1) + Yi(t) (21.92)
Y, (t) = 1,1, (t=1) + 1,3E(e-1) (21.93)
beschrieben werden. 81(K) und GZ(K) ergeben sich mit
-1

6, (K) = _1415_:T

1-1,1K (21.94)
1
G.(K) = == T
2 1-0,3K 1

Die Operatorentransformation von (21.92) und (21.93) liefert
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Y(£)[1-0,3K'] = v, (¢)
Y1(t}[1-l,1K-1] = 1,3K 'ele)
oder )
Y(t) = ———1-—:T Y, (t) (21.95)
1-0,3K
Y, (t) = _‘_&L

, - E(t) (21.96)
1-1,1K

Mit (21.96) in (21.95) folgt:

=~
V() = —— - 3K

10,3 1-1,1K

: E(t) (21.97)

Anhand der Definition von G1(K) und GZ(K) erkennt man, daB (21.97) mit
Y(t) = 6, (K)G, (K)E(t)
identisch ist. Aus Gleichung (21.97) folgt

1,3k

Y(t) = = -
1-1,4K'+0,33K"2

E(t)

und damit die Endgleichung
¥{t) - 1,4¥(e-1) + 0,33¥(t-2) = 1,3E(%)

Die dritte Reduktionsvorschrift bezieht sich auf die Zusammenfassung

von Kreisschaltungen. Sie behauptet die Aquivalenz der Schemata in

Abbildung 21.19.

ett:aEEIEE Y1Ct) YCt)
— G (K e
+ +

ECt) 64 (KD Y(t)
S I-G, (K, (K)| =

Gz(K) *_“'_

Yz(t)

Abb. 21.19 Ermittlung der Ubergangsfunktion eines linearen dynami-
schen Systems im Falle einer Kreisschaltung
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Die Zuldssigkeit dieses Reduktionsverfahrens soll im Gegensatz zu den
vorangegangenen zwei Verfahren in allgemeiner Weise nachgewiesen wer-
den. Die in Abbildung 21.19 dargestellte Kreisschaltung wird durch

die Gleichungen

¥Y{t) = G1(K)Y](t) (21.98)
Y,(t) = G, (K)Y(t) (21.99)
Yl(t} = E(t) + Yz(t} (21.100)

beschrieben. Mit Gleichung (21.99) in (21.100) folgt
Y, (1) = E(t) + G, (K)Y(t) (21.101)
Gleichung (21.101) in (21.98) liefert dann

Y(t) = G, (K) [E(t)*6, (K)Y(¢)]
oder

Y[t)[1-G1 (K)G, (K)] = &, (K)E(t)
und damit

GT(K)
Y(t) =

1—51 (K)GZ(K)

E(t)

d.h. die in Abbildung 21.19 aufgezeigte Ubergangsfunktion.

Durch die sukzessive Anwendung dieser drei Reduktionsvorschriften
kann die totale Ubergangsfunktion und damit zugleich auch die Endglei-
chung'eipes Systems auf Ubersichtliche Art ermittelt werden.

Als ‘Beispiel sei das Blockdiagramm eines MA-Systems angefiihrt.

. Ia(t)
ane
N LA
YEtd
Ii(t)
e H, (K | H (K)
CCt) -

Abb. 21.20 Blockdiagramm eines MA-Systems
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C(t)=H (K)Y(t) beschreibt die Konsumfunktion und I, (t)=H,(K)C(t) die
Investitionsfunktion. Ermittelt werden soll die Ubergangsfunktion

zwischen |a und Y.
Aufgrund der Vorschrift liber die Zusammenfassung von Parallelglie-

dern folgt:
FLCE)
+
X
\\\-‘/}1-;
Y(t)
cCt)
o H (KD o 1+H,(K)

Abb. 21.21 Reduziertes Blockdiagramm eines MA-Systems durch Zusammen-
fassung von Parallelgliedern

Unter Beachtung der Reduktionsvorschrift flr kaskadierende Glieder

folgt die weitere Reduktion:

o~

\L/

Ia(t)

Y(t)

Abb. 21.22 Reduziertes Blockdiagramm eines MA-Systems durch Zusam-
menfassung kaskadierender Glieder



SchlieBlich wird die Kreisreduktionsvorschrift angewandt, die zur to-

talen Ubergangsfunktion flhrt

I _Ct) 1 Y(t)

l-Hl(K)[1+H2(K)]

Abb. 21.23 Reduziertes Blockdiagramm eines MA-Systems durch Zusammen-
fassung von parallelen, kaskadierenden und Kreisgliedern

Da im Falle eines MA-Systems die Operatoren durch

Hy (K) = ak !

und
1

HZ(K) B - BK

konkretisiert werden, ergibt sich mit der Einsetzung dieser Ausdriik=-

ke fir HI(K) und HZ(K) in die totale Ubergangsfunktion die Fassung:

k) = 1—1 =2
1-(a+aB)K " +aBK

und damit die uns schon bekannte Endgleichung:

Y(t) - (ataB)Y(t-1) + aBY(t-2) = 1, ()

8) Endgleichungsbestimmung anhand von SignalfluBdiagrammen

Am Beispiel eines MA-Systems wurde deutlich, daB die Bestimmung der
Ubergangsfunktion anhand der Reduktion von Blockdiagrammen sehr miih-
sam sein kann. Eine andere Methode, Hie daher bei gréBeren Systemen
zur Anwendung kommt, ist die Reduktion von SignalfluBdiagrammen. Sig-
nalfluBdiagramme liefern wie die Blockdiagramme eine bildhafte Dar-
stellung der Systemzusammenhdnge, auf deren Grundlage ein effekti-

veres Vorgehen bei der schrittweisen L&sung der Operatorengleichungen
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bewirkt werden soll.

Der grundsdtzliche Aufbau von SignalfluBdiagrammen wurde bereits be-
schrieben. lhr Unterschied zu einem Blockdiagramm besteht darin, daB
die Bldcke in einem SignalfliuBdiagramm durch gerichtete Strecken er-
setzt und die Eingangs- und AusgangsgrdBen in Knotenpunkte iberfihrt
werden. Diese Knotenpunkte werden zugleich als Summationspunkte de-

finiert mit der Folge, daB sich der Wert einer Knotenpunktvariablen

aus der Summe der auf einen Knotenpunkt flihrenden Variablen bestimmt.

Den Zusammenhang zwischen der SignalfluB- und Blockdiagrammdarstellung

einer Ubergangsfunktion zeigt Abbildung 21.24

(KD

ECtD YCt
—— G(KD i,

Abb. 21.24 Ubergangsfunktion eines linearen dynamischen Systems in
einer SignalfluB- und Blockdiagrammdarstellung

Analog zu den Blockdiagrammdarstellungen lassen sich bestimmte Reduk-

tionsvorschriften angeben.

(1) Additionsvorschrift

Parallele Strecken kdnnen zu einer Strecke zusammengefaBt werden, de-
ren Ubergangsfunktion sich aus der Summe der Ubergangsfunktionen der

Parallelstrecken ergibt.
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Gl(K)

GZ(K)

61(K)+62(K)
__b

Yl(t)

Abb. 21.25 Reduktion von parallelen Gliedern linear dynamischer Sy~
steme in einer SignalfluBdiagrammdarstellung

(2) Multiplikationsvorschrift

Eine Kette von Knotenpunkten kann durch eine Strecke ersetzt werden,

deren Ubergangsfunktion sich aus dem Produkt der Ubergangsfunktion

zwischen den Knotenpunkten der Ketten bestimmt.

ist dem SignalfluBdiagramm

Gl(K)GZ(K)GB(K)

Yl(t)

dquivalent.

Abb. 21.26 Reduktion von kaskadierenden Gliedern linear dynamischer
Systeme in einer SignalfluBdiagrammdarstellung

(3) Schleifenreduktion

Fiir die Reduktion einer Schleife gilt die Vorschrift
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1 1
Y1(t) , Yz(t)
G(K)
1
1-G(K)
= ¥, (e

Abb. 21.27 Reduktion von Kreisgliedern linear dynamiséher Systeme in
einer SignalfluBdiagrammdarstellung

Die Gliltigkeit dieser Beziehung erkennt man anhand des Gleichungssy-

stems

Yz(t) Y1(t) + G(K)Yz(t) (21.102)

Y3(t) = Yz(t) (21.103)
Die Aufldsung von Gleichung (21.102) nach Yz(t) liefert

Y, (6) (1-6(K) = ¥, (©)

pnd

¥, (t) =Y, (£)/(1-6(K))
Mit Gleichung (21.103) folgt

YB(t) - 1:%;(§7 Y1(t)
d.h. die Ubergangsfunktion zwischen Y3(t) und Y, (t).
Die Reduktion von Systemgliedern und damit die Gewinnung der Uber-
gangsfunktion eines Systems soll anhand eines durch ein SignalfluB-
diagramm beschriebenes MA-Systems demonstriert werden.
Ein solches SignalfluBdiagramm wird unter Verwendung der bereits im
Rahmen der Blockdiagrammdarstellung angeflihrten Operatoren HI und H2

durch die folgende Abbildung dargestellt:



236

1
"H!IE’ 1 “Illl’ Hy (KD l‘!l!l’ H, (KD "IIIE'

1
Aufgrund der Multiplikationsvorschrift folgt
1

0 1 Hy (KD

H, (KD

Die obere und untere Schleife von Y(t) tUber C(t) kann nach der Addi-

~ tionsvorschrift zusammengefaBt werden. Es ergibt sich damit
‘||!HHE" 1

Nach der Multiplikationsvorschrift kann die Kette Y(t)-C(t)-Y(t)

1+H2(K)

reduziert werden durch
"I!HHE" l

Die Schleifenreduktion filhrt zu dem nachfolgenden zweigliedrigen Sig-

Hl(K)[l+H2CK)]

nalfluBdiagramm
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1

l—Hl(K)[1+H2(K)]
1,Ced ——

und damit zu der totalen Ubergangsfunktion eines MA-Systems, die be-

reits mit Hilfe der Blockdiagrammreduktion ermittelt wurde.

cc) Analyse linearer Systeme anhand von Matrizen

Eine umfassende Analyse linearer dynamischer Systeme ist nur mit Hil-
fe der Matrizenrechnung m&glich. In diesem Abschnitt werden sowohl
die Grundlagen der Matrizenrechnung erSrtert als auch die daran an-

knlipfenden Verfahren der Analyse linearer Systeme.

@) Grundbegriffe der Matrizenrechnung

Eine Matrix ist ein rechteckiges Schema von Zahlen oder Elementen und

wird mit runden oder eckigen Klammern

1 %12 %

Boy  Ogg e By
M= ’

2t %n2 ¥

versehen. Die horizontalen Reihen werden Zeilen, die vertikalen Rei-
hen Spalten genannt. Die Elemente werden hinsichtlich ihrer Stellung
durch Indizes gekennzeichnet. Der erste Index benennt die Zeile, in

der sich das betreffende Element befindet, wiShrend der zweite Index-
die Spalte charakterisiert. Das Element aij steht daher in der i-ten

Zeile und j-ten Spalte. In abgekiirzter Schreibweise kann man eine Ma-
trix auch durch '

i
—
)

-
2

““[aij] = 1,2, m
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ausdriicken.
Wir betrachten im folgenden einige wichtige Typen von Matrizen:

Die Matrix

1
M =

o & o
w o o

0
0

wird als Diagonalmatrix bezeichnet, da alle nicht auf der Hauptdia-

gonalen (i=j) liegenden Elemente Null werden. Sie ist zugleich eine

quadratische Matrix, weil die Anzahl der Zeilen und Spalten Uberein-

stimmt.
Quadratische Diagonalmatrizen werdeﬁ oft durch folgende Schreibweise

dargestellt:
a0
0 Zmm

Einen Sonderfall unter den Diagonalmatrizen bildet die Einheitsma-
trix, welche mit dem Buchstaben | bezeichnet wird. Als Beispiel sei

folgende Matrix angefiihrt:

1 0 0
=10 1 0O
0 0 1

Verallgemeinernd ist eine Einheitsmatrix eine Diagonalmatrix, deren
Hauptdiagonale nur mit Einsen besetzt ist.

Eine einspaltige Matrix wird als Spaltenvektor bezeichnet, wdhrend

eine einzeilige Matrix Zeilenvektor genannt wird.

So ist beispielsweise die 2x1 Matrix [%] ein Spaltenvektor, wdhrend

die 1x2 Matrix [3,4] als Zeilenvektor bezeichnet wird.
Folgende Definitionen und Rechenoperationen sind filir die nachfolgen-

den Betrachtungen von Belang:

a) Gleichheit zweier Matrizen

Zwei nxm Matrizen A=[aij} und B=[bij] sind gleich, wenn flr alle

l!j gi]t: aij'—"b'ij |=1!2""1n J=1)2,-.-;m
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b) Summe zweier Matrizen

Die Summe zweier n xm Matrizen A und B bildet eine nxm Matrix C,

die sich aus der Addition der entsprechenden Elemente ergibt, d.h.

C=A+8B-= [cij]

bestimmt sich mit

cij = aij + bij 3oz [P JRTIETRS S | (IS TSRy

Beispiel:

S

c) Multiplikation einer Matrix mit einer Konstanten

Werden in einer beliebigen Matrix A alle Elemente mit einer beliebi~-
gen Zahl ¢ multipliziert, so wird die sich ergebende Matrix mit cA
bezeichnet. Flir das Rechnen mit Matrizen gelten analog zum Rechnen

mit Zahlen die folgenden S&tze:

A+B=B + A
(c1+c2)A = c,A + c,A

2
cl(A+B) =c,A + c.B

1 1

d) Multiplikation von Matrizen

Bevor wir uns der Multiplikation von Matrizen zuwenden, sei die Mul-
tiplikation eines Zeilen- mit einem Spaltenvektor erkldrt. U sei ein

Zeilenvektor und W ein Spaltenvektor mit n Komponenten, d.h.

o &
*1

U= [u1,u2,...,un] W=

w

SR

Das Produkt UW des Zeilenvektors U mit dem Spaltenvektor W ist eine

1x1 Matrix, die damit aus einer Zahl besteht, deren Wert sich nach

UW = .2 WU, =WU 4+ WU +. . . .+WU (21.104)

n
i=1 j ] 11 2 2 nn

ermittel t.
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Als Beispiel sei das Produkt von zwei Vektoren

[?][3,-2] =2-3+41(-2) = &
angefihrt.
Nehmen wir an, es sei das Matrizenprodukt der nxm Matrix A mit der
m x k-Matrix B zu bestimmen.
Die Matrix A kann durch
A T
1

By

A
L n-

beschrieben werden. Ai ist hierbei ein Zeilenvektor, der die i-te

Zeile der Matrix beschreibt, d.h.

Ay = [aqhayp,e 0y,

In 3hnlicher Weise 18Bt sich die Matrix B durch

B & [By:BnensaBl, 1 = Iby 1] E 5

beschreiben, wobei

b1j
sz

mj

den Spaltenvektor der j-ten Spalte der Matrix B reprdsentiert. Das
Vektorprodukt des Zeilenvektors Ai mit dem Spaltenvektor Bj ergibt
sich analog (21.104) aus

m

= E 3 . =
A.B. &5 b aT1b + aizb

2 +...% aimbmj

Das Matrizenprodukt AB wird nunmehr folgendermaBen definiert:
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AB, AB, .. AB
AB. AB. ... A.B

agw]| 2V 22 2k (21.106)
-AnB‘ A8, AanJ

Die Matrizen A und B sind, wie man aus dieser Festlegung erkennt, nur
dann miteinander multiplizierbar, wenn die Zahl der Spalten von A der
Zahl der Zeilen von B entspricht.

Als Beispiel betrachten wir

ol B3

Entsprechend (21.104) ergeben sich die Elemente AiBj der Produktma-

trix aus

RiBy =1:2+(-3)(-1) =5

A8, = 2-2 +4(-1) =0

A,B, = 2-1 +4:3 =14

AiB, = 1-1+ (-3)3 = -8
und damit

[5 -8]
AB =
0 14

e) Inverse Matrix

In der Zahlenalgebra hat jede Zahl (auBer Null) einen Kehrwert. Ei-
ne Zahl b ist der Kehrwert von a, wenn ab=1 ist. In der Matrixalge-
bra kann eine dem Kehrwert analoge Matrix definiert werden:

Ist A eine beliebige nxn-Matrix und 18Bt sich eine Matrix B finden,
daB

AB = |

wobei | die Einheitsmatrix ist, so wird B als inverse Matrix von A

bezeichnet.

Die inverse Matrix A ' bildet mit der adjungierten Matrix A¥ und der
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Determinante |A| von A die folgende Beziehung

-1 A*
At = TET (21.107)

Die Determinante |A| ist eine nach bestimmten Vorschriften aus den
Elementen aij zu ermittelnde Zahl. Die adjungierte Matrix kann auf
folgende Weise ermittelt werden:

Streicht man in einer nxn-Matrix die i-te Zeile und j-te Spalte, so
erhdlt man eine (n=1)x(n=1)-Matrix, deren Determinante man als Unter-
determinante Aij der Determinante |A| bezei?h?en kann. Setzt man vor
diese Unterdeterminante das Vorzeichen (-1)'™J, so erhdlt man bei ent-

sprechender Anordnung der Elemente die Matrix
" S5 n
a [{=1)""
A= (-1
Durch Vertauschen der Zeilen und Spalten dieser Matrix erh&lt man ih-
re sogenannte transponierte Matrix, welche die adjungierte Matrix A*
von A darstellt, d.h.

~T

A% = AT = (1) A
oder

# _ ak . % _ (_vti

AT = [Aij] mit Aij = (-1) Aji (21.108)
Die Determinante |A| kann nach dem Entwicklungssatz filir Determinan-
ten durch

= +* #* &3 —
(A = ai1A1j + aizAZJ +...¢ ainAnj (i=]) (21.109)

entwickelt werden. |A| ergibt sich somit aus der Summe des Produktes
der jeweils miteinander korrespondierenden Werte der Elemente einer
Zeile von A und einer Spalte von A¥. Das Gesagte sei an einem Bei-

spiel verdeutlicht. Die Matrix

3 3 =
A=13 -2 0
2 3 2

fiUhrt zu den Unterdeterminanten



243

2 0 30 3 =2

A= 13 2] R =s 2 M= 5|
3 =1 1 =1 T 3

Mr=ls 2= M=z 2[°* 3" 3]|™ ?°
3 =1 T =1 1 3

A, = - e -3 . =11
31 ko 2775 EEIa P

Man erhdlt die Matrix

-4 -6 13
9 & 3
“2 =3 -1

deren Spiegelung zu der adjungierten Matrix

-5 -9 -2
A* =|-6 4 -3
13 3 -1

fuhrt. Die Determinante liefert nach der ersten Zeile entwickelt:
|A] = 1(-4) + 3(-6) - 1.13 = -35

Im Falle der Entwicklung nach der zweiten Zeile ergibt sich ebenfalls:
|A| = 3(-9) - 2+4 + 0.3 = -35

Die inverse Matrix berechnet sich daher unter Beachtung von (21.107)

&2 o 2]

m 3T

“1<1 & & 3
5 3% 3% 35
i S I |

35 "35 35

Auf die Techniken der Berechnung von Determinanten und inversen Ma-
trizen bei groBen Matrizen soll hier nicht eingegangen werden, zumal
sie von interessierten Anwendern ohne Schwierigkeiten mit Standard-
EDV-Programmen ermittelt werden kdnnen. Fir die sich anschlieBenden

Betrachtungen ist es wichtig festzuhalten, daB die Berechnung der De-
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terminanten adjungierter und inverser Matrizen ausschlieBlich auf
Additionen, Subtraktionen, Multiplikationen und Divisionen beruht.
Diese Feststellung ist von Bedeutung, wenn wir uns mit Polynomma-
trizen beschdftigen. In einer Polynommatrix werden die Elemente ei-
ner Matrix nicht durch Zahlen, sondern durch Polynome dargestellt.
Da beim Rechnen mit Operatoren Additionen, Subtraktionen und Multi-
plikationen zugelassen sind, so ist es auch filir den Sonderfali einer
aus Operatorpolynomen bestehenden Polynommatrix nicht unsinnig, ei-

ne Determinante oder inverse Matrix zu ermitteln.

B) Endgleichungsbestimmung anhand von Polynommatrizen

Die.Ermittlung der Endgleichungen linearer Systeme wurde bisher mehr-
mals erSrtert und an Beispielen demonstriert. Es handelt sich jedoch
um Verfahren, in denen die generelle Systematik einer Endgleichungsbe-
stimmung nicht klar zum Ausdruck kommt.

'Ein solcher genereller Ansatz zur Endgleichungsbestimmung soll im fol-
genden beschrieben werden.

Die Differenzengleichung
Yo (e) . 2¥5(2-1) - 3¥.(-3) = E (2]
kann bei Verwendung des Riickwértsoperators Y(t-n)=K "Y(t) in die Form

(1+2K“‘-3K'3)Y1(t)

E1(t) {27. %10}

tiberfiihrt werden.

Definiert man G(K)=1+2K-]—3K*3, so wird (21.110) zu
G(K)Y, (t) = E, (t)

Dieselbe abklirzende Schreibweise ist auch bei Differenzengleichungs-
systemen mdglich.
Das Modell

2Y,(t) + 0,4y, (t-2) + 3Y,(t) + 0,25Y,(t-1) = E, (t)

0,5Y, (£) + 0,1Y, (t-1) + 2V, (t) - 0,1¥,(t-1) = E,(t)

kann in die Form
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P11(K)Y1(t) + P]Z{K)YZ(t) = E1(t)
PZI(K)Y1(t) + PZZ{K)YZ(t) = Ez(t)
mit
P1I(K) =2 + 0,4K-2 P]z(K) =3 + O,ZSK-]
-1 =
PZI(K) = 0,5 + 0,1K PZZ(K) =2 -0,1K

tiberfiihrt werden.

Ein beliebiges Differenzengleichungssystem kann daher in der folgen-

den allgemeinen Form beschrieben werden:

P11(K)Y1(t) - P12(K)Y2(t) fouut Pim(K)Ym(t)
P21(K)Y1(t) + PZZ(K)Yz(t) ot PZN(K)Ym(t)

] ]
m m
—_— o~
rt
—

2 (t) (21.111)

m T m
Diese Form eines Differenzengleichungssystems legt den Ubergang zu

einer Matrizenschreibweise nahe. Definiert man:

P]1(K) P]z(K) o § le(K}
LPml(K) sz(K) Pmm(K)-
und

v, (2) ] (&, ()]

¥ lE) E,(t)
Y(t) = :2 E(t) = :2

Y (1) E (t)

| _ | m

dann 18Bt sich das Gleichungssystem (21.111) durch
P(K)Y(t) = E(t) (21.112)

ausdriicken. Die Matrix P ist eine Polynommatrix, da ihre Elemente

keine Zahlen, sondern Polynome bilden. Die Operationsregeln der Ma-
trizentheorie ge]tenbjedoch, wie erwdhnt, unverdndert. Das Gleichungs-
system (21.112) ist daher immer dann in seine Endgleichungsform Uber-
flihrbar, wenn die Polynommatrix P eine inverse Matrix P-1 besitzt.

Entsprechend (21.107) besitzt eine Matrix immer dann eine Inverse,
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wenn ihre Determinante ungleich Null ist. Die Bedingung zur Ermitt-

lung eines Endgleichungssystems lautet daher
P(K) # 0

T (k)

In diesem Fall wird aus (21.112) durch Multiplikation mit P~
P T (K)IP(K)Y(t) = P71 (K)E(t)
und damit

Y(t) = P (K)E (t) (21.113)

Mit (21.107) wird (21.113)
Y(t) =

und damit ergibt sich die Endgleichung
[P(K)|Y(t) = P*(K)E(t) (21.114)

Das Ermittlungsverfahren sei an einem Beispiel demonstriert. Gegeben

sei das Differenzengleichungssystem:

1,5Y](t) + 0,4Y](t—1) - Yz(t) = El{t)
3Y1(t) - U,2Y1(t—1) 3 1,1Y2(t)'+ 0,3Y2(t-1} = Ez(t)

Die Operatorenpolynome sind:

P. (K) = 1,5 + 0,4K TP (K) =1
11 i 12 »
Poq(K) =3 + 0,2K P,y (K) = 1,1 + 0,3K

Die Polynommatrix P bestimmt sich nach

p(k) = |P11(K) Py (K)

Po1 (K) Py (K)

Ihre Determinante wird durch

IP(K)| = (1,540,4K1) (1,140,3K™1) - (3+0,2 )

oder

1P (K) | 2

!

1,35 + 0,69k + 0,12K

beschrieben.
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~1

Die Adjunkte P*(K) bestimmt sich aufgrund (21.108)

1,1 40,3 -3-0,2K"]

P¥(K) = 3
-1 1,5+0,4K

1
Die Endgleichungsform erhalten wir mit (21.114)

| (11403 -3-0,2'

E, (t)
Y, (t) = -1 1,5+0,4K

-1 -2
- K
(=1,35+0,69K +0,12K “) gz(t)

1

Durch Riicktransformation des Operators erhdlt man in der iliblichen Dif-

ferenzengleichungsdarstellung die Endgleichung fiir Yj(t):

-1.35Y](t) - U,69Y](t-l) + U,lZYl(t-Z) = 1,151(t)-+ 0.3E1(t-1) -
- 3E,(t) - 0,2E,(t-1)
und fur Yz(t)

-1,35Y2(t) - 0,69Y2(t-1) + 0,12Y2(t-2) = - Eﬂt) - 1,5E2(t)'+
+ D,hEz(t-lj

Die Division der beiden Gleichungen durch -1,35 fiihrt zu der Ublichen

Standardform einer Endgleichung.

Die Tatsache, daB entsprechend Gleichung (21.114) der Spaltenvektor
Y(t) stets mit demselben Operatorpolynom |P(K)| multipliziert wird,
filhrt zu dem SchluB, daB die Endgleichungen der endogenen Variablen

eines Differenzengleichungssystems stets dieselbe reduzierte Form
[P(K) Y (t) =0 v=1,2,...,m

besitzen. Daraus kdnnte man den SchluB ziehen, daB die Funktions1&-
sungen der endogenen Variablen eines Differenzengleichungssystems
stets dieselben Wurzeln aufweisen und daher ein einheitliches dyna-
misches Verhalten zustande kommt. Dies ist jedoch nicht generell der
Fall. Es soll nur kurz gezeigt werden, warum die oben geschilderte
SchluBfolgerung falsch ist.

Eine endogene Variable besitzt nicht nur eine, sondern im Prinzip un-
endlich Qie]e Endgleichungen. Betrachten wir die Endgleichung unseres
MA-Model Is

Y(t) - 0,3Y(t-1) + 0,2Y(t-2) = Ia(t)



deren charakteristische Gleichung die Wurzeln

1] = 0,15 + 0,4213i und 12

besitzt, und schreiben wir diese Gleichung in Operatorenform, d.h.
&

= 0,15 - 0,4213i

Y(t) (1-0,3K " '40,2K°2) = 1 (t)

a

dann ist es moglich, diese Gieichung mit einem beliebigen Operatoren-
polynom zu multiplizieren, um damit eine weitere Endgleichungsform

zu erhalten. Multiplizieren wir unsere Ausgangsgleichung beispiels-

weise mit (K-I-Z), so erhalten wir:

Y(t)(-2+1,6K"’—0,7K‘2+0,2K"3) = (K"‘-z)ta(t)

oder die Endgleichung
-2Y(t) + 1,6Y(t-1) - 0,7Y(t-2) + 0,2Y(t-3) = Ia(t-l) - ZIa(t)
mit den Wurzeln

Ap = 0,15 + 0,42131 A, = 0,15 - 0,42131 und Ay = 2

Orientiert man sich an dieser Endgleichung, so wiirde das System durch
drei Wurzeln bestimmt und einen gegeniliber der urspriinglichen Glei-
chung v6llig anderen Verlauf aufweisen: Das System wiirde wegen der
Wurzel K3=2 explodieren, die in der Funktionsldsung den Ausdruck C32t
bilden wiirde. Es zeigt sich, daB man durch Multiplikation des Aus-
gangspolynoms mit einem Ausdruck (K-I—a) beliebig viele Endgleichun-
gen mit den unterschiedlichsten Wurzeln erhdlt. Es liegt die Frage
nahe, welche der Wurzeln unter diesen Umstdnden’das dynamische Ver-
halten des Systems bestimmen.

Um das zu kl3ren, betrachten wir eine Endgleichung in Operatoren-

schreibweise:
Y(t) (1+a K"1t+ +ta K M) = (gntg Kh1+ .+g K‘S)E(t)
1 * BTy SR Lo s

Unterstellen wir n>m und multiplizieren mit K", so erhalten wir:

Y(t)(K”+a1K”"+...+an) . (gUKn+gIKn-1+...+gsKn-5}E(t) (21.114)

Es gilt der Produktensatz fiir Polynome:

Sind RI,AZ,...,An die Wurzeln des Polynoms b Kn+b1Kn—]+...+an0, S0

0
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1Bt sich dieses Polynom durch

_ n n-1 0
(K h])(K xz)...(K An) = bOK - b1K +...+an (21.115)

darstellen.

Verwendet man diese Produktendarstellung flir die Polynome in Glei-

chung (21.114), so erhdlt man
Y(t)[(K-A])(K-)\z)...(K-An)] = [(K—61)(K-62)...(K-¢Sn)]E(t) (21.116)

mit A und § als Wurzeln. Stimmen zwei Wurzeln aus den beiden Polyno-
men miteinander Uberein; so kann die Gleichung durﬁh (K-1,) geteilt
werden, wenn M diese gemeinsame Wurzel ist. Man erkennt, daB alle
gemeinsamen Wurzeln der beiden Polynome das System<verhalten nicht
beeinflussen. Entscheidend fiir eine Verhaltensanalyse ist daher nur
die Endgleichung, in der die Wurzeln ihrer Operatorpolynome verschie-
den sind. Von dieser Voraussetzung wurde bisher stillschweigend aus-
gegangen. Im Falle der Endgleichungsform (21.114) ist jedoch keine

Garantie gegeben, daB die Wurzeln dér charakteristischen Gleichung von
IP(O}Y (1) = 0 v=1,2,...,m

und den Operatorpolynomen dér exogenen Variablen verschieden sind.
Enthdlt eine Endgleichung daher eine exogene Variable mit unterschied-
tichen Verzdgerungen, so sind die Wurzeln des entsprechenden Opera-
torpolynoms mit den Wurzeln der charakteristischen Gleichung zu ver-
gleichen. Erst wenn sich diese als verschieden erweisen, ist es zu-

ldssig, anhand der Wurzeln das dynamische Verhalten des Systems zu

beurteilen.

v) Zustandsraumdarstellung linearer Systeme und ihre Analysemethoden

Unsere bisherigen Betrachtungen basierten auf dem Konzept der End-
gleichungsanalyse. Das dynamische Ve}ha1ten eines Systems wird in
diesem Fall bezliglich bestimmter endogener Variablen anhand ihrer
Endgleichungen beurteilt. Diese Untersuchungsmethode ist besonders
dann angebracht, wenn man nur an dem dynamischen Verhalten einer ganz

bestimmten endogenen Variablen interessiert ist und damit eine 'ver-
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dichtete Aussage' liber die Beziehungen zwischen dieser endogenen Va-
riablen und den exogenen GrdBen gewinnen will.
Im folgenden wollen wir uns mit einer anderen Methode der Analyse dy-

namischer Systeme besch&ftigen, die auf der Zustandsraumdarstellung

eines linearen Systems beruht.

Jedes lineare dynamische System 1&Bt sich durch ein dquivalentes Dif-
ferenzengleichungssystem ersten Grades beschreiben. Die um eine Pe-
riode verzdgerten endogenen Variablen einer solchen Darstellung kdn-
nen als ein Zustandsvektor Z(t-1) angesehen werden, der zusammen mit
den exogenen Variablen den Zustandsvektor Z(t) bestimmt. Angesichts
dieser Interpretationsmdglichkeit spricht man in diesem Fall von der
Zustandsraumdarsteliung linearer Systeme.

Diese Darstellungsform erlaubt eine Ubersichtliche Beurteilung der
Abhdngigkeiten der endogenen Variablen eines Systems. Die Zustands-
raumdarsteliung eines dynamischen Systems in Matrixform erhdht aber
n}cht nur die Ubersichtlichkeit, sondern gestattet auch eine einfa-
che numerische Analyse im Falle der Anwendung von EDV-Anlagen. Wie
erwdhnt, geht das heute viel verwendete Modellierungskonzept System
Dynamics von der Grundkonzeption aus, daB die Welt durch Beziehungen
zy beschreiben ist, die zum Ausdruck brihgen, in welcher Weise ein
System von bestimmten Systemzustdnden in Periode t-1 in die Zust@nde
in Periode t libergeht. Demzufoige bilden System-Dynamics-Modelle in
ihrem Primdransatz stets ein System von Differenzengleichungen er-
sten Grades. Diese Konzeption soll zwa} hier nicht besprochen werden,
doch mag dieser Hinweis genligen, um deutlich zu machen, daB die bei
einer Zustandsraumdarstellung eines primdren Modellansatzes einzuflih-
renden zusdtzlichen 'kiinstlichen' endogenen Variablen durchaus einer
empirisch sinnvollen Inferpretation zugdnglich sein kdnnen. Zur Ein-
schdtzung dieser. Darstellungsform dﬂrfte es auch von Interesse sein,
daB die zur Analyse von Volkswirtschaften verwendeten dynamischen
tnput-Output-Modelle im Prim8ransatz bereits einer Zustandsraumdar-

stellung entsprechen.

Nach einer Beschreibung der Zustandsraumdarstellung wenden wir uns
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den Methoden zu, mit denen primire Modellans3tze in eine Zustands-
raumdarstel lung Uberflihrt werden kdnnen. Daran anschlieBend werden
bestimmte Analysemethoden im Rahmen der. Zustandsraumdarstellung er-

Srtert.

Als erstes wollen wir versuchen, ein allgemeines MA-Modell in einer
Zustandsraumdarstellung zu formulieren.

Als Grundlage dient das Gleichungssystem

Y(8) = C(t) + 1. (t) +1_(¢) | (21.117)
I (e) = glc(t)-C(t-1)] _ - (21.118)
C(t) = a¥(t-1) , (21.119)

Setzt man Gleichung (21.119) in (21.118) und (21.117) ein, so erhidlt

man

Y(t) = a¥(t=1) + 1. (t) + 1_(¢) ' (21.120)
li(t) = glaY(t-1)-Clt-1)] (21.121)

C(t) = a¥(t-1)
Mit Gleichung (21.121) in (21.120) folgt:

Y(t) = (ot+ap)Y(t-1) - BC(t-1) + lé(t)
li(t) = aBY(t-1) - BC(t-1)
C(t) = aY({t-1)

und in Matrizenform

Y(t) a+Ba 0 =B Y{(t-1) 1
!i(t) =| ag 0 -B li(t-1> +10 Ia(t) (21.122)
c(t) a 0 0 c(t-1) 0

In diesem Fall erlibrigt sich die Einfligung einer kiinstlichen endoge-
nen Variablen, d.h. alle endogenen Variablen entstammen dem Primdr-

ansatz. Als weiteres Beispiel soll das Gleichungssystem

Y1(t) + 3Y1(t-1) - 6Y1(t—2) - 2Y1(t-3) = E1(t) (21.123)
Yz(t) = 2Y2(t-1) + 3Y1(t-1) = Ez(t) | (21.124)

in eine Zustandsraumdarstellung Uberfiihrt werden.
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Definieren wir

21(t) = Y1(t)
Zz(t) = Yz(t)
23(t) = Z1(t-1)
Zh(t) = 23(t-1)

und setzen diese Definitionen in

ein, dann erhalten wir:

21(t) + BZl(t-1) -

Zz(t) = 222

In Matrizendarstellung ergibt sich:

-Z](t)— -5 B
Z,(t) _ -3 2
ZS(t) 1 0

.Z“(t)_ _ 0 0

Da uns im Prinzip nur die BeobachtungsgrdBen Y

definieren wir die Matrizengleichung

Y1(t) |1 000
Yé(t) 0 1 0 0

Das angeflihrte Beispiel 18Bt anhand Abbildung 21.28 folgende inter-

pretation zu:

3
(t-1) + BZ](t—1) —

6
0
0

1

B, 0Ly =&

E,(t) ————@m! INTERNE ZUSTANDE

ll

Abb. 21.28 Zustandsraumdarstellung eines dynamischen Systems

Gleichungen (21.123) und (21.124)

ZZh(t~1) = E}(t)

o o o N

Zh(t'1)_

und Y2 interessieren,

s YlCt)

e YZCt)
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Man kann davon sprechen, dafB3 ein System mit den Eing&ngen E1 und E2

liber die internen Systemzustdnde Z1 bis Zb die Ausgangsvariablen Y1

und Y2 bestimmt.

Definiert man

(2, (1) ] (£, (0) |
2(t) = | 228 E(e) = |E2(0)
23(t) 0
_Zh(t)_ 0
(-3 0 6 2] - -
¥ it}
-3 2 0 0 1
M = Y(t) =
10 0 0 Yo (t)
00 1 0

und
B = 1T 0 0 O
0 1 0 0
so kann das angefiihrte Beispiel durch die Matrizengleichungen

Zlt}
Y(t)

MZ(t-1) + E(t) '
BZ(t) (21.125)

beschrieben werden. Die Matrix M wird als Zustandsmatrix bezeichnet,

Z(t) als Zustandsvektor, E(t) und Y(t) als Eingangs- bzw. Aysgangs-

vektor und B als Beobachtungsmatrix. Verallgemeinernd kann das Glei-

chungssystem als die allgemeine Form der Zustandsraumbeschreibung ei-
nes dynamischen Systems angesehen werden. Im folgenden wollen wir

uns intensiver mit der Struktur der Zustandsmatrix M beschdftigen, -
welche alle Informationen lber das dynamische Verhalten des Systems
enthdlt. Dies erkennen wir bei dem Versuch, anhand von Gleichung

(21.125) die Entwicklung des Zeitverlaufes Z(t) zu bestimmen.

z(1)

MZ(0) + E(1)

2(2) = MZ(1) + E(2) = M*Z(0) + ME(1) + E(2)
7(3) = MZ(2) + E(3) = M3Z (0) + MPE(1) + ME(2) + E(3)
.z(é) = MZ(t-1) + E(t) = MtZ(O) + Mt—lE(1) + Mt’zE(z) ...t MOE(t)
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Es wird klar, daB die Stabilitdt oder Instabilitdt des Systems be-

stimmt wird von der zeitlichen Entwicklung der Potenzmatrix Mt. Um

die Struktur dieser Potenzmatrix besser beurteilen zu kdSnnen, sind

einige neue Begriffe und Sdtze der Matrizentheorie einzufiihren.

Als charakteristische Gleichung einer Matrix M Bezeichnet man den
Ausdruck

[M-x1] = 0 | (21.126)

Handelt es sich um eine (nxn)-Matrix, so ist die Gleichung (21.126)

ein Polynom n-ten Grades. Angenommen, M sei durch

0 1 0
M= 0 0 1
=3 T 3

0 =% 1 0

6 1 0 A 0
M=xl ={0 0 1} =10 2 0y =1]0-=-x 1
=3 1 3 0 0 A =2 1 3=

welches zu der folgenden Determinante fihrt

|M-A1] = SN TR

Es gilt der Satz:12

Sind die Wurzeln-l1,lz,...,kn der charakteristischen Gleichung einer
Matrix M verschieden, so 138t sich eine Matrix S finden, die die Be-

ziehung

s = 1 . (21.127)

12 Zum Beweis siehe [227,5.167]
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dann kann die Potenzmatrix von M in folgender Weise ermittelt werden:
1 =1

M' = sAs
M2 = (sAs” 'y (sas™!) = saZs”!
M3 = (sas™ 1) (saZsy = sads”! | (21.128)

ME = (sas™1isat sy = sats

Flir die Berechnung der Potenzmatrix gilt, wie man leicht nachpriifen

kann, der Satz:

" . t . R .
Die Potenzmatrix A~ einer Diagonalmatrix

ist die Diagonalmatrix
3=
A
1,t 0
t AZ.

At =
0 ot
n

Unsere urspriingliche Potenzmatrix Mt 1868t sich daher durch
t
. >\1>\t 0 . -1 :
M =S 2. 5 (21.129)
0 i
n
beschreiben. Zur vollstdndigen Beurteilung dieser Beziehung ist es
notwendig, die Gestalt der Matrix S ndher zu spezifizieren.

Sie wird als Modalmatrix von M bezeichnet und 148t sich in n Spal-

tenvektoren S=[S],Sz,...§1] zergliedern, die als Eigenvektoren be-

zeichnet werden.
Sind A1,k2,...,kn die (verschiedenen) Wurzeln der charakteristischen
Gleichung der Matrix M, so bestimmen sich die Eigenvektoren 51,82,...,Sn

3

der Modalmatrix von M nach der Beziehung1

MS. = X.S. i=1,2,.

i ! LF (21.130)

13 Zum Beweis siehe [227,5.170]
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Der Satz sei am Beispiel der folgenden Matrix demonstriert,

0 1 0
M=t 0 0 1
3 1 °3

deren charakteristische Gleichung wir bereits auf Seite 254 mit
¥ =32 -1 +3=0

ermittelt haben. Die Wurzeln dieser Gleichung sind A=t X2=-1, A,=3.

Entsprechend dem oben angefiihrten Satz gilt flir den Eigenvektor S

3
1

MS1 = A1S1

und stdrker spezifiziert

- - p— -

0o 1 o][s,, 1
0 0 T||s,t =11s,
I LT Byg
oder
-1 1 0] sH“ |
0-1 1|fs,,| =0
S AT

Die L&sung dieses homogenen Gleichungssystems liefert

51 %1 =l Sp =i
Die analoge Berechnung mit Xz und k3 liefert die Matrix
T 1 1
S=1]1-1 3
11 9

lhre Inverse bestimmt sich durch

3/4 172 -1/h
s™'= | 3/8 -1/2 1/8
-1/8 0 1/8

Damit kann gem&B (21.128) die Potenzmatrix M® durch
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1225l oa| 30 g {3k /2 -k
Mt =11 2 1} =11 -1 3 1> 3/8 -1/2 1/8
2 1 2 11 o9l {0 it {178 0 1/8

ausgedriickt werden.

Da die Modalmatrix S nur Elemente enth&dlt, die nicht von t abh@ngen,
‘wird deutlich, daB das dynamische Verhalten eines Systems ausschlieB-
lich durch die Wurzeln A1 bis An der charakteristischen Gleichung in

(21.126) bestimmt wird.

Im Rahmen der Analyse dynamischer Systeme beschrd@nkt man sich bei
groBen Systemen oft nur darauf, die Zustandsmatrix M eines Systems

zu entwickeln Qnd‘miﬁ Hilfe von EDV-Standardprogrammen die Wurzeln
kl,kz,...,kn der charakteristischen Gleichung von |M-Al] zu ermit-
teln. Da die Ermittlung der Wurzeln einer Matrix ein klassisches Pro-
blem der numerischen Mathematik darstellt, stehen eine Reihe von EDV-
'Programmen zur Verfligung, die auch zur Bestimmung der Wurzeln groBer
Matrizen verwendet werden kdnnen. So berechnete beispielsweise HOWERY
mit Hilfe eines EDV-Programmes die Wurzeln einer (56x56)-Zustandsma-

trix eines dynamischen Modells der US?Wirtschaft'[92,5.65&].

2.1.2. Nichtlineare Modellformen

Nacﬁ der Beschreibung einiger in den Wirtschafts- und Sozialwissen-
“schaften verwendeter Typen nichtlinearer Hypothesen wird ein kurzer
Uberblick liber die einschldgigen Verfahren der deduktiven Implika-
tionenaufdeckung nichtlinearer Modelle gegeben. Anhand der Phasen-
diagrammdarstel lung nichtlinearer Modelle ersten Grades werden die
von linearen Modellen abweichenden Verhaltensweisen exemplarisch de-
monstriert. SchlieBlich wird eine KenngrdBe zur Charakterisierung

nichtlinearer Modelle diskutiert.



A. Begriffliche Kldrung und empirische Interpretation

Der Formenreichtum nichtlinearer dynamischer Modelle ist so grof3,
daB sich die formale Struktur eines nichtlinearen dynamischen Mo-
dells allein als negative Abgrenzung eines linearen dynamischen Mo-
dells definieren 188t. Ein groBer Teil der bisher entwickelten dy-
namisch-8konomischen Modelle ist linear. Geht man von der intuitiv
einleuchtenden Feststellung aus, daB die 'reale Welt' nichtlinear
sei, so liegt es nahe, die empirische Relevanz linearer Modelle an-
zuzweifeln.

Die Griinde, welche dazu filihrten, daB nicht ausschlieBlich nichtlinea-
re dynamische Modelle Anwendung finden, liegen zum einen in dem Man-
gel an geeigneten analytischen Deduktionsmethoden zur ErschlieBung
der Modellimplikationen nichtlinearer Zusammenhdnge. Zum anderen
sind die zur Entwicklung Skonometrischer Modelle notwendigen Parame-

terschdtztechniken flir nichtlineare Modelle weniger weit entwickelt.

In der reinen Gkonomischen Theorie sind nichtlineare Modelle zum Bei-
spiel von HICKS, GOODWIN, KALDOR, KRELLE und THALBERG entwickelt wor-
den. [82]1, [701, [106]1, [118], [200]. Auch fast alle grdBeren Bkono-
metrischen Modelle enthalten Nicht]inearitéteh, sind jedoch in ihrem
Crundcharakter linear. So verwendet TINBERGEN sogenannte Schwellen-
variable als nichtlineare Modelliglieder. Die Modelle von KLEIN,
KLEIN-GOLDBERGER und CHRIST sind bis auf die Verwendung sogenannter
'compound variables' linear. [205], [206], [111], [110], [31].

Auf beide Arten von Nichtlinearitdten wird im folgenden eingegangen.

Fir die Beschreibung mikroBkonomischer Zusammenhdnge ist die Verwen-
dung nichtlinearer Modelle von besonderer Bedeutung. Wie TINBERGEN
bemerkt, ist die Anndherung nichtlinearer Verldufe durch lineare
Funktionen bei Gleichungen mit aggregierten GriBen eher mdglich als
bef Gleichungen mit disaggregierten GroBen. Denn die nichtlinearen
Verldufe Okonomischer Beziehungen geringer Aggregation kompensieren
sich in der Regel durch den AggregationsprozeB. [207]. Da mikrodko-

nomische Beziehungen ex definitione eine geringe Aggregation aufwei-
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sen, und ein derartiger Linearisierungseffekt daher nicht zum Tra-
gen kommt, erfordert ihre wirklichkeitsnahe Beschreibung auch nicht-
lineare Modelle. Die Entwicklung von realitdtskonformen Branchen-
oder Firmenmodellen verlangt daher oft in besonders starkem MaBe die
Verwendung nichtlinearer Hypothesen.

Wie im Falle linearer Mddelle bestehen nichtlineare Modelle im Normal-
fall aus einem System von Gleichungen, die die einzelnen empirischen
Zusammenh3@nge beschreiben. Auch hier kann man eine bestimmte rele-
vante endogene Variable des Modells auswdhlen und versuchen, durch
algebraische Umformungen ihre nichtlineare Endgleichung abzuleiten.
Dieses Verfahren wird jedoch nur dann sinnvoll sein, wenn analyti-
sche Techniken zur Verfligung stehen, um eine derartige nichtlineare
Endglefchung zu 18sen oder auch nur ihr Stabilitdtsverhalten zu beur-
teilen. In der Regel ist es aber selten m&glich, aus einem nichtli-
nearen Gleichungssystem liberhaupt die Endgleichung einer bestimmten.
endogenen Variablen abzuleiten.

Im folgenden sollen einige wichtige Typen primdrer nichtlinearer Hy-

pothesen und Definitionsgleichungen erdrtert werden.

(1) Strukturgleichungen, welche Compound-Variablen erkl3ren

Als Compound-Variable bezeichnet man eine endogene Variable, die sich
aus der Multiplikation oder Division zweier erkldrender Variablen er-
gibt. Die beiden erkldrenden Variablen mlissen dabei endogene Varia-
blen des Modells sein.lu Strukturelle Gleichungen, welche Compound-
Variablen erkldren, sind zumeist Definitionsgleichungen. Wird bei-
spielsweise der Umsatz in einem Modell als Produkt aus Preis mal Men-
ge definiert, und sind Preis und Menge endogene Variablen dieses Mo-
dells, so stellt der Umsatz eine Compound-Variable dar.
Compound-Variable k&nnen aber.auch durch Hypothesengleichungen er-
klart werden. So wird beispielsweise in FORRESTERs Weltmodell die
Todesrate der Weltbevdlkerung aus dem Produkt von vier Multiplika-
toren bestimmt, die den EinfluB des Lebensstandards, der Umweltver-

14 Ware z.B. eine der erkl&drenden Variablen eine exogene Variable, so
kbnnte ein lineares Modell mit zeitvariablen Roeffizienten vorlie-
gen.
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schmutzung, der Nahrungsmittelversorgung und der Uberbevdlkerung
beschreiben. [Vgl. Seite 480]

Die durch Compound-Variable gekennzeichnete multiplikative Verstdr-
kung oder Abschwdchung von erkldrenden Variablen ist als Wirkungs-
prinzip nicht sehr plausibel, wenn sie menschliches Verhalten zum
Ausdruck bringen soll.

(2) Monokausale Hypothesengleichungen mit abnehmendem Grenzzuwachs
Hypothesen dieser Art werden im Skonomischen Bereich zumeist zur Be-
schreibung von Beziehﬁngen benutzt, die bestimmte Konkretisierungen
des Ertragsgesetzes ausdriicken. Dies bedeutet, daB es sich um Funk-
tionsverldufe handelt, in denen der positive Grenzzuwachs der endo-

genen Variablen mit zunehmender erkl&render Variablen abnimmt.

UMSATZ

. ot

WERBEAUSGABEN

Abb. 21.29 Zusammenhang zwischen Werbeausgaben und Umsatz (Werbeer-
' tragsfunktion)

Als Beispiel sei auf den Zusammenhang zwischen den wirksamen Werbe-
ausgaben und den durch sie induzierten Umsdtzen hingewiesen, der
durch eine 'Werbeertragsfunktion' wie in Abbildung 21.29 dargestellt
wird.

Diese in der amerikanischen Literatur auch als 'sales response func-

tion' bezeichnete Funktion wird oft durch eine der folgenden Funktio-
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nen dargestellt. [114,5.224]

U =

U

avw'

a + bW + cW? + dwl

mit U=Umsatz und W=Werbeausgaben

In vielen Fdllen ist es jedoch nicht mSglich, bestimmte nichtlinea-

re Funktionen anhand derartiger elementarer Formelausdriicke zu be-

schreiben. Man behilft sich dann damit, die vorgeygebenen nichtli-

nearen Verldufe durch sogenannte Tabellenfunktionen darzustellen.

Tabellenfunktionen bewirken eine stiickweise Linearisierung eines

nichtlinearen Verlaufes mit Hilfe von Polygonziigen.

Abbildung 21.30 zeigt eine durch einen Polygonzug ersetzte nichtli-

neare Konsumfunktion eines MA-Modells.
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Abb. 21.30 Beispiel einer nichtlinearen Konsumfunktion, welche zur

model Im&Bigen Erfassung durch einen Polygonzug anndhernd
wiedergegeben wird
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Die Formulierung von Tabellenfunktionen erfolgt fast ausschlieBlich
direkt in einer ein dynamisches System beschreibenden Computersimu-

15 Daher werden Modelle mit Tabellenfunktionen auch

lationssprache.
nicht analytisch untersucht, sondern nur anhand von Simulationsexpe-

rimenten.

(3) Hypothesengleichungen mit oberen und unteren Grenzen

I'n monokausalen Hypothesen wird oft der ansonsten positiv ansteigen-
de Funktionsverlauf nach unten, oben oder beiderseits durch sogenann-
te Schwellen oder Plafonds begrenzt. Derartige Schwellen wurden be-
reits von TINBERGEN in seinen Modellen verwendet. [205,5.120]

Das nichtlineare Konjunkturmodell von GOODWIN gewinnt seine Nicht-
linearitdt aus der Tatsache, daB die HOhe der lInvestitionen nach

oben durch die Kapazitdtsgrenze der Investitionsgliterindustrie, nach
unten durch die normalen Abschreibungsbetrdge begrenzt ist. [70,S5.4]
In dem Modell von HICKS entsteht die Nichtlinearitdt ebenfalls durch.
eine obere Begrenzung sowie stlickweise aneinander anschlieBende Ge-
raden mit unterschiedlich positivem Anstieg. (Vvgl. [101,5.200])

Auch in einzelbetrieblichen Modellen kann die Kapazitdtsgrenze die

I |

Pmax

v -
Ne

Abb. 21.31 Zusammenhang zwischen zu befriedigender und effektiv vor-
handener Nachfrage

15 Vgl. Seite 419f.
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obere Begrenzung einer linearen Funktion mit positivem Anstieg bil-
den. In Abbildung 21.371 beispielsweise ist ein solcher Zusammenhang

zwischen der von einem Betrieb zu befriedigenden Nachfrage N_, der

effektiv vorhandenen Marktnachfrage Ne und der Produktionskaiazitét
Pmax dieses Betriebes in einer Periode dargestellt.

Ist in einer multikausalen Hypothesengleichung der Funktionsverlauf
flir bestimmte Argumentenbereiche durch unterschiedliche Formelaus-
driicke definiert, dann ist es zweckmdBig, solche funktionalen Ver~-
knlpfungen konditional auszudriicken:

Beispielsweise kann der Zusammenhang zwischen der von einem Betrieb
zu befriedigenden Nachfrage Nb’ dem Lagerbestand L und der effektiv
gegebenen Marktnachfrage Ne durch die in Abbildung 21.32 dargestell-

te Funktion beschrieben werden.

Ny, ‘ L

Ne

Abb. 21.32 Funktionale Beziehung zwischen dem Lagerbestand L, der
effektiven Marktnachfrage N_ und der durch den Betrieb
i e
zu befriedigenden Nachfrage Nb

In einer konditionalen Darstellungsweise wird dieser Zusammenhang

folgendermaBen gekennzeichnet:
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NEIN
LIS NeiL?

JA

Abb. 21.33 Konditionalstruktur einer Entscheidung liber die HShe
der zu befriedigenden Nachfrage Nb

Die Formulierung nichtlinearer Beziehungen in dynamischen Simula-
tionsmodellen wird zu einem groBen Teil in Form derartiger Konditio-
nalstrukturen vorgenommen.

Der funktionale und nichtlineare Charakter dieser Konditionalstruk-
turen wird bei einer ersten Betrachtung nicht-immer deutlich. Man
sollte sich daher bewuBt sein, daB bei der Untersuchung der nichtli-
nearen Eigenschaften bestimmter Simulationsmodelle derartige Kondi-
tionalstrukturen einen starken Anteil an der Nichtlinearitdt der Mo-

dellzusammenhdnge besitzen.

B. Analyse nichtlinearer Modelle

Nach Erdrterung der bedeutsamen Arten nichtlinearer Beziehungen in
dkonomischen Ansdtzen stellt sich die Frage nach den zur Verfligung
stehenden analytischen Methoden zur ErschlieBung bestimmter Modell-
implikationen. Flir die analytische Untersuchung nichtlinearer Dif-
ferenzengleichungssysteme ist es von Bedeutung, daBl sich diese stets
zu einem &quivalenten System von Differenzengleichungen ersten Gra-
des umformen lassen. Dies 188t sich einfach zeigen:

Ist in einem beliebigen nichtlinearen Ansatz eine endogene Variable
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Y (t),Y(t=1),Y(t-2),...,Y(t-n) enthalten, so kdnnen folgende Defini-

tionen eingefithrt werden

Z](t) = Y(t)

Zz(t) = Y(t-1) = Z1(t-1)
?3(t) = Y(f-Z) = Zz(f'1)
Z(t) = Y(t=n+1) = 2 (1)

Unter Einbeziehung dieser Definitionen wird im primdren Ansatz die
Substitution’Y(t-i)=Zi(t—1) flir i=1,...,n vorgenommen. Werden alle
endogen ‘verztgerten Variablen des primdren Ansatzes in gleicher Wei-
se behandelt, so erh3lt man letztlich ein nichtlineares System von
Differenzengleichungen ersten Grades.

Im Gegensatz zum linearen Fall gibt es keine einheitliche Theorie
nichtlinearer Differenzengleichungen. Analytische Verfahren sind zu-
meist nur flr spezielle Typen nichtlinearer Differenzengleichungen
bekannt und dienen zur Ermittlung der Funktionsl8sung oder bestimm-
ter Kennzeichen des dynamischen Systemverhaltens.

Funktionsldsungen nichtlinearer Ansdtze sind nur in wenigen F&llen
mdglich. (vgl. [105,5.1751, [1911, [209])

Als Folge dessen stellt sich die Frage, ob zumindest gewisse analyti-
sche Methoden zur Verfligung stehen, die es erlauben, ohne Kenntnis
der Funktionsli&sungen bestimmte dynamische Verhaltenscharakteristi-
ken nichtlinearer Systeme zu ermitteln.

Eine Uber den Einzelfall hinausgehende mathematische Theorie stellt
die sogenannte direkte Methode von Ljapunow dar, mit deren Hilfe das
dynamische Verhalten nichtlinearer Ansdtze beurteilt werden kann.
Diese Methode wurde urspriinglich von LJAPUNOW zur Beurteilung der
Stabilitdt von Differentialgleichungen entwickelt und ist von HAHN
auf die Stabilitdtsanalyse von Differenzengleichungen Ubertragen wor-

den.]6

Die Ljapunowsche Methode 188t sich folgendermaBen charakterisieren:

In dem System Y(t)=F[Y(t-1)] bilden Y(t) und Y(t-1) die Spaltenvek-

16 Zu einer ausflihrlichen Errterung der Stabilitdtstheorie von
LJAPUNOW siehe [ 170], zur Arbeit von HAHN siehe [77].
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toren der endogenen Modellvariablen. Besitzt das System eine LOsung
FIY]-Y=0, so kann dieser Gleichgewichtspunkt im Falle von Y#0 durch
die Koordinatentransformation X=Y-Y in den Ursprung gelegt werden,

so daB sich die triviale L8sung F[X]=0 mit X=0 ergibt.

Bei Betrachtung eines bestimmten Anfangswertes Xa#O kann, wie erwdhnt,
immer dann von einer asymptotischen Stabilitdt gesprochen werden,

wenn X(t) mit wachsendem t gegen Null kon?ergiert. Dieser Fall liegt

17

unter folgenden Voraussetzungen vor:

(1) Es sei V[X(t)] eine positive definite Fuhktion, d.h. V[X(t)]>0
mit Ausnahme von X=0, wo sie Null ist.

(2) Die Funktion der ersten Differenz von VI[X(t)]
AVIX(t)]1 = VIX(t+1)] - VIX(t)]

sei negativ und im Ursprung Null.
Erflillt eine Funktion die Bedingungen (1) und (2), so wird sie als
diskrete Ljapunow-Funktion bezeichnet.
~ Als Beispiel sei die Differenzenglieichung
2

X(t) + X2 (t-1) + X2 (t-2) = 0 (21.131)

angefthrt. (Vgl. [214,5.234]) Es wird die Ljapunow-Funktion

VIX()1 = 2x% (1) + X*(t-2) (21.132)
eingefiihrt. Damit wird
AVIX(E)] = 2X2(t) + X2 (t-1) - 2x%(t-1) - x%(t-2) (21.133)

Aus (21.131) folgt

X2 (1) = 2X*(t-1) + BX2(t-1)%2 (t-2) + 2X*(t-2)

Mit (21.133) folgt
AVIX(6)] = [X2(e=1)+x2 (t-2) 1122 (t-1) $2X2 (£-2)-1] (21.13L4)

Es zeigt sich, daB Gleichung (21.132) die Bedingung (1) erfiillt. Be-
dingung (2) gilt gem&B (21.134) im Falle:

2X2(t'1) T sz(t‘Z) =% < @ (21.135)
17 Zum Beweis [61,S5.160]
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Ist also Bedingung (21.135) erfiilit, so ist das durch die Differen-
zengleichung beschriebene System asymptotisch stabil.

Eine Schwierigkeit bei der Anwendung dieser Methode resultiert aus
dér Tatsache, daB es kein allgemeines Verfahren zur Ermittlung einer
geeigneten Ljapunow-Funktion gibt.

Weiterhin ist zu bemerken, daB die auf diese Weise ermittelten Para-
meterbereiche nur hinreichend, aber nicht notwendig fiir das Vorlie-
gen von Stabilifﬁt sind. Durch die Wahl einer anderen Ljapunow=-Funk-
tion ist es durchaus mdglich, andere Stabilitdtsbedingungen zu erhal-
ten. Die grdBte praktische Schwierigkeit bei der Anwendung der Lja-
punow-Methode ‘ergibt sich aber aus der Forderung, daB die ermittgl-
ten Stabilit3tsbedingungen, wie zum Beispiel die Bedingung (21.135),
von allen zeitlichen Realisationen der endogenen Variablen erfiillt
werden miissen. Der Zeitverlauf der endogenen Variablen X(t) ist je-
doch gar nicht bekannt. Vielmehr sind in der Regel nur die Anfangs-
werte und der Verlauf bestimmter exogener Variablen vorgegeben. Vi-
DAL hat, aufbauend auf die Arbeiten von CETAEV und AJZERMAN, zwei Me-
thoden angegeben, mit denen unter Verwendung von Ljapunowschen Funk-
“tionen hinreichende Bedingungen beziiglich der Anfangswerte fiir eine
asymptotische Stabilitdt ermittelt werden kdnnen. Eine Anwendung ist
jedoch nur in wenigen F&llen m&glich. [214,5.229]

A]s‘EFgebnis ist festzuhalten, daB nach dem gegenwdrtigen Erkennt-
nisstand dié praktische Anwendung analytischer Verfahren der Stabi-

litdtsanalyse relativ beschrankt ist.

Weitere analytische Verfahren zur Beurteilung des dynamischen Verhal-
tens nichtlinearer Systeme sind im Rahmen der Skonomischen Wachstums-
theorie zur Beurteilung des proportionalen Wachstums von Wirtschafts-
systemen entwickelt worden.

Hierbei wird von einem nichtlinearen Differenzengleichungssystem
Y(t) = H[Y(t-1)] (21.136)

ausgegangen, in dem Y den Vektor des sektoralen Einkommens oder des
mengenmdBigen AusstoBes einer Wirtschaft repri3sentiert. (Vgl. [184],
[1957, L1427, [140]). Hinsichtlich der funktionalen Verkniipfung H[]
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werden bestimmte restriktive Annahmen wie Monotonitdt und Homogeni-
tdt unterstellt. Im Rahmen dieser Restriktionen werden die Bedingun-
gen eines proportionalen Wachstums aufgezeigt.

NIKAIDO hat den Ansatz (21.136) unter den gleichen Restriktionen fir

H auf die Form
Y(t) = HIY(t-1)] + A(t-1)

erweitert. Hierbei reprd@sentiert Y wiederum den Vektor der sektora-
len Einkommen, wdhrend A den Vektor der exogen bedingten sektoralen
Ausgaben bildet. Dieser nichtlineare ProzeB der Einkommensentwick-
lung wird von NIKAIDO hinsichtlich der Bedingungen eines proportiona=
len Wachstums untersucht.

Die Beschreibung einiger analytischer Verfahren zur Behandlung nicht-
linearer dynamischer Modelle soll nicht den Eindruck erwecken, daB
diese Verfahren flir die Analyse der heute zur Verfligung stehenden
Madelle von sehr groBer Bedeutung sind. Sa&mtliche derzeitigen rele-
vanten nichtlinearen Modelle sind praktisch nur mit Hilfe von Compu-
tersimulationen untersuchbar. Die Beéchrénktheit der diskutierten
Verfahren macht die Relevanz von Computersimulationen deutlich.
Neben den analytischen stehen auch bestimmte geometrische Verfahren
zur Beurieilung nichtlinearer Systeme zur Verfligung. Auch diese Ver-
fahren, die sich nur auf eine Qichtlineare Endgleichung ersten oder
héchstens zweiten Grades beziehen, sind aus der Anwendungssicht als
irrelevant zu bezeichnen, da realistische Modelle ja stets komplexer
sind. Das Studium dieser Verfahren liefert jedoch typische Einsich-
ten in das (von linearen Systemen abweichende) Verhalten nichtlinea-
rer Systeme, welche auch fiir die Beurteilung der Simulation kompiexer
nichtlinearer Systeme von Bedeutung sind.

Wir wenden uns daher der Analyse einer beliebigen nichtlinearen End-

gleichung ersten Grades, d.h. einer Gleichung der Form
Y(t) = FLY(t-1)]

zu. Der Zeitverlauf von Y{(t) kann hierbei durch eine einfache gra-
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phische Darstellung in der Form eines sogenannten Phasendiagramms

ermittelt werden.

L) A

Y(eD=F[Y(t-1)]

e cr e e rw e - o~ o Y - - -
o v o - - - - o

S
"5 Y4 Y5 YCt=1)J

Abb. 21.34 Phasendiagramm einer nichtlinearen Differenzengleichung
ersten Grades

In dem Koordinatensystem der Abbildung 21.34 sind die Funktionen
Y(t)=FL[Y(t-1)] und Y(t)=Y(t-1) eingetragen. Ist wie in Abbildung

21.34 ein bestimmtes Y(0) vorgegeben, so ergibt sich wegen Y(1)=F[Y(0)]
die GrdBe Y(1) als der Ordinatenwert des Punktes A. ‘
Den Wert von Y(2) erh#lt man, wenn der gefundene Ordinatenwert von
Y(1) auf die Abszisse libertragen wird und dann analog zum ersten
Schritt Y(2) aus dem Schnittpunkt der Senkrechten iiber Y(1) mit der
Funktion F ermittelt wird (Punkt B). Die Ubertragung der Strecke Y(1)
von der Ordinate auf die Abszisse kann dadurch sehr einfach vorgenom-
men werden, indem man von dem Ordinatenwert Y(1) eine waagerechte Li-

nie zieht und vom Schnittpunkt dieser Linie mit der Funktion Y(t)=Y(t-1),
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d.h. der bSo-Linie nach unten lotet. Der Schnittpunkt des Lotes mit

der Abszisse ergibt Y(1).

Durch Fortsetzung dieses Verfahrens gelangt man zu Y(3), Y(4) usw,

Man erkennt aus Abbildung 21.34, daB das System in diesem Fall einem

Gleichgewicht im Punkt G zustrebt.

Die hier beschriebene Dérstel]ungsform nichtlinearer Differenzenglei-

chungen ersten Grades 188t erkennen, daB ihr dynamisches Verhalten

sowohl vom Anstieg der Funktion F als auch ihrer Lage zur 45%-Linie

beeinfluBt wird. Das dynamische Verhalten 138t sich durch folgende

Maximen kennzeichnen: [14,5.265]

(1) Wenn sich die Funktion F[Y(t-1)] Uber der 45°-Linie befindet,
dann ist Y(t) stets grdBer als Y(t-1), d.h. Y weist einen wach-

senden Verlauf auf. Demgegenﬁbgr zeigt Y einen abnehmenden Ver-
lauf, wenn sich F unter der 45 -Linie befindet.

(2) Wenn der Anstieg von FLY(t=1)] positiv und kleiner als Eins ist,
dann weist das System ein monoton geddmpftes Verhalten auf.

(3) tst der Anstieg von F[Y{t-1)] positiv und grdBer als Eins, so be-
sitzt das System ein monoton unged&mpftes Verhalten.

(L) Weist FLY{t-1)] einen negativen Anstieg auf, dann zeigt das Sy-
stem ein oszillierendes Verhalten, das sich fiir F'[Y(t-1)1<-1 als
ungeddmpft oszillierend und fiir 0>F'[Y(t-1)]>-1, als geddmpft os-
zillierend erweist. : '

Eine Funktion FL[Y(t-1)] kann jedoch im Rahmen ihres Definitionsberei-

ches sowohl unterschiedliche Anstiege als auch Positionen zur 45°-Lj-

nie aufweisen, so daB in bestimmten Intervallen des Definitionsbe-
reiches unterschiedliche Verhaltensweisen gemdB (1) bis (4) auftre-
ten kdnnen. Abbildung 21.35 zeigt eine Funktion, flr die dieses zu-

trifft. 7

Das Verhalten eiﬁes konkreten Systems wird in diesem Fall von der La-

ge des Anfangswertes Y(0) entscheidend beeinfluBt. Liegt der Anfangs-

wert in dem Intervall A'C', so wird das System gegen den Gleichge-
wichtspunkt B' konvergieren. Liegt er dagegen im Intervall C'E', so
strebt das System gegen den Punkt D'. Falls der Anfangswert nicht in
diese beiden Intervalle f&llt, weist das System ein instabiles Ver-

halten auf.
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Abb. 21.35 Phasendiagramm einer nichtlinearen Differenzengleichung
ersten Grades

Das Beispiel zeigt ebenfalls in anschaulicher Form, daB es - wie er-
Oortert - im Rahmen nichtlinearer Systeme notwendig ist, zwischen lo-
kaler und globaler Stabilitadt zu unterscheiden.18 Wahrend das in Ab-
bildung 21.35 beschriebene System nur lokale Stabilitdt aufweist, be-
sitzt das in Abbildung 21.34 angefiihrte System eine globale Stabili-
tat.

Untersuchungen nichtlinearer MZA-Modelle mit Hilfe von Phasendiagram-
men liegen bisher kaum vor. Neben einem Ansatz von DORFMAN, SAMUELSON
und SOLOW [39,S.333] untersuchte vor allem DAY die Bedingungen des
Wachstums von Einzelbetrieben anhand einer quadratischen Differen-
zengleichung erster Ordnung unter Verwendung von Phasendiagrammen.[35]

Auch zur geometrischen Analyse nichtlinearer Differenzengleichungen

18 VgT. im einzelnen Seite 77
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zweiten Grades stehen bestimmte Diagrammtechniken zur Verfligung.
[214,S.Y12F. ]

Im Gegensatz zu dem beschriebenen Verfahren sind diese Techniken je-
doch relativ aufwendig und unilibersichtlich, so daB es empfehlenswert
erscheint, auch schon derartige Ansdtze relativ geringer Komplexit&t
mit Hilfe von Simulationsverfahren zu untersuchen.

Im Rahmen der ErSrterung linearer Modelle wurde eine Reihe 'linear-
modellspezifischer' Kennzeichen wie der Totalmultiplikator, die Ein-
heitsimpulsantwort oder die Sprungantwort eines linearen Systems be-
handelt:

Es liegt nahe, nach der Ubertragung dieser Begriffe auf nichtlineare
Systeme zu fragen. Grundsdtzlich gilt, daB eine solche Ubertragung
auf ein nichtlineares System nicht ohne weiteres mdglich ist. Denn
ein derartiges System (als negative‘Abgrenzung eines linearen Sy-
stems) 138Bt sich gerade nicht durch solche systemspezifischen Kenn-
groBen charakterisieren.

So besitzt ein nichtlineares System keine systemspezifische Einheits-
impulsantwort, die ja im linearen Fall den gesamten Transformations-
mechanismus des Systems zum Ausdruck bringt. Bei nichtlinearen Syste-
men hdngen die Verldufe der Impulsantworten aber von den ImpulshShen
ab. Wihlt man in einem linearen oder nichtlinearen Modell die Anfangs-
werte derart, daB sich das System im Gleichgewicht GW befindet, und
bezeichnet man die Impulsantwort eines Systems bezliglich eines Impul-

ses der H8he IH als IA(t), so kann man die KenngrdBe

IA(t)-GW

SEI(t) = = (21, 137)

formulieren. SEIl soll als standardisierte Einheitsimpulsantwort be-
zeichnet werden.

In einem linearen System verdndert sich SEI(t) nicht bei Variation
der Impulsh8he IH.

Im Gegensatz dazu &ndert sich bei nichtlinearen Systemen der Verlauf
von SEI(t) in Abhingigkeit von der Impulshdhe. Dieser Umstand kann

dazu verwendet werden, die Stdarke der Nichtlinearitdt eines Systems
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zu beurteilen. Eine derartige Untersuchung soll am Beispiel eines
MA-Systems demonstriert werden, welches eine nichtlineare Konsum-

und Investitionshypothese besitzt.

Y(t) = C(t) + Ii(t) + 46000

| (1) = (35 [C(t)-Clt-1)] fir C(t)=-C(t-1)20
[ 0 fir C(t)-C(t-1)<0

c(t) = FI[Y(t-I)]
Die Investitionshypothese besagt, daB bei einem Rlickgang der Nachfrage
die Unternehmer ihre induzierten Investitionen einstellen. Es handelt
sich daher um eine nichtlineare 'Schwellenhypothese'. Weiterhin wird
angenommen, daB die Konsumfunktion F][Y(t-1)] durch die in Abbildung
21.30 dargestellte Tabellenfunktion beschrieben wird. Bezeichnet man
die Investitionshypothese verallgemeinernd mit Ii(t)=F2[C(t)—C(t~1)],

dann kann man analog zum linearen Fall die Endgleichung
Y(t) = FLy(e=1)1 + Fo[F, [Y(t=1)1-F, [¥(t-2)1] + 46000

aufstellen. Eine analytische Bestimmung des Gleichgewichtswertes von

™
[
1.8 ¢

)
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141

1.3 1

* + + + + + + + + t +—= |H [TSD.]
10 20 30 40 50 60 70 8 90 100 110 120

Abb. 21.36 Zusammenhang zwischen Totalmultiplikator TM und Impuls-
hShe IH in einem nichtlinearen MA-System
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Y wdre zwar grundsdtzlich moglich, aber viel zu aufwendig. Anhand ei-
ner Simulation zeigt sich, daB das System bei Y=120-10° ein Gleich-
gewicht aufweist. Dieser Gleichgewichtswert GW wird im folgenden zu
Grunde gelegt (d.h. Y(0)=Y(])=120-103). Dem System werden nunmehr po-
sitive Impulse verschiedener Hohe IH aufgeprdgt, und es werden die

standardisierten Einheitsimpulsantworten SEl ermittelt.

Die Summe der Einheitsimpulsantworten ergibt eine GrdBe, die dem
Totalmultiplikator eines linearen Systems entspricht. Weil es sich
aber um ein nichtlineares System handelt, werden sich mit variieren-
den ImpulshShen unterschiedliche Totalmultiplikatoren ergeben.

In Abbildung 21.36 ist der ermittelte Totalmultiplikator verschiede-
nen Impulshdhen gegeniibergestellt.

Wahrend im linearen Fall der Totalmultiplikator nicht durch die Im-
pulshdhe beeinfluBt wird, zeigt sich hier eine Abhdngigkeit, die als
eine Charakteristik der Nichtlinearitidt des vorliegenden Modells auf-

gefaBt werden kann.

2.2. Offene und geschlossene Modellformen

Die Bezeichnungen 'offenes' und 'geschlossenes System' werden in so
vielfdltiger Bedeutung im Rahmen systemtheoretischer Betrachtungen
verwendet, daB es vielleicht ratsam wdre, solche abgenutzten Worte
nicht mehr zu verwenden. Wenn wir dennoch das Begriffspaar offen-
geschlossen zur Klassifikation dynamischer Systeme gebrauchen, so
zeichnet sich diese begriffliche Festlegung dadurch aus, daB ihre
Unterscheidungsmerkmale an syntaktischen und empirisch interpretier=
baren Strukturelementen dynamischer Modelle ansetzen.

Am Beispiel eines MA-Modells sollen diese Unterschiede herausgear-

beitet werden. Betrachten wir die Endgleichung
Y(t) = 1,89Y(t-1) - 0,99Y(t-2) + 1_(t) (22.1)

dann hdngt die Entscheidung, ob es sich um ein offenes oder geschlos-

senes System handelt, von dem konkreten Verlauf der exogenen Vari-
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ablen Ia(t) ab. Falls flir den gesamten .Betrachtungszeitraum Ia(t)=0,
dann kann von jedem kalendarischen Zeitpunkt n=0,1,2,... ein zeit-
liches Bezugssystem flir t aufgebaut werden.

In Abbildung 22.1 erkennt man, daB3 ein Zeitsystem mit t=0,1,... im
Jahre 1952 ansetzt, wdhrend ein zweites im Jahre 1950 beginnt. Fir
beide Anfangszeitpunkte gilt im Falle Ia(t)=0 dieselbe Endgleichung

mit unterschiedlichen Anfangswerten.

o T g + + ¢ et
* 3 -1 0 1 2 3
ts + - ¢

o 1 2 3 4 5
n b 4 ' + + 4 4
1950 1951 1952 1953 1954 1955

Abb. 22.1 Beispiel zur Unterscheidung von offenen und geschlossenen
Modellen

Generell spricht man immer dann von einem geschlossenen Modell, wenn
die Glltigkeit der Modellhypothesen von einer Verschiebung des zeit-
lichen Bezugssystems nicht beriihrt wird.
Nach dieser Feststellung liegt die Frage nahe, unter welchen Umst@n-
den ein dynamisches Modell eine derartige 'Verschiebbarkeit' seines
Zeitsystems nicht mehr zulaBt.
Gehen wir davon aus, daB die-Endgleichung in dem Zejtsystem T1952,
welches im Jahre 1952 beginnt, durch einen Verlauf der autonomen in-
vestitionen der Form la(t)=2t (t=0,1,2,...) beschrieben wird. Damit
wird fiir Ia(t) die folgende Zeitreihe festgelegt
t 0 | 2
Jahr: 1952 1953 1954 usw.
Wert von | _: 1 2 L
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Die Werte flir Ia im Jahre 50 und 51 sind in diesem Ansatz nicht be-
kannt. Prilifen wir nunmehr, ob die Endgleichung

Y(t) = 1,89Y(t-1) - 0,99Y(t-2) + 2°

auch flr das Zeitsystem T1950 GUltigkeit hat, welches im Jahre 1950

beginnt, so sehen wir, daB dieser Ansatz ab 1952 zu dem Verlauf

£ 2 3 4
Jahr: 1952 1953 1954 usw.
Wert von la: L 8 16

fihrt, d.h. die autonomen Investitionen nunmehr einen gednderten Ver-
lauf aufweisen. Es zeigt sich damit, daB in Fél}en, in denen sich
der numerische Wert der exogenen Variablen verindert, eine Transfor-
mation des Zeitsystems nicht m8glich ist, weil sich damit der Inhalt
der Hypothesengleichungen dndern wiirde. Wir kdnnen nunmehr folgende
Festlegung treffen: Wenn ein Modell exogene Variablen aufweist, die
in den einzelnen Kalenderzeitpunkten ihres Auftrefens unterschiedli-
che Werte annehmen, dann handelt es sich um ein offenes, im andern
Fall um ein geschlossenes Modell. Im Fall linearer Systeme mit kon-
stanten Koeffizienten wird ein offenes System durch eine inhomogene

Endgleichung der Form
Y(t) + a ¥{t-1) +...4 a Y(t-n) = E(t)

mit E(t)#0 fir t=...,-1,0,1,... beschrieben, ein geschlossenes Sy-

stem dagegen durch eine homogene Endgleichung
Vit) # 8y ¥(t=1} #..0% anY(t-n) =

Neben der hier verwendeten Bezeichnung des Begriffspaares offen und
geschlossen werden eine Flille unterschiedlicher Bezeichnungen, wie
kausal - historisch, inhomogen - homogen, gezwungen - ungezwungen,
nicht autonom - autonom oder semi-endogen - endogen, absolut iso-
liert - relativ isoliert verwendet. (vgl. [61,5.27 1], [123,5.205],
1208,5.3], [72:8.9])

in welchem Umfang diese Begriffspaare mit der hier entwickelten Dif-

ferenzierung in offen und geschlossen iibereinstimmen, ist jedoch
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nicht immer klar zu erkennen, weil viele Autoren mit diesen Begrif-
fen zwar im Rahmen bestimmter Untersuchungen operieren, die ihren
Begriffsbildungen zugrunde liegenden Abgrenzungskriterien aber nicht
eindeutig definieren, sondern mit exemplarischen Definitionen arbei-
ten.

Zur empirischen Interpretation offener und geschlossener Modelle sei
folgender Aspekt angeflihrt. Es ist ein Ziel naturwissenschaftlicher
Forschung, zeitinvariante Naturgesetze festzustellen. [169,;5.401]
Analog hierzu kann man fordern, daB es ein Ziel der sozialwissen-
schaftlichen Forschung sein sollte, zeitinvariante stfukture]le‘Glei-
chungen, d.h. Verhaltensgleichungen sowie technologische und insti-
tutionelle Gleichungen aufzufinden. Die Forderung nach der Ermittliung
zeitinvarianter Beziehungen bedeutet, daB die die strukturellen Glei-
chungen bildenden Beziehungen nicht durch GrdBen verdndert werden
diirfen, die explizit von der Zeit t abhdngen. Daraus folgt, daBl eine
Formulierung eines gegebenen Zusamménhanges fmmer dann nicht als be-
friedigend angesehen werden kann, wenn es notwendig wird, die Zeit t
explizit in diese Formulierung aufzunehmen. Wiirde man ein offenes
Modell als addquate Représentation einer bestimmten Theorie ansehen,
so miiBte man zugestehen, daB es zeitverdnderliche empirische Gesetze
gibt. Eine solche Konsequenz ist zwar logisch denkbar, wlirde aber ei-
nem Grundpostulat der heutigen Naturwissenschaften widersprechen, wel-
ches behauptet, daB sich eine Ursache (hier reprdsentiert durch den
Wert einer exogenen Variablen) nicht allein deswegen &ndern kann,
weil die Zeit voranschreitet, sondern, weil sie zugleich die Wirkung
einer anderen Ursache ist.

Offene Systeme kdnnen daher als eine Art unvollkommener geschlossener
Systeme interpretiert werden. [171,5.319]

Soll beispie]swéise ein empirisch vorliegender Zusammenhang unter-
sucht werden, so ist man fast immer gezwungen, eine bestimmte Teil-
menge von Variablen aus dem Gesamtzusammenhang als Subsystem zu iso-
lieren. Die Abgrenzung des Subsystems wird soweit wie m8glich unter

dem Gesichtspunkt erfolgen, seinen Umfang so festzulegen, daB mdg-
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lichst wenig zeitverdnderliche Variablen das System von auBen beein-
flussen.1 Eine vBllige Isolierung 188t sich aber fast nie erreichen.
Die Variablen, die das Subsystem von auBen zeitverdnderlich beein-
flussen, sind bei Betrachtung des gesamten Systemzusammenhanges sehr
hdufig aber von den endogenen Variablen des Subsystems abh3ngig. Es
besteht in diesen F&llen eine Beziehung zwischen den endogenen Va-
riablen des Subsystems und seinen zeitverdnderlichen exogenen Variab-
len. Da diese Beziehungen nicht bekannt sind, kdnnen die Verldufe
der exogenen Variablen des Subsystems in einer ersten Anndherung als
Funktionen der Zeit angesetzt werden. Gelingt es, durch weitere In-
formationen auch diese Beziehungen durch strukturelle Gleichungen

zu fassen und die in diesen auftretenden zeitverdnderlichen exogenen
Variablen wiederum éls Verknlpfungen der nunmehr erweiterten Menge
der endogenen Variablen zu definieren, so gelangt man letztlich zu
einem geschlossenen Modell. Dieses geschlossene Modell setzt sich
hierbei ausschlieBlich aus zeitinvarianten Strukturgleichungen zu-
sammen und bildet daher - wie schon erwdhnt - aus wissenschaftstheo-
‘retischer Sicht die wlinschenswerte Reprdsentation einer Theorie.. Wenn
man jedoch von der Annahme einer allgemeinen Interdependenz aller
Gr6Ben -der empirischen Wirklichkeit ausgeht, so kann es im strengen
Sinne kein empirisch gliltiges geschlossenes Modell bestimmter empi-
rischer Teilbereiche geben. Ein geschlossenes dynamisches Modell ist
unter dieser Annahme nur in Gestalt eines Totalmodells im Sinne der
Laplace'schen Weltformel denkbar. Nur in diesem Fall ist jegliche
ceteris-paribus-Klausel aufgehoben.

Akzeptiert man diese Annahme, so folgt daraus, daB geschlossene Mo-
delle gewissermaBen schon a priori eine beschrankte empirische Giil-
tigkeit aufweisen, da die immer vorhandenen exogenen zeitverdnderli-
chen Variablen im Modellansatz durch implizite oder exp]fzite cete=

ris-paribus-Klauseln als unverdnderlich angenommen werden.

Die in den Sozialwissenschaften entwickelten dynamischen Modelle
sind fast ausnahmslos offene Modelle, d.h. sie besitzen zeitveradnder-

liche exogene Variablen. KLEIN und GOLDBERGERs Modell der amerikani-

1 Zu den Problemen einer zul&ssigen Subsystemabspaltung im Rahmen ei-
nes geschlossenen Modells, siehe Abschnitt 2.5.3.
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schen Wirtschaft enthdlit beispielsweise in zwanzig Gleichungen acht-
zehn zeitverdnderliche exogene Variablen.

Den Extremfall eines offenen Modells stellen die anfangs erwdhnten
zeitverzdgerten (d.h. Bestandsgleichungen enthaltende) Definitionssy-
steme dar, die keine zeitinvarianten Hypothesen enthalten, sondern de-
ren 'empirische Flillung' allein anhand der Sch&tzung ihrer exogenen
Variablen erfo]gt.2 Eines der ersten geschlossenen Modelle im Bereich
der Okonomie wurde von KALECK! in Form einer gemischten Differential-
Differenzengleichung zur Erkldrung von Konjunkturverldufen entwickelt
[107]. iIn den letzten Jahren wurden geschlossene Model1e4vorwiegend
von FORRESTER und seinen Schiilern im Rahmen des von ihm entwickelten
System-Dynamics~Konzeptes erstellt. Sie werden in diesem Zusammen-
hang diskutiert.3

Ob es gelingt, die Realitdt mit Hilfe eines geschlossenen Modells in
addquater Weise einzufangen, kann nur von Einzelfall zu Einzelfall

beurteilt werden.

2.3. Zyklische und kaskadierende Modellformen

Die Unterscheidung zwischen zyklischen und kaskadierenden Modellen
flihrt zu bestimmten Typen von Hypothesen, die sich als zyklische und
kaskadierende Hypothesen bezeichnen lassen. In diesem Abschnitt wer-
den die formale Struktur und empirische Interpretation dieser Hypo-
thesenarten sowie die speziellen Probleme ihrer Implikationenaufdek-
kung erdrtert. Eng mit den zyklischen Hypothesen ist der Begriff ei-
nes Feedback verbunden. Dieser Begriff wird formal expliziert und
kritisch diskutiert. Es folgt eine ausfihrliche Darstellung der Be-
ziehungen zwischen zyklischen und den sogenannten sequentiellen Hypo-
thesen, welche primdr dem Ziel dient, einige konstruktive Einsichten
in den Funktionsmechanismus linearer Modelle zu erhalten. Mit dieser
Darstellung, welche die Beziehungen zwischen den Gewichts- Pnd Im-
pulsfunktionen linearer Modelle zum lnhalt'hat,'wird eine wichtige
Grundlage filir das Versta@ndnis linearer Modelle geschaffen.

2 Siehe Seite 47
3 Siehe Seite 399ff.
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2.3.1. Begriffliche Klarung und empirische Interpretation

A. Zyklische und kaskadierende Hypothesen

Unter einem zyklischen Modell soll ein Modell verstanden werden, in

welchem zumindest eine endogene Variable von ihren eigenen verzdger-

ten Realisationen abhédngt. Ein Kaskadierendes Modell zeichnet sich

dagegen durch das Fehlen der verzdgernden Beeinflussung einer endo-
genen Variablen auf sich selbst aus.
Zur Pr3zisierung der beiden Modellbegriffe ist es notwendig, zwi-

schen zyklischen und kaskadierenden Hypothesen zu unterscheiden.

Kennzeichen einer (primdren oder sekundiren) zyklischen Hypothese
ist es, daB die Zu erkldrende endogene Variable in ihrer eigenen Hy-
pothesengleichung verzdgert auftritt. So ist die bereits erwdhnte de-

“mographische Hypothese der Weltbevdikerungsentwicklung
B(t) = 1,02B(t-1) (23.1)

eine zyklische Hypothese, da die zu erkl&rende Variable B sich ver-
z6gert selbst erkldrt. Primdre zyklische Hypothesen sind jedoch re-
lativ selten. Das MA-Modell enthdlt beispielsweise keine primdre zyk-

lische Hypothese. So z&hlt die Investitionshypothese
o(e) = slC(t)-C(t-1)] (23.2)

nicht zu den zyklischen Hypothesen, wdhrend die bereits friher be-

schriebenen sekunddren Hypothesen des Investitionsverhaltens

I (0) = aBlC(t-1)-Cle-2)+1, (e-1)-1, (£-2)+1_(t-1)-1_(t-2)] (23.3)
und ’

L (£) = (a+aB) i, (t-1) - aBl, (t-2) + aBl_(t-1) - aBl_(t-2) (23.h)
in die Klasse der zyklischen Hypothesen fallen, weil 'i in verztger-

ter Form zur Erkl&rung seiner 'zuklinftigen' Ausprigung beitrigt.

Eine kaskadierende Hypothese zeichnet sich dadurch aus, daB die zu
erkld@rende endogene Variable ausschlieBlich durch (verzdgerte und un-

verzbgerte) Variablen bestimmt wird, die nicht Verzdgerungen der zu
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erkldrenden Variablen sind. Anders ausgedrﬂckt£ eine kaskadierende
Hypothese liegt vor, wenn die Gruppe der vorherbestimmten Variablen,
welche in einer Hypothesengleichung die endogene Variable Y bestim-
men, selbst keine Verzdgerungen dieser’endogenen Variablen enthalt.
Kaskadierende Hypothesen lassen sich als eine negative Abgrenzung
zur Kilasse der zyklischen Hypothesen auffassen. Damit wird auch deut-
lich, daB die (primdren) Hypothesen des MA-Modells kaskadierende Hy-
pothesen sind, da sie, wie erwdhnt, nicht zu den zyklischen Hypothe-
sen zdhlen.

Die Unterscheidung zwischen zyklischen und kaskadierenden Hypothesen
gibt einen Einblick in die Wirkungsrichtungen der kausalen Verknlpfun-
gen dynamischer Modelle. Eine zyklische Hypothese kennzeichnet einen
Zusammenhang, der oft als Feedback bezeichnet wird, weil die Auspra-
gung einer gndogenen Variablen einen verzﬁgertén EinfluB auf sich
selbst ausilibt. Eine v8llige Gleichsetzung ist jedoch problematisch.
Andernfalls miiBte jede Bestandsfortschreibungsgleichung als Feedback
gedeutet werden. Meist pflegt man erst dann von éinem Feedback zu
sprechen, wenn diese verz8gerte Rickwirkung auf sich selbst lUber meh-
rere endogene Variablen erfolgt, was dadurch zum Ausdruck kommt, daB
nicht die primdren Hypothesen dieser endogenen Variablen, sondern
erst die.(durch Schleifenreduktion‘abge]eiteten) sekunddren Hypothe-
sen in Form von zyklischen Hypothesen auftreten.

Sind die primdren oder auch sekunddren Hypothesen eines Modells kei-
ne zyklischen Hypothesen, so kann man daraus nicht den zwingenden
SchluB ziehen, das.Mode]l enthalte keine Feedbacks. Dieses Urteil ist
erst mdglich, wenn man die primdren oder sekunddren minimalen Hypo-
thesen (oder in mathematischer Ausdrucksweise die Endgleichungsform)
des Modells ermittelt hat.

Enthdlt keine der Endgleichungen eine endogene verzdgerte Variable,
dann besitzt das Modell keine Feedbacks, und man kann von einem kas-
kadierenden Modell sprechen. Der dynamische Charakter eines solchen
Modells resultiert in diesem Fall aus den Verzbgerungen der exogenen
Variablen. Als Beispiel sei ein Modell angeflihrt, durch welches der

Zusammenhang zwischen den Werbeausgaben W(t) eines Unternehmens, sei-
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nem Umsatz U(t) und den aus dem UmsatzprozeB resultierenden Kassen-

eingdngen K(t) beschrieben wird.

u(t)
K(t)

1,5W(t) + 6W(t-1) + 4,5W(t-2) + 3W(t-3)
0,1U(t-1) + 0,4U(t-2) + 0,4U(t=3) + 0,1U(t-4) {23.5)

Die Werbeausgaben beeinflussen verzégert den Umsatz, und die aus dem
UmsatzprozeB folgenden Geldeinnahmen treffen wegen der unterschied-
lichen Zah]ﬁngsgeWohnheiten der Schuldner ebenfalls verzdgert ein.
Es handelt sich um ein kaskadierendeé Modell, denn die Gleichung fir
U(t) ist bereits eine Endgleichung und enthilt nur exogene verzs-
gerte Variablen. Durch Einsetzung der Endgieichung von U(t) in die
Gleichung fiir K(t) kann die Endgleichung fir K(t) ermittelt werden,
die, wie man leicht erkennt, nur Verzdgerungen von W enthdlt.

Die meisten Modelle gehSren der Gruppe der zyklischen Modelle an, de-
ren eindeutige ldentifizierung auf der Grundlage der minimalen Hypo-
thesen (bzw. Endgleichungen) mdglich ist.

im Falle eines MA-Modells, dessen primdre Hypothesen keine Feedbacks
aufweisen, besitzen die minimalen Hypothesen oder Endgleichungen die

folgende Form:

Y(t) = (at+aB)Y(t-1) - aBY(t-2) + Ia(t)
1. (t) = (a+ap) !, (t-1) - aBl (t-2) + aBl_(t-1) - apl_(t-2) (23.6)
C(t) = (a+ap)C(t-1) - aBC(t=2) + ala(t-x)

In diesen Endgleichungen des MA-Modells schlagen sich die Einfliisse
sSmtlfcher in dem System wirkender Feedbacks nieder. Es bietet sich
daher an, Endgleichungen als die formalen Réprﬁsentahfen anzusehen,
an denen sich oft verwendete Systemattribute wie positiver oder ne-
gativer Feedbackkreis explizieren und ihre empirischen Konsequenzen
darstellen lassen.. Ein solcher Versuch der formalen Aufweisung des
Feedbackbegriffes im Rahmen linearer Systeme wird im folgenden unter-
nommen.

Der Begriff des 'Feedback' ist im sozial- und wirtschaftswissen-
schaftlichen Bereich weit verbreitet. Von einem positiven Feedback-
kreis wird gemeinhin gesprochen, wenn ein Anwachsen des Wertes einer

GroBe dazu fihrt, daB auf diese GrdBe ein verzdgerter EinfluB zum ei-
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genen weiteren Wachstum ausgelibt wird. Ein negativer Feedbackkreis
dagegen liegt nach allgemeiner Auffassung dann vor, wenn die Erho-
hung einer Gr&Be verzdgert zu einem diesem Anwachsen gegenldufigen
Effekt fuhrt.' |

Zur Diskussion des Feedbackbegriffes betrachten wir das in Abbildung
23.1 dargestellte FluBdiagramm eines MA-Modells. Es lassen sich zwei
Feedbackkreise unterscheiden, die durch die Zahlen 1 und 2 gekenn-

zeichnet werden.

Y(1) . Ia(t)
«Y(t)=C(t)+Ii(t)+la(t) e 5 =
g
1
2
2
1’2 C(t) 1
- C(t)=ay(t-1) —r Ii(t)
2
-—ﬁli(t)=B[C(t)-C(t"l)4—J

Abb. 23.1 Feedbackinterpretation eines MA-Systems

Wir wollen uns als erstes die Frage stellen: Kann man die zwei Feed-
backkreise in 'positive' und ‘negative' Feedbacks klassifizieren.
Diese Frage wurde bereits bei der Besprechung komparativer Schau-
bildmodelle bejaht: im Falle des ersten Kreises»wgchst C mit Y, und
ein wachsendes C erh8ht wiederum Y. Flir den zweiten Kreis gilt: wenn
Y wachst, dann wichst auch C,'wenn C wdchst, wdchst auch die Diffe-
renz C(t)-C(t-1), was zur Folge hat, daB auch I wichst, welches wie-
derum Y erhdht.

Da das Modell keine nichtkomparativen Hypothesen enth&lt, erweisen

sich beide Feedbackkreise als positiv.
1 Vgl. Seite 59¢F.
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Wir haben gesehen, daB die Existenz von Feedbacks in der Endgleichung
einer endogenen Variablen durch autoregressive Beziehungen, d.h. der
Abh&ngigkeit der endogen unverzBgerten von ihren eigenen verztgerten
Ausprdgungen, zum Ausdruck kommt. Es liegt daher die Frage nahe, ob
es moglich ist, zwischen der Existenz bestimmter positiver oder ne-
gativer Feedbackkreise und der Endgleichung Korrespondenzen festzu-
stellen. Da die Endgleichung einer Variablen als die verdichtete Zu-
sammenfassung der Auswirkung aller Feedbackkreise auf eine Variab-

le anzusehen ist, fragt man sich vor allem, ob anhand einer Endglei-
chung zu erkennen ist, daB ein System ausschlieBlich negative oder
positive oder beide Arten von Feedbackkreisen enthdlt. LieBen sich
solche Beziehungen aufweisen, dann hieBe dies, daB3 das Vorliegen ei-
ner diéser drei Konstellationen von Feedbackkreisen eine bestimmte
strukturelle Beschaffenheit der betreffenden Endgleichung zur Folige
hédtte. Beispielsweise bGte es sich an, zu Uberpriifen, ob im Falle

nur positiver Feedbacks alle Koeffizienten der Endgleichung positiv
sind, wdhrend sie im Falle negativer Feedbacks nur negative Werte an-
nehmen und im gemischten Fall sowohl negative als auch positive Ko-
effizientenausprégung besitzen. Eine solche Feststellung wiirde dazu
fihren, daB der empirische Gehalt derartiger Feedbackbehauptungen
durch die.in einer Endgleichung 'verbotenen' Parameterausprédgungen
expliziert wird und mit dem empirischen Gehalt der angestrebten pa-
rametrisch-singuldren Endgleichung verglichen werden kann.2

Ein Blick auf die Endgleichungen des MA-Modells zeigt jedoch, daB

die angefilihrten Hypothesen nicht zutreffen, denn obgleich im System
nur positive Feedbacks festzustellen waren, existiert ein negativer
Koeffizient. Man kann zeigen, daB es nicht mbglich ist, aus der Kennt-
nis bestimmter Konstellationen positiver und negativer Feedbackkrei-
se in zwingender Weise auf irgendeine strukturelle Beschrdnkung der
Koeffizienten einer Endgleichung zu sch]ieBen.3

Eine abschlieBende Betrachtung im Lichte dieser Formalisierung soll
der ménchma] vertretenen Ansicht gelten, ein positives Feedback fih-
re zur Explosion eines Systems, wdhrend im Falle eines negativen Feed-

2 Zur Beurteilung des empirischen Gehalts, siehe Seite 38ff.
3 Mit Ausnahme einer Differenzengleichung ersten Grades
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backs dagegen ein bestimmter Gleichgewichtszustand realisiert wer-
den wiirde.

In dieser undifferenzierten Form kann eine soliche Auffassung (, der
man allgemein in den Sozialwissenschaften nicht widersprechen soll,
weil sie niemandem schadet) bei ihrer 'Riickiibertragung' auf dynami-
sche Systemmodelle zu Fehleinschdtzungen flihren.

Ein positiver Feedback ist zwarlnotwendig, aber nicht hinreichend
flir das explosive Wachstum einer Variablen. Betrachten wir den ein-
fachsten Fall eines im Gleichgewicht befindiichen linearen Systems
ersten Grades, welchem ein Einheitsimpuls E¥(t) aufgeprégt wird.

Y(£) = oY1)+ 100 + E¥(t)  Y(-1) = 2y (23.7)

Das System besitzt ein positives Feedback, wenn o>0, aber nur im
Fall a>1 tritt ein unbegrenztes Wachstum auf. Im Gegensatz dazu kann
man im Falle o<0 von einem negativen Feedback sprechen. Eine Stabi-
litdt dieses Systems, d.h. eine Rlckflihrung zum Gleichgewicht ist
aber dennoch nur im Falle 0<o<! gegeben, wdhrend das System flr a<-1
fluktuierend explodiert.

Zusammenfassend kann man sagen: Die Begriffe eines positiven und ne-
gativen Feedbacks k&nnen zur Kennzeichnung bestimmter riickfliihrender
Beeinflussungsketten von Variablen verwendet werden, wenn alle Hypo-
thesen in diesen Ketten komparativ sind. Uber die {unter Umstdnden
mogliche) Klassifizierung von Feedbackkreisen hinausgehend, erlaubt
die Feststellung solcher Eigenschaften von Feedbackkreisen keine
SchluBfolgerung, die zur Einschrénkung des potentiell mdglichen Ver-
haltens von Systemen fiihrt. In stdrker formaler Sprachweise ausge-
driickt heiBt dies: aus den komparativen Hypothésen eines Systemmo-
dells kann man keine Aussage Uber strukturelle Beschrdnkungen der
minimalen parametrisch-generellen Hypothesen desselben Systemmodells
ableiten. Die vorangegangene Veranschaulichung dieser recht einsich-
tigen Folgerung erscheint mir notwendig zu sein, um den Stellenwert
solcher in der systemtheoretischen Literatur behandelter paradigma-
tisch Uberfrachteter Begriffe wie positiver und negativer Feedback-

kreis klarer beurteilen zu k&nnen.
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Die vorangehenden Betrachtungen liber Feedbackkreise betrafen Hypothe-
sensysteme, welche durch zyklische Modelle beschrieben werden, d.h.
Modelle, deren Endgleichungen oder minimale Hypothesen Autoregressio-
nen enthalten. Ein potentieller Opponent wird einwenden, daf3 die ver-
wendete Definition eines zyklischen Modells nicht als operationales
Kriterium geeignet ist, um zu entscheiden, ob ein vorliegendes Mo-
dell zur Klasse der zyklischen Modelle gehdrt oder nicht. Denn zum
einen ist es praktisch unmdglich, die Endgleichung nichtlinearer Mo-
delle zu ermitteln, und zum anderen ist die Ermittiung der Endglei-
chung linearer Modelle ein mithseliges Unterfangen.

Diesem Einwand ist zuzustimmen. Die entwicke}té Definition lieferte
zwar einen fruchtbaren <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>