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In der nationalBkonomischen Hexenkiiche wird
jetzt manch kréftig dynamisch Tranklein ge-
bréut, und wer davon genoséen hat, sieht

zwar leider nicht wie Faust Helena in jedem
Weib, wohl aber ein Gewimmel 'dynamischer'
Probleme und die 'Zeit' in jedem Bkonomischen

Vorgang.

Oskar Morgenstern
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Einleitung

Komplexe dynamische Simulationsmodelle haben sich in den letzten Jah-
ren zu einem wichtigen Beschreibungs- und Analyseinstrument der wirt-
schafts~ und sozialwissenschaftlichen Forschung entwickelt. Diese
Entwicklung wurde in der Vergangenheit vor allem durch das zunehmen-
de Angebot an computergestlitzten Systemen zur Modellierung, Sch&t-
zung und Analysé dynamischer Modelle ermBglicht.

Die Tatsache, daB immer mehr Wissenschaftler auf ein stdndig anwach-
sendes und leicht zu handhabendes Modellierungs- und Analysepotential
zuriickzugreifen vermSgen, birgt groBe Mdglichkeiten, aber auch Gefah-
ren. Eine dieser Gefahren diirfte in der Versuchung liegen, ein 'mo-
delling without theory' zu praktizieren, d.h. die ohne tiefergehende
theoretische Kenntnisse rezeptartige Anwendung bestimmter Modellie-
rungskonzepte.

Diese Arbeit verfolgt das Ziel, sowohl die technischen Probleme der
Systemsimulation detailliert und an Beispielen aufzuzeigen, als auch
dfe theoretischen Grundiagen der Struktur, Interpretation und Analy-
se dynamischer Modelle in systematischer Weise darzustellen.

Sie gliedert sich in vier Kapitel, von denen die ersten beiden der
theoretischen Grundlegung dienen, wdhrend sfch die restlichen zwei
Kapitel den konkreten Methoden und Techniken der dynamischen System-
simulation zuwenden.

Das erste Kapitel, welches formal weniger scharf gefaBt ist, soll
moglichst anschaulich und von technischen Einzelheitenvbefreit, in
die Grundlagen und Probleme der Analyse dynamischer Systeme einfilh-
ren. |

Ausgegangen wird von der Pr3zisierung eines bestimmten Typs dynami-
scher Modelle, den metrischen, zeitdiskreten, dquidistanten Model-
len. Auf der Basis dieses Modelltyps werden die begrifflichen Elemen-
te zur Kennzeichnung dynamischer Modef]e eingeflihrt. Es folgt eine

Erdrterung der wichtigsten Implikationen dynamischer Modellansdtze
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sowie eine erste Skizzierung der verschiedenen 'Logiken' zur Aufdek-
kung dieser Implikationen. AbschlieBend werden einige grundlegende
Verfahren zur Gewinnung und empirischen Uberpriifung von Modellhypo-
thesen dargestellt.

Wahrend im ersten Kapitel eine Grundliegung und Ubersicht des Aufga-
bengebietes der Analyse dynamischer Systehe vermittelt wird, knlpft
das zweite Kapitel an speziei]e Modell1formen an.‘Anhand bestimmter
polarer Modellbegriffe wie linear-nichtlinear oder offen-geschlossen
wird die spezielle empirische Interpretation dieser Modelle disku-
tiert; es werden typenspezifische Implikationen beschrieben und die
mathematischen Methoden ihrer Offenlegung dargestellt.

Dieses Kapitel soll eine theoretische Basis schaffen, die im Rahmen
der Simulation dynamischer Modelle zu einer erhBhten methodischen Si-
cherheit flihrt sowie ein Hintergrundwissen schafft, welches zu einer
ausgewogenen und umfassenden Beurteilung der Mglichkeiten einer kon-
kret anstehenden Modellentwicklung fihrt.

Wer nicht die Zeit oder auch Geduld hat, dieses Kapitel durchzuar-
beiten, oder wer der (vielleicht vorlsufigen) Auffassung anhdngt,
das erste Kapitel sei als theoretische Basis ausreichend, kann Kapi-
tel 2 Uberspringen. Denn, abgesehen von einigen theoretischen Ein-
schiiben, sind die in den Folgekapiteln diskutierten technischen Fra-
gen der Modellsimulation auch ohne die Kenntnis von Kapitel 2 ver-
stdndlich. Flir Leser, die sich mit den Methoden zur Untersuchung dy-
namischer Systemmodelle vertraut machen wollen, weil sie die Entwick-
lung eines bestimmten Modells beabsichtigen, ist es vielleicht sogar
eine sinnvolle Strategie, das Kapitel 2 auszulassen. Spdtestens nach
dem ersten Entwurf und der nachfolgenden Simulation eines Modells
stellt sich zumeist ein echtes, aus der Aufgabenstellung her moti-
viertes Bedlirfnis nach einer stdrkeren methodisch-theoretischen Uber-
prifung und Fundierung des eignen Vorgehens ein. Zur Befriedigung
dieses Bediirfnisses liegt es nahe, Kapitel 2 zumindest bezliglich be-
stimmter Modelltypen nachtraglich durchzuarbeiten.

Im dritten Kapitel wird das heute sehr gebrduchliche Modellierungs-

konzept 'System Dynamics' beschrieben, anhand von Beispielen darge-



gestellt und kritisch diskutiert. Der Erdrterung dieses Konzeptes
schlieBt sich die Beschreibung zweier Verfahren zur Sensitivitdtsana-
lyse und Retrodiktion von System-Dynamics-Modellen an. Ankniipfend
an die kritisch diskutierten Prinzipien des System Dynamics wird ei-
ne als FOLR-Modellierung bezeichnete Alternative zu dieser Konzep-

tion vorgeschlagen und ausfilihrlich begrilindet.

Das vierte Kapitel wendet sich den computergestiitzten Techniken der
Behandlung dynamischer Modelle zu. Die Simulationssprachen DYNAMO
und CSMP werden anhand von Beispielen beschrieben und miteinander
verglichen. Die'Anwendung von FORTRAN zur Simulation von System-Dy-
namics~Modellen und klassischen Differenzengieichungsmodellen wird
eingehend erdrtert. Das Kapitel schliieBt ab mit der Darstellung

der heute maBgebenden Schdtz- und Simulationssysteme SIMPLAN, EPL,
COMOS und TROLL.

Was hat der Leser davon, wenn er dieses Buch teilweise oder viel-
leicht sogar vollsténdig durchgearbeitet hat? - Es bleibt zu hoffen,
dafl er das Terrain klarer Uberschaut, daB8 er in die Lage versetzt
worden ist, seine eigene Tétigke]t beim Arbeiten mit dynamischen Mo-
dellen methodisch besser einzuordnen, daB er sich mit den Methoden
zur Analyse dynamischer Systeme vertraut gemacht hat, aber auch ihre
Grenzen einzuschdtzen vermag. '

Diese erhBhte methodische Sicherheit beim Arbeiteé mit dynamischen
Modellen sollte einhergehen mit der Vermittlung profunder Kenntnisse
in der Technik der Simulation dynamischer Modelle. Erst, wenn ein
Modellentwickler ein Kehntnis~ und Anwendungsniveau erreicht hat,

we lches die Simulation und Analyse eines Modells zu einer routine-
méBigen Tatigkeit werden.13dBt, dann kann er sich voll der wesentli-
chen Aufgabe jeder Modellentwicklung widmen: der Hypothesengewin- k
nung.

Man kann die triviale Wahrheit nicht oft genug wiederholen: jedes
dynamische Modell steht und f&llt mit der GlUltigkeit seiner zeitin-
varianten Hypothesen. Uber die Methoden zur Aufstellung solcher Hy-

pothesen wird in dieser Arbeit nicht viel gesagt und kann auch nicht



viel gesagt werden. Der Grund ist folgender: weil es keine verbind-
liche Induktionslogik, d.h. kein zwingendes Verfahren der Hypothe-
sengewinnung gibt, ist die Auffindung testbarer, zeitinvarianter Hy-
pothesen die entscheidende kreative Leistung eines Modellentwicklers.
In den ndchsten Jahren wird die integrierte computergestiitzte Anwen-
dung sowohl deduktionslogischer Verfahren als auch induktionsTogi—
scher Parameterschdtztechniken so vereinfacht werden und weiﬁ_ver-
breitet sein, daB das Problem der Hypothesengewinnung immer stdrker
als das Kernproblem jeder Modellentwickiung hervortreten wird.

Mit dem Erfolg oder MiBerfolg im Auffinden empirisch gehaltvoller
und bewdhrter Verhaltenshypothesen entscheidet sich die praktische
Relevanz dynamischer Systemmodelle in den Wirtschafts- und Sozial-

wissenschaften.



1. Kennzeichnung dynamischer Systeme
und Modelie

Unser erstes Ziel ist es, eine Vorstellung vom Problemkomplex einer
Analyse dynamischer Systeme zu vermitteln. Wir beginnen mit einer
Kldrung der Beziehungen zwischen einem System und dem Modell, wel-
ches dieses System beschreiben soll. Daran anschlieBend filihren wir
eine Klassifiiierung der Beschreibungsformen dynamischer Systeme ein
und beschlieBen, eine bestimmte Systembeschreibungsform flir die nach-
folgenden Betrachtungen zu Grunde zu legen. Auf dieser begrifflichen
Basis werden die Ziele und Methoden der Analyse dynamischer Systeme
an einfachen Beispielen demonstriert.

AbschlieBend wird das Problem der empirischen Addquanz dynamischer
Systemmodelle behandelt. Seine fundamentale Bedeutung wird deutlich,
wenn man sich klarmacht, daB jede noch so diffizile Analyse eines Mo-
dells immer dann zu einem sinnlosen Unterfangen wird, wenn ein Mo-
dell das zu beschreibende System nicht hinreichend addquat wider-

spiegelt.

1.1. Systeme und Modelle

Es soll nicht unsere Aufgabe sein, eine prdzise Definition des Wor-
tes 'System' zu liefern. In einer geringfiigigen Einengung jedoch
wollen wir nur dann von einem System sprechen, wenn darunter ein
durch Beobachtungen aufweisbarer Zusammenhang verstanden wird. Die
unter diese Definition fallende Objektmenge hd@ngt entscheidend von
der Auslegung des Begriffes der Beobachtbarkeit ab. In einer restrik-

tiven Fassung des Beobachtungsbegriffes umfaBt ein System nur ma-
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terielle Ph8nomene wie eine Uhr oder eine Dampfmaschine. Erweitert
man den Begriffsumfang, indem auch nur indirekt konstatierbare Be-
ziehungen als Beobachtungen angesehen werden, so k&nnen auch physi-
kalische Kraftfe]der, betriebliche Organisationen, Beziehungen zwi-
schen gesellischaftlichen Gruppen oder das 'Rechtssystem' eines Lan=-
des als System bezeichnet werden.

Vorerst woflen wir es bei dieser ersten Aufhellung des Systembegriffs
belassen und uns ohne weitere Prézisierung der Frage zuwenden: Wie
gelangt man zu nicht unmittelbar einsichtigen Informationen Uber Ei~-
genschaften und Wirkungsweisen bestimmter Systeme?

Die Antwort lautet: Man entwickle ein Modell des betreffenden Systems
und versuche, anhand dieses Modells die noch nicht bekannten Eigen-
schaften des Systems herauszhfinden.

Modell ist hier im ganz allgemeinen Sinne einer Abbildung gemeint.
Diese Abbildung kann rein verbalsprachlicher Art sein. Man spricht

dann von Verbalmodellen.

Modelle kdnnen auch vereinfachte und verklieinerte Nachbildungen ei-
nes Zusammenhangs zum Ausdruck bringen wie etwa im Falle einer Land-
karte oder eines Planetariums. Flir derartige materielle Nachbiidun-

gen wird die Bezeichnung ikonische Modelle verwendet.

Uns interessieren jedoch allein Symbolmodelle. Durch ein Symbolmo-

dell werden die Informationen Uber das zu beschreibende System an-
hand empirisch interpretierter Symbole reprdsentiert. Bilden diese
Symbole und ihre Verkniipfungsweisen zugleich die Symbole und Opera-
tionsbegriffe einer bestimmten mathematischen Kalkiilsprache, dann

soll von einem mathematischen Modell gesprochen werden.

So ist die lineare Funktion
K= 100 + 10X

beispielsweise ein mathematisches Modell, wenn man davon ausgeht,
daB sie den Verlauf der Kosten eines bestimmten Betriebes in Abh&n-
gigkeit von der produzierten Menge beschreibt, wobei folgende empi-

rische Deutung der Symbole gilt:

K: Gesamtkosten des Betriebes (DM)
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X: Produktionsmenge des Betriebes (Stiick)
10: Stlickkosten (DM/Stlick)
100: Mengenunabhingige Kosten (DM)

Un ein mathematisches Modell handelt es sich, weil die verwendete
lineare Funktion ein algebraischer Ausdruck ist. Ein nicht unmittel-
bar erkennbares Strukturmerkmal und daher eine Implikation des be-
schriebenen Modells bildet beispielsweise der Verlauf der sogenann-
ten burchschnittskosten in Abhdngigkeit von der Produktjonsmenge X,

welcher anhand des Modells bestimmt werden kann. Er wird durch die

Funktion
K/X = 10 + 100/X

beschrieben. Damit ist der Grundgedanke jeder Systemanalyse umris-
sen: Entwicklung eines Systemmodells und Gewinnung von Informatio-
nen, welche dem Systemuntersucher bisher nicht bekannt waren, durch
geeignete Methoden aber aus dem Systemmodell erschlossen werden k&n-

nen.

Da wir beabsichtigen, verschiedene Arten dynamischer Systemmodelle
“im Hinblick auf ihre Besonderheiten zu diskutieren, ist es ange-
bracht, kurz der Frage nachzugehen, auf welche Weise Uberhaupt be-
griffliche Differenzierungen vorgenommen werden kﬁnnen, Ublicher-
weise werden Individuenmengen anhand bestimmter beobachtbarer Merk-
male in Teilmengen und damit Arten differenziert. Die Teilmenge 'Pu-
del' ergibt sich aus der Festlegung, daB alle Elemente der Individu-
enmenge 'Hund', welche eine Reihe bestimmter Beobachtungsmerkmale auf-
weiéen, als Pudel zu bezeichnen sind. Im Sinne dieses Kiassifika-
tionsverfahrens muB ein System, welches man als dynamisch bezeich-
net, ein Beobachtungsmerkmal besitzen, bei dessen Vorhandensein man
laut Vereinbarung von einem dynamischen System sprechen soll. Will
man jedoch vorhandene Systeme allein nach Beobachtungsmerkmalen in
Teilklassen wie offene, geschlossene, komplexe oder ultrastabile
klassifizieren, so dlirfte schon eine Einigung lber die in Frage

kommenden Beobachtungsmerkmale schwierig sein.



Wegen dieser Schwierigkeiten werden wir eine andere Art der Klassi-

fizierung von Systemen verwenden, die als modellabhéngfge System-

klassifizierung bezeichnet werden kann. lhr Grundgedanke lautet:

Will man ein bestimmtes System klassifizieren, so erfoigt diese
Klassifikation anhand der Merkmale einer Modellklasse, durch die
das System in adiquater Weise beschrieben wird. Dies bedeutet, daB
man einem bestimmten System insofern eine bestimmte Eigenschaft zu-
schreiben kann, als es sich durch einen bestimmten Modelltyp abbil~-
den 13Bt.

In dfesem Sinne soll dann von einem dynamischen System gesprochen
werden, wenn die zu Grunde liegenden Phdnomene von einem dynamischen
Modell in adaquater Weise reprdsentiert werden kdnnen. Entsprechend
dieser.Sprachregelung bildet ein empirischer Zusammenhang, der sich
durch ein lineares dynamisches Modell abbilden 138Bt, ein lineares
dynamisches System.

Ein System wird damit gleichsam mit Hilfe eines ihm addquaten Mo-
dells identifiziert. Wenn im folgenden von der Analyse dynamischer
Systeme gesprochen wird, dann handelt es sich also um die Analyse
empirischer Beziehungszusammenhdnge, die mit Hilfe dynamischer Mo-
delle in addquater Form reprdsentiert werden kdnnen.

Es sei schon vorgegriffen, daB im folgenden von dem Begriff eines
dynamischen Modells ausgegangen wird, der dazu fﬁhrf, daB dynami-
sche Modelle eine Teilklasse der Symbolmodelle bilden. Dies hat zur
Folge, daB sich die Analyse dynamischer Systeme ausschlieBlich im

Rahmen der Analyse dynamischer (Symbol-)Modelle vollzieht.

1.2. Dynamische Modelie als Reprasentanien dynamischef
Systeme '

Was unter einem dynamischen Modell verstanden werden soll, ist eine
Frage der Definition. im folgenden wollen wir den von uns verwende-
ten Begriff eines dynamischen Modells durch eine sukzessive Einfiih-

rung von drei Kennzeichen festlegen.
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Erstes Kennzeichen: Ein dynamisches Modell muB vollsymbolisiert

sein; d.h. die abzubildenden Zusammenhd@nge miissen durch eine Symbol-

sprache reprdsentiert werden.

Ein einfaches Beispiel eines symbo1isiertenVZusammenhanges zeigt das
in Abbildung 12.1 dargestellte Sympathie-Antipathie-Schema zwischen
drei Personen. Die einzelnen Personen werden durch die Buchstaben
A,B,C repréasentiert; die Pfeilspitze zeigt die Person an, die von
derjenigen Person, von der der Pfeil ausgeht, beurteilt wird. lst in
dem Kreis, der den Pfeilschaft unterbricht, ein S eingetragen, so
wird die zu beurteilende Person als sympathisch empfundehT Das Sym-

bol U dagegen bedeutet, daB die Person als unsympathisch beurteilt

p——(D—
&CJ
Abb. 12.1 Sympathie-Antipathie~-Schema zwischen Personen als Bei-
spiel eines einfachen symbolisierten Modells

wird. Dieses Modell ist zwar vollsymbolisiert, erflillit jedoch nicht
das folgende von einem dynamischen Modell zu fordernde Merkmal.

Zweites Kennzeichen: Die mit Hilfe eines dynamischen Modells symbo-

lisierten Ereignisse oder Zustdnde miissen durch einen Zeitindex ge-

kennzeichnet sein.

Bezeichnet.man etwa den Umsatz eines bestimmten Unternehmens in der
Periode t=1,2,3... mit U(t), und 14Bt sich die in den vergangenen
Perioden beobachtete Umsatzentwicklung durch folgende Beziehung an-

ndhernd darstellen,

U(t) = 10000 + 600t



dann sind flir dieses Modell der Umsatzentwicklung die Kennzeichen 1
und 2 erfiillt. Modelle, die die Forderung nach Symbolisierung und
zeitlicher Indizierung erfililien, bezeichnet man als historische oder
kinetische Modelle.

Nicht vorhanden ist jedoch in derartigen Modellen das dritte Merk-
mal dynamischer Modelle:

Drittes Kennzeichen: Dynamische Modelle miissen zumindest eine zeit-

invariante Verknlipfung zweier zeitlich gegeneinander verzbgerter Er-

eignisse aufweisen.

Eine zeitinvariante verzdgerte Verknlipfung zweier Ereignisse bedeu-

tet, daB eine Beziehung der folgenden Art in das Modell mit aufge-

nommen wird:

Wenn ein Ereignis A zum Zeitpunkt t realisiert wird, dann wird

immer ein Ereignis B zum Zeitpunkt t+At realisiert.

Symbolisch formuliert:
A(t) ~ B(t+at) (12.1)

Die verzdgerte Beziehung zwischen den Ereignissen A und B wird deswe-
gen als-zeitinvariant bezeichnet, weil sie flir beliebige Perioden
t=...,-2,~-1,0,1,2,... gelten soll. Der Symbolzusammenhang (12.1)

1d8Bt sich als Wenn-Dann-Aussage deuten, in welcher eine zeitliche
Verzbgerung zwischen dem Auftreten der durch die Wenn- und Dann-Kom=-
ponente beschriebenen Ereignisse behauptet wird., Derartige Verkniip-
'fungen, in denen unter Vorgabe eines zeitlichen Bezugssystems die
Existenz einer stets gIeichb]eibendeh zeitlichen Differenz zwischen
einem 'Wennereignis' A und einem 'Dannereignis' B gefordert wird,

werden als dynamische Hypothesen bezeichnet.

Dynamische Hypothesen kann man im Hinblick auf die in (12.1) durch

einen Pfeil dargestellte Folgebeziehung wiederum in deterministische

und stochastische Hypothesen untergliedern. Im Falle einer determi-

nistischen Hypothese bedeutet der Pfeil: 'folgt mit Sicherheit', wdh-
rend bei Vorliegen einer stochastischen Hypothese das Eintreten des

Folgeereignisses nur mit einer bestimmten Wahrscheinlichkeit behaup-

tet wird.



Beispielsweise soll der Kauf der Ware A durch den Konsumenten M in
der Periode t mit Ka(t) und der Kauf derselben Ware durch M in der
Periode t+] mit Ka(t+1) bezeichnet werden. lst weiterhin die Wahr-
scheinlichkeit, daB M auf die Ware zurlickgreift 0,5, so 138t sich

damit das dynamische, stochastische Modell formulieren:

Ka(t) —222—wKa(t+1)
Die Unterscheidung zwischen deterministisch- und stochastisch-dyna-
mischen Modellen ist von fundamentaler Bedeutung und wird uns spadter
noch ausfihrlich beschdftigen. Vorerst soll es nur bei dieser groben

Unterscheidung bleiben.

1.2.1. Metrisch dynamische Modelie

Metrisch dynamische Modelle bilden eine Teilklasse der dynamischen
Modelle. Von einem metrisch dynamischen Modell soll gesprochen wer-
den, wenn die bisher nur allgemein als Ereignisse bezeichneten Grds-
sen durch metrische (oder quantitative) Gr&Ben reprdsentiert werden.
Dies sei an einem Beispiel demonstriert: Bezeichnet man die Werbe-

(t-1), den U=

ausgaben einer Firma in HShe von 10 000 DM mit w]O 000
satz entsprechend mit U130 000(t) und U;4g Ooo(t—l), so kann man die .

Behauptung aufstellen:!

U (t-1) A W

100 000 t=1) » U

(E) Flr $=0,1,..:

10 000( 130 000

Dies wdre ein einfacher dynamisch metrischer Modellansatz. Nun wird
ein Umsatz U130 000(t) sicher nicht nur allein als Folge der Reali-
sationen von Uy, 000(t—1) und W10 000(t) auftreten, sondern auch

- andere Kombinationen der Realisation von U{t-1) und W(t-1) fihren zu
Uy3g goot)-

Eine erschdpfende Aufzdhlung aller Kombinationen, die U]30 OOO(t)
zur Folge haben, hat die Form:
1 Das aussagenlogische Symbol A entspricht der sprachlichen Formulie-

rung ‘'und', - entspricht 'wenn ... dann', = ist zu lesen 'dann und
nur dann', und >< entspricht 'oder' im ausschlieBenden Sinne.
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Ut

g [0 (t=1) A W

(e=1) I—<[.. . =<, [...]

Yi30 000lt) 100 000 10 000

(12.2)

Die leeren eckigen Klammern deuten die alternativen Kombinationen

von U__ (t-1) und W,  (t-1) an, die U (t) zur Folge haben.

130 000
- In manchen F&dlien erweisen sich nun Hypothesen als addquat, die den
Umsatz U(t) als Formelausdruck der ihn bewirkenden alternativen Kom-
binationen U, _(t-1) und W,,.(t-1) in (12.2) angeben.

Ein solcher Formelausdruck hat beispielsweise die Form:

rw(t-1) N

() = rW(t-1) - [ = ¢ =1JU(t~1) (12.3)

Y130 000
wobei die mS8glichen Alternativen U _ (t-1) und W, , (t-1) die Gleichung

130 000 = rW(t-1) - [Eﬂiélll + & -1]U(t-1)

zu befriedigen haben.

Die GroBen {,r und S stellen bestimmte Konstanten dar: { charakteri-
siert den relativen Umsatzverlust bei Abwesenheit jeglicher Werbung,
S bildet ein S&ttigungsniveau des WerBeaufwandes und r kann als Ef-

Tizienzfaktor der Werbeausgaben interpretiert werden.

Soll der Formelausdruck (12.3) nicht nur fiir U (t), sondern

. 130 000 ,
flir einen beliebigen Umsatz U...(t) gelten, dann lautet das dynami-

sche Mode]]:

rW(t-1) :

U(t) = rW(e~1) = [ 3 + & =1JU(t=1)

Dieser Ansatz ist von VIDALE und WOLFE aufgestellt worden [215].

Er bildet ein metrisches dynamisches Modell mit der besonderen Eigen-
schaft, daB die abh3ngige Variable U durch eine formelm&Bige Verkniip-
fung der auf der rechten Seite stehenden Variablen und Konstanten be-
stimmt wird. Metrisch dynamische Modelle dieser Art sollien fortan

als dynamische Funktionsmodelle bezeichnet werden.

Die folgenden Betrachtungen sollen auf dynamische Funktionsmodelle
beschrankt werden. Damit entfdllt die Untersuchung dynamischer Mo-
delle, in denen nicht metrisch faBbare Zustd@nde miteinander verknilpft

sind. Als Beispiel dieser fast ausschlieBlich (nichtmetrischen) sto-
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chastischen Modelle sef die einfachste Form eines Markenwechslermo-
dells angefiihrt. Wir unterscheiden zwei Marken A und B und unterstel-
len, daB ein Kdufer, der in Periode t die Marke A gekauft hat, in
Periode t+1 mit einer Wahrscheinlichkeit von PAA=O,6 die Marke A

und mit einer Wahrscheinlichkeit von PAB=0,4 die Marke B kauft.

Ein Kdufer, der in Periode t die Marke B gekauft hat, soll sich in
der ndchsten Periode mit einer Wahrscheinlichkeit von P,,=0,3 fir

BA

die Marke A und mit einer Wahrscheinlichkeit von PBB=0,7 flir die

Marke B entscheiden. Schematisch lassen sich die beschriebenen Be-

ziehungen durch die folgende Skizze darstellen.

PERIODE T T+1
0,6
MARKE A b
0,4
0,3 \\
MARKE B o
0,7

Abb. 12.2 Beispiel eines nichtmetrisch dynamischen Modells

Im Gegensatz zu einem metrischen Modell, in welchem die zu beschrei-
benden GréBen (in einem bestimmten Definitionsbereich) durch reelle
Zahlen ausgedriickt werden, ist die zu beschreibende Gr&Be in diesem
Modell nur durch zwei alternativ mbgliche und nur qualitativ be-
schreibbare Zustd&nde faBbar: den Zustdnden 'Kdufer erwirbt Marke A’

und 'K3ufer erwirbt Marke B'.

Solche nichtmetrisch dynamischen Modelle werden in der folgenden Un-
tersuchung nicht berlicksichtigt. |

Eine tatsichlich starke Einschrdnkung des Anwendungsbereiches der
Analyse dynamischer Systeme wird mit der Beschrinkung auf metrisch
dynamische Modelle jedoch nicht bewirkt. Denn schitzungsweise 95
Prozent aller heute bekannten dynamischen Modelle dlirften den me-

trischen Modellen zugeordnet werden kdnnen.



Die Eigenschaften dieser metrisch dynamischen Modelle sollen nunmehr
stdrker herausgearbeitet werden. Da alle metrischen Gr&Ben in dyna-
mischen Modellen durch einen Zeitindex gekennzeichnet sind, kann'man
hinsichtlich der Zeitstruktur grundsdtzlich zwischen zwei Modellty-

pen unterscheiden: den zeitkontinuierlichen und zeitdiskreten dyna-

mischen Modellen.

In zeitkontinuierlichen dynamischen Modellen wird von einem kontinu-
ierlichen ZeitmaBstab ausgegangen. Als Folge davon kann in einem
zeitkontinuierlichen Modell zu jedem beliebigen Zeitpunkt auf der
Zeitachse ein Zahlenwert flir die zu bestimmenden metrischen GroBen

ermittelt werden. Als Beispiel sei die Integralgleichung
f ‘
Y(t) = [F(t)Y(1)dt
t=5

angefihrt. Die Gr&Be Y wird‘zu jedem beliebigen Zeitpunkt t bestimmt
durch die mit F(t) gewichteten und aufsummierten Vergangenheitsaus-
pragungen von Y.

Die verbreitetste Modellform im Falle zeitkontinuierlicher Modelle
bilden die Differentialgleichungen.

Als einfaches Beispiel sei eine Hypothese aus der Anspruchsanpas-

sungstheorie von MARCH und S 1MON angefiihrt. [128,S.48]
Definiert man mit

A(t): Anspruchsniveau einer Person im Zeitpunkt t

B(t): Erwartete Belohnung einer Person im Zeitpunkt t

so bedeutet die Hypothese
dA/dt = a[B(t)-A(t)+al (0>0, a>0)

daB die infinitesimal kleine Anderungsrate von A, die Dann-Komponen-
te der Hypothese, durch die auf der rechten Seite der Gleichung ste-
hende Wenn-Komponente verzdgert bestimmt wird. '
Dynamische Modelle in Form von Differentialgleichungen sind gelegent-
lich in den Wirtschaftswissenschaften zu finden. Dennoch wollen wir
uns im folgenden nicht mit diesem Modelltyp beschiftigen, sondern al-

lein mit den zeitdiskreten dynamischen Modellen. Diese Entscheidung

mag befremdlich erscheinen, wenn man bedenkt, daB sich dieses Buch
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generell mit der Analyse dynamischer Systeme befassen soll. Um diese
Bedenken gleich auszurdumen, sei im Vorgriff schon darauf hingewiesen,
daB jedes reale sozioBkonomische System, welches durch ein zeitkon-
tinuierliches Modell beschrieben wird, auch durch ein zeitdiskretes

dynamisches Modell reprdsentiert werden kann.

1.2.2. Metrisch dynamische zeitdiskrete &quidistante
Modelle (MZA)

Bei der Anwendung zeitdiskreter Modelle wird unterstellt, daB die
Werte der betrachteten Gr&Ben nur zu bestimmten Zeitpunkten bestimmt
werden und auch nur diese Werte einen verzdgernden EinfiuB ausiiben.
Unterstellt man dariiber hinaus, daB diese Zeitpunkte in gleichblei-
benden (&quidistanten) Zeitabstinden auf der Zeitachse gewdhlt sind,
so 18Bt sich die Struktur eines derartigen Modells anhand von Abbil-

dung 12.3 demonstrieren.

= L] L]

o T-1 T |[PERIODE]

Abb. 12.3 Pfeildiagramm eines metrisch dynamischen zeitdiskreten
und dquidistanten Modells

Die Werte der metrischen Gr&8en Y1, Y, und E sind nur in den Zeit-

2
punkten t, t-1, t-2,... definiert und beeinflussen mit diesen Werten

in verzdgerter Weise die Ausprdgungen von Y1 und YZ'

Die dynamischen Beziehungen in Abbildung 12.3 lassen sich durch die



Gleichungen

Y](t) F[E(t—z),Y](t-])sz(t_2>]
Yo (t) = FIY,(t=1),Y,(t)]

1

beschreiben. Derartige Gleichungen bezeichnet man als Differenzen-
gleichungen. Nach der ersten Kennzeichnung zeitdiskreter dquidistan-
ter Modelle soll wieder die Frage aufgegriffen werden, ob es zul&s-
sig ist, sich ausschlieBlich auf diesen Modelltyp zu beschrédnken und
damit zeitkontinuierlich dynamische Modelle auBer acht zu lassen.
Diese Fragestellung lduft auf die weitere Frage hinaus, welche der
beiden Modellformen, zeitkontinuierliche oder zeitdiskrete, zur Ab-.
bildung empirischer Beziehungen besser geeignet ist.

Eine Antwort kann sich letztlich nur aus der Erfahrung ergeben. Al-
lerdings zeigt die Beobachtung empirischer GrdBen im Zeitverlauf,
daB sich diese selten kontinuierlich dndern. Fast alle Anderungen
physikalischer, physiologischer und auch sozialer Gr&8en vollziehen
sich unstetig, so daB man im empirischen Bereich geradezu von einem
'"Primat der Unstetigkeit' sprechen kann. Es ist kein physikalisches
oder ein einer anderen Wissenschaft zugehSriges Experiment bekannt,
das die Annahme einer stetigen Anderung empirischer Phinomene besti-
tigt. Auch in dem klassischen Anwendungsbereich stetiger Modelle, der
Elektrotechnik, stellen die stetigen Modelle eine Abstraktion dar. Der
e]éktrische StromfluB beispielsweise ist nicht stetig, sondern wird
in gewissen einzelnen Portionen, den ElekEronenladungen, befbrdert.
Im wirtschaftlichen Bereich sind fast nur unstetige Ver&nderungen
Okonomischer GrdBen zu beobachten: So werden Lagerbestdnde nur t3g-
1ich oder wdchentlich ergdnzt, BudgetgrdBen erfahren nur in gewissen
Zeitabstdnden eine Revision, und zwischen den Preisdnderungen vieler
Artikel liegen gewdhnlich groBere Zeitabstdnde.

Bei der Verwendung von Differen;engleichungen wird zwar angenommen,
daB die betrachteten Skonomischen GréBen sich unstetig &ndern, aber
jeweils nur am Anfang oder Ende einer bestimmten stets gleichblei-
benden (3quidistanten) Periode. Innerhalb dieser Periode dagegen wer-

die GréBen als unverdndert angesehen. Der Wert am Periodenanfang oder
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-ende représentiert damit die'ganze Periode. Die Beeinflussung ei~
ner Variablen v(t) im Zeitpunkt t durch die Vergangenheitsauspra-
gungen ihrér eigenen GroBe sowie anderer Variablen kann damit so in-
terpretiert werden, ‘'als ob' sie nur von den Auspréggungen am Anfang
~oder Ende der betreffenden Perioden beeinfluBt werden wiirde.

Die Erfahrungen bei der Entwicklung Skonomischer Modelle "haben gezefgt,
daB foferenzengleichungsmodelle im allgemeinen besser als zeitkon-
tinuierlTiche Modelle in der Lage sind, 8konomische Ph&nomene zu be-
schreiben.2 Dies liegt daran, daB viele Bkonomische Entscheidungen
und die durch sie ausgel8sten Verdnderungen der Variablen in ann3-
hernd periodischen Abstdnden getroffen werden, was der Struktur der
Differenzengleichungen stdrker entspricht.

Betrachtet man die derzeitig vorhandenen dynamischen Skonomischen Mo-
delle, die in Form von Differentialgleichungen formuliert sind, so
fiihrt ihre Analyse fast immer zu dem Urteil, daB es sinnvoller ist,
sie in eine Differenzeng]eichungéfqrm umzuwandeln.

Betrachten wir beispielsweise die bereits angefiihrte Hypothese
dA/dt = a[B(t)-A(t)+al

Es f&11t schwer, sich vorzustellen, daB die Anderung des Anspruchs-
niveaus A kontinuierlich, d.h. in infinitesimal kleinen Zeitabstdnden
verlaufen soll. Einleuchtender diirfte die Annahme einer periodenwei-
sen Verdnderung sein, was zu der folgenden Differenzengleichung fiilrt:

A(t+1) - A(t) = a[B(t)-A(t)+al mit t=0,71 ;20

Neben der in vielen Fdllen griBeren empirischen Addquanz der diskre-
ten Beschreibungsform bietet die Verwendung von Differenzengleichun-

gen zusdtzlich eine Reihe methodisch-operationaler Vorteile:

(1) Die Formulierung dynamischer Beziehungen in Form von Differenzen-

gleichungen ist anschaulicher, und die kausale Struktur der Zusammen-

hdnge kommt wie bei der Verwendung von Pfeilschemata in ihnen deut-
licher zum Ausdruck als in Kalklilen mit stetigen Zeitargumenten.

(2) Die Anwendung von sogenannten Parameterschdtztechniken ist, wie

2 Vergl. hierzu [14,5.221], [208,5.2]
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wir sehen werden, nur bei einem Differenzengleichungsansatz durch-
fihrbar.

(3) Komplexe nichtlineare Differenzengleichungssysteme lassen sich
mit elektronischen Digitalrechnern in nahezu beliebigem Umfang simu-
lieren. Der Simulation entsprechender dynamischer Kalklile mit kon-
tinuierlichen Zeitargumenten sind wegen des technischen Leistungs-
vermogens der hierzu erforderlichen Analogrechher Grenzen gesetzt.
Dies gilt in verstdrktem MaBe fir stocHastisch dynamische Modelle.
Die Simulation von Zufallszahlenfolgen in dynamischen Modellen kann
mit Digitalrechnern unter Benutzung von Zufallszahlengeneratoren in
beliebigem Umfang und mit groBer Flexibilitdt durchgeflihrt werden.
Die Simulation stochastischer dynamischer Modelle mit stetigen Zeit-
argumenten ist aber nur in Sonderfdllen technisch realisierbar.

Aus diesen Grlinden sollen in den weiteren Untersuchungen nur metri-

sche, zeitdiskrete und 8quidistante dynamische Modelle erdrtert wer-

den, die wir abklirzend als dynamische MZA-Modelle bezeichnen wollen.

1.2.3. Strukturmerkmale dynamischer MZA-Modelle

Die Dimension eines dynamischen Modells bestimmt sich nach der Anzahl

der Gleichungen. Ein eindimensionales Modell ist zum Beispiel durch
u(t) = 212 + 0,628U(t-1) + 0,537W(¢t)
gegeben.3 Es bedeuten dabei

U(t): Umsatz eines Unternehmens in Periode t
U(t-1): Umsatz eines Unternehmens in Periode t-1

W(t): Werbeausgaben des Unternehmens in Periode t

In vielen F&llen kdnnen dynamische Modelle nur durch mehrere Glei-
chungen in adiquater Weise beschrieben werden.
So besteht das von SAMUELSON entwickelte Multiplikator-Akzelerator-

Modell aus drei Gleichungen. [173]. Dieses dreidimensionale Modell

3 Siehe zu diesem Modell [159,5.91]
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beschreibt die Beziehungen zwischen dem Volkseinkommen, dem Konsum
und den investitionen in einer Volkswirtschaft. Die erste Hypothese

wird als Konsumfunktion bezeichnet.

C(t) = aY(t~1)

Sie besagt, daB der Konsum C in der Periode t dem Volkseinkommen Y
der Vorperiode proportional ist. Der Proportionalitdtsfaktor o wird
als Konsumguote bezeichnet.

Nach der zweiten Hypothese, der sogenannten lInvestitionsfunktion,

bo(t) = glC(t)-C(t-1)]

werden die durch den Konsum induzierten investitionen li(t) von den
Unternehmern proportional der Anderungsrate des Konsums, d.h.
C(t)-C(t-1) bestimmt. Der Proportionalitdtsfaktor B8 wird als Akzele-
rator bezeichnet.

Die dritte Gleichung des Systems wird durch eine Definitionsglei~

chung des Volkseinkommens gebildet, die sich aus

bestimmt. Die GrdBe la(t) reprisentiert hierbei die autonomen, d.h.
nicht durch Konsumd@nderungen bewirkten, Investitionen der Unternehmer.
Das Multiplikator~Akzelerator-Modell wird in dieser Arbeit durchge-
hend als Standardbeispiel zur Demonstration der vielfdltigen Aspek-
te einer dynamischen Modellbildung und -analyse verwendet. Aus Ab-
klirzungsgriinden soll fortan von einem MA-Modell oder MA-System ge-

sprochen werden.

Nach der beispielhaften Darstellung eines ein- und dreidimensionalen
MZA-Modells soll ein Begriffsapparat zur Bezeichnung der Modellele-
mente eingeflihrt werden. '

Betrachten wir zum Beispiel den Fall eines zweidimensionalen MZA-~Mo-
dells, d.h.

¥t = FLY {e-1), ¥, {£-2) , %,
Y,(t) = F[Yl(t-1),Y2(t-2),E1(t)]

so lassen sich verschiedene Typen von Variablen unterscheiden.

t),YZ(t—z),E1(t),E1(t—1),E1(t—2),Ez(t)]
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Samtliche Variablen gehdren entweder den endogenen oder exogenen Va-
riablen an. Eine Variable ist endogen, wenn ihre numerischen Werte
durch die Gleichungen des Modells bestimmt werden k&nnen. In unserem

Fall sind also die Variabien Y1 und Y, endogen. Exogene Variablen

milssen in einem dynamischen Modell 'vén auBen' numerisch vorgegeben
werden. Zu den exogenen Variablen zihlen die Variablen E1 und EZ'
Die eine endogene Variable im Zeitpunkt t beeinflussenden endogenen
und exogenen Variablenausprdgungen der Vorperioden werden als ver-
z0gerte endogene und verzBgerte exogene Variablen bezeichnet.

Die Variablen Y1(t-l), Y

](t-Z) und Yz(t-z) gehBren somit zur Gruppe
der verz8gerten endogenen, E1(t-1) und El(t~2) zu den verzdgerten

exogenen Variablen. Variablen mit dem Zeitindex t dagegen werden als

unverzdgerte Variablen bezeichnet. In diese Kategorie fallen Y1(t),
Yz(t), E](t) und Ez(t). Exogene Variablen lassen sich in zeitkonstan-
te und zeitvariable exogene Variablen unterscheiden. Eine zeitkon-
stante exogene Variable bleibt wihrend des Betrachtungszeitraumes
zahlenmdBig unverdndert. Sie wird auch kurz als Parameter bezeichnet.
Eine zeitverdnderliche exogene Variable nimmt mit variierendem t un-
terschiedliche Werte an. Sind die exogenen Variablen wie im angeflhr-
ten Beispiel nur mit dem Symbol E(t) bezeichnet, so reicht diese in-
formation nicht aus, um eine Klassifizierung vorzunehmen. Im Falle
E(t) = 0,5 handelt es sich beispielsweise um eine zeitkonstante exo-
gene Variable oder kiirzer einen Parameter, im Falle E(t) = 0,5t um
eine zeitverdnderliche exogene Variable.

Die exogenen Variablen sowie die verzdgert endogenen Variablen wer-

den zur Gruppe der vorherbestimmten Variablen zusammengefaBt. Diese

Bezeichnung ergibt sich, wie wir in Kliirze erkennen werden, aus dem
Umstand, daB die numerischen Werte dieser Variablen vorgegeben (vor-
herbestimmt) sein miissen, um die zahlenmiBige Ausprdgung der unver-
verzbgert endogenen Variablen bestimmen zu kdnnen. [m angefiihrten
Beispiel zdhlien alle auf der rechten Seite der beiden Gleichungen
stehenden Variablen zu den vorherbestimmten Variablen.

In Abbildung 12.4 ist das als Beispiel herangezogene dynamische Mo-

dell nach dem erBrterten Begriffssystem klassifiziert.
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Y1(t) }. unverzdgerte ‘
endogene Variable -

Yz(t) endo ene FEn Sond G i Y
Y](t-l) 9 verzigerte -
X, {t-2) Feanjabis endogene :
Yz(t-z) Variable vorherbestimmte
E, (t) } unverzdgerte Varlable

Ez(t) exogene exogene Variable

E (t_‘)?Vanable verzogerte

1 3

Abbildung 12.4 Beispiel der Varuablenklassxfnznerung eines dynami-
schen Modells

Der Grad einer Differenzengleichung entspricht der gréBten Zeitver-

zbgerung, die eine der verzdgerten Variablen gegeniiber t ‘aufweist.
So ist die Gleichung fiir Yz(t) wegen Yz(t-Z) eine Differenzenglei-
chung zweiten Grades.

Die Einflihrung des begrifflichen Instrumentariums erfolgte bisher

unter der stillschweigenden Annahme eines deterministischen Modells,

welches eine sichere Beziehung zwischen den vorherbestimmten und den

endogenen Modellvariablen behauptet.

Betrachten wir beispielsweise das erwdhnte eindimensionale Modell
U(t) = 212 + 0,628u(t-1) + 0,537W(t)

so kann durch die zahlenm#Bige Konkretisierung von U(t-1) und W(t)
fiir jede Periode ein Zahlenwert fiir U(t) ermitteit werden.

Den deterministischen Modellen stehen die sogenannten stochastischen

Model le gegeniiber. Es liegt daher die Frage nahe, ob die Verwendung
stochastischer Modelle nicht zur Einflihrung eines besonderen Be-
griffsapparats flir stochastische Modelle zwingt.

Gllcklicherweise kommt man jedoch mit den bisher entwickelten be-
grifflichen Instrumenten aus, d.h. man kann die in Abbildung 12.4
angefihrten Vafiablenbegriffe auch zur Kennzeichnung stochastischer

Modelle verwenden.
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Um diesen etwas Uberraschenden Zusammenhang zu verdeutlichen, wollen
wir in einer ersten, vorldufigen Darstellung den grundsdtzlichen Cha-
rakter eines stochastischen MZA-Modells schildern. Betrachten wir

das dynamische Modell
v(t) = 0,5v(t-1) + e(t)

so liegt es nahe, hier von einem deterministischen Modell mit einer
endogenen Variablen Y und einer exogenen Variablen € zu sprechen. Nun-
mehr wird uns aber mitgeteilt, daB die Variable ¢ in ihrer konkreten
numerischen Ausprdgung nicht bekannt sein soll. Bekannt ist allein,
daB e einer Wahrscheinlichkeitsverteilung angehdrt. Oder anders aus-
gedriickt: von e ist nur die Wahrscheinlichkeitsverteilung bekannt,
aus der € in jeder Periode gewissermaBen als Stichprobe entnommen
wird.

Ist von ¢ aber nur die Wahrscheinlichkeitsverteilung bekannt, so

kann von der endogenen Variablen Y(t) im glinstigsten Fall auch nur
die Wahrscheinlichkeitsverteilung ermittelt werden. Dies ist das
Kennzeichen eines stochastisch dynamischen MZA-Modells, welches uns
die Verallgemeinerung erlaubt: In einem stochastischen MZA-Modell

ist zumindest eine exogene Variable nur in Form ihrer Wahrscheinlich-
keitsverteilung bekannt, was zur Folge hat, daB die endogenen Variab-
len des Modells ebenfalls nur durch ihre Wahrscheinlichkeitsvertei-
lungen beschrieben werden kdnnen.

-Dem Leser wird nicht entgangen sein, daB bei diesem stochastischen
Modell mit den Begriffen einer exogenen und endogenen Variablen ge-
arbeitet wurde. Der Grund liegt darin, daB es ein Prazisionsniveau
der Formulierung von MZA-Modellen gibt, auf das diese Begriffe unab;
hdngig von der Unterscheidung zwischen 'stochastisch' und ‘'determi-
nistisch' anwendbar sind. Der geschilderte Begriffsapparat kann da-
her fiir beide Modellformen verwendet werden. Im Falle unseres einfa-
chen Beispieles zeigt sich, daB die Klassifizierung in endogen ver-
z6gerte und exogen unverzogerte Variablen anwendbar ist, ohne daB be-
kannt sein muB, ob es sich letztlich um ein stochastisches oder de-

terministisches Modell handelt.
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Mit diesen Bemerkungen erhalten wir nur eine erste, vorldufige Vor-
stellung Uber die Struktur eines stochastisch dynamischeh MZA-Modells,
sind aber in der Lage, den entwickelten Begriffsapparat auch auf die-
se Model le anzuwenden.

Als Ausgangspunkt einer Modellanalyse sind oft bestimmte Darstellungs-
formen dynamischer Modelle erforderlich. Von Bedeutung sind hier ins-

besondere die reduzierte Gleichung und die Endgleichung einer endo-

genen Variablen, auf die wir im folgenden eingehen.

Wird in einem dynamfschen Modell eine endogene Variable durch eine

Gleichung beschrieben, deren rechte Seite nur vorherbestimmte Variab-

e enthdlt, so spricht man von der reduzierten Gleichung diesér endo-~
genen Variablen. |
Im Falle des MA-Modells

Y(t) = Cc(t) + 'i(t) + !a(t) (12.4)
c(t) = aY(t-1) (12.5)
b (t) = gIc(e)-Cc(t-1)] (12.6)

stellt die Beziehung (12.5) bereits die reduzierte Gleichung des Kon-
sums C dar. -

Fir das Volkseinkommen Y ist dessen reduzierte Gleichung erst durch
eine algebraische Umformung zu gewinnen. Wie man leicht erkennt ér-“

gibt sich die reduzierte Gleichung
Y(t) = a¥(t-1) + BlaY(t-1) -C(t-1)1 + 1(¢t) (12.7)

durch Einsetzung von (12.5) in (12.6) sowie (12.5) in (12.4) und
(12.6) in (12.4). Werden s&mtliche endogenen Variablen eines Modells
durch reduzierte Gleichungen beschrieben, dann spricht man davon,

daB das Modell in seiner reduzierten Form dargestellt sei.

Gelingt es durch weitere Umformuﬁgen, die in der reduzierten Glei-
chung einer bestimmten endogenen Variablen enthaltenen lbrigen ver-
zogerten endogenen Variablen zu eliminieren, so gelangt man zu einer
Gleichungsform, bei der die betrachtete endogene Variable allein von
ihren eigenen verzdgerten Ausprdgungen sowie den verzdgerten und un-

verzdgerten exogenen Variablen abh8ngig ist. Eine derartige Glei-
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chungsform wird mit TINBERGEN als die Endgleichung der betfeffenden

endogenen Variablen bezeichnet. Andere Autoren gebrauchen statt des-
sen den Ausdruck: separierte Form oder separiert reduzierte Form.
[206,5.1371, [130,5.20], I51.5.17].

Die Endgleichung oder separiert reduzierte Form ergibt sich in dem
Beispiel des Multiplikator-Akzelerator—Mode115 in folgender Weise:

Die Verzdgerung des Zeitargumentes um eine Periode in (12.5) liefert
C(t=1) = a¥Y(t-2) (12.8)
Mit (12.8) und (12.7) folgt die Endgleichung von Y
Y(t) = (a+aB)Y(t-1) - aBY(t-2) + H (L) (12.9)
Fir die Variable li ergibt sich die Endgleichung bei entsprechendem
Vorgehen mit
i

I (t) = (a+aB)|i(t-1) - aBIi(t-Z) + aBIa(t) - aBIa(t-l)

Man kann zwischen der Erkldrungs- und Standardform einer Endgleichung

unterscheiden. Die Erkl&rungsform
s

Y(t)r= 0 Y(£=1) + w,¥(e-2) +...x w0 Y(t=n) + Z g E(t-n) (12.10)

0

wird im Rahmen der Aufstellung und Interpretation von Hypothesenglei-
chungen verwendet. Mit w ="a (v=1,2,...,n) erh3lt man durch Umord-

nung die Standardform

S

Y(t) + a1Y(t-1) ot anY(t-n) =n_2__0'gnE(t-n) (12.11)

Sie bildet den Ausgangspunkt zur analytischen Untersuchung bestimm-
ter interessierender Modellimplikationen. Primdre Hypothesenans&tze
treten selten in Form von Endgleichungen auf. Daher ist es oft not-
wendig, erst die Endgleichungen eines Modells zu ermitteln.

Mit Hilfe einer Endgleichung gelingt es, eine endogene Variable ge-
wissermaBen vom iibrigen System 'abzukoppeln', weil alle Informatio-
nen Uber den Zeitverlauf dieser endogenen Variablen in der Endglei-
chung enthalten sind, gleichgllitig, wie stark diese endogene Varia-
ble in dem System 'vermascht' ist.

4 Prézise Kriterien zur Beurteilung der Vermaschung der endogenen
Variablen in einem Modell werden in Abschnitt 2.5 entwickelt.
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1.3. Strukturgleichungstypen dynamischer MZA-Modelle

1.3.1. Hypothesengleichungen

Hypothesengleichungen repridsentieren Wenn-Dann-Behauptungen liber die
in der Wirklichkeit auftretenden Beziehungen. Sie sollen im folgen-
den unter verschiedenen Blickrichtungen klassifiziert und beurteilt
werden.

In den ersten beiden Abschnitten werden Hypothesengleichungen nach
ihrem Bedeutungsgehalt und ihrem empirischen Gehalt unterschieden.
Imransch]ieBenden Abschnitt werden sie nach Kriterien gegliedert,
die sich aus den Beziehungen zwischen einem Modell und seinem Anwen-

der ergeben.

A. Technologische und institutionelie Hypothesen sowie
Verhaltenshypothesen

Nach ihrem Bedeutungsgehalt k&nnen Hypothesengleichungen in techno-

logische Gleichungen, institutionelle Gleichungen und Verhaltens-

g}eichungen eingeteilt werden. Technologische Gleichungen beschrei-
ben rein technisch bedingte Beziehungen wie etwa den Zusammenhang
zwischen dem Materialeinsatz und dem ProduktionsausstoB eines Aggre-
gates. Institutionelle Gleichungen beschreiben die Einhaltung be-
stimmter Sollvorschriften, welche beispielsweise vom Gesetzgeber

erlassen werden. Die sogenannte Steuergleichung
ST(t) = 0,565TG(t)

die flir einen zu versteuernden Gewinn STG von liber 130 000 DM die H®~-
he der zu zahlenden Steuern bestimmt, gehSrt zu diesem Typ.
Institutionelle und technologische Gleichungen lassen sich nicht ein-
deutig von den Verhaltensgleichungen unterscheiden. Denn institutio~
nelle Gleichungen spiegeln das institutionell erzwungene Verhalten
von Personen wider, und auch technische Relationen sind nur in den

seltensten Fdllen losgeldst vom Verhalten bestimmter Personen.
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Die Bestimmung von Hypothesen, die das zeitinvariante Verhalten be-
stimmter Personen behaupten, d.h. die Bestimmung von Verhaltensglei-
chungen, ist die schwierigste und damit die zentrale Aufgabe jeder

Modellbildung. Betrachten wir die beschriebene investitionsfunktion

bo(t) = glC(t)-C(t-1)]

i

Mit ihr wird behauptet, daB das Investitionsverhalten der Unterneh-
mer in jeder beliebigen Periode t dieser Gleichung gehorcht.‘Hier
melden sich sicher Zweifel an, ob es bei der Mannigfaltigkeit des
menschlichen Verhaltens Uberhaupt mGglich ist, derartige prdzise und
unveréndek]iche Verhal tensgleichungen zu finden. Dieser Einwand ist
berechtigt. Seine generelle Glltigkeit wlirde allerdings bedeuten,
daB man in den Wirtschafts- und Sozialwissenschaften nicht mit dyna-

mischen Modellen arbeiten dilirfte.

B. Parametrisch-singulare, parametrisch-generelle, komparative und
nichtkomparative Hypothesen

Hypothesengleichungen k&nnen nach ihrem empirischen Gehalt unter-

schieden werden, d.h. im Hinblick auf die Bestimmtheit der Verknlip-
fung zwischen ihren Wenn- und Dann-Komponenten. Wir wollen im folgen-
den am Beispiel der Konsumfunktion eines MA-Systems eine Klassifika-
tion von Hypothesen entwickeln, deren Ordnungskriterium der empifi-
sche Gehalt einer Hypothese sein soll. Betrachten wir die Konsum-

funktion eines bestimmten MA-Systems
c(t) = 0,2Y(t-1) | (13.1}

Eine derartige Hypothese, in welcher jeder Parameter einen numeri-

schen Wert besitzt, soll als parametrisch-singuldre Hypothese be-.

zeichnet werden. Nehmen wir an, einem Modellentwickler sei (vorerst)
nur bekannt, daB in dem zu modellierenden MA-System der Konsum C(t)
in einem festen Verh3#ltnis a vom Volkseinkommen der Vorperiode Y(t-1)

abhdngt, dann kann er diese Kenntnis durch die Hypothese
C(t) = aY(t-1) (13.2)

éum Ausdruck bringen. Eine.Hypothese, die wie (13.2) erst durch ei-
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ne numerische Konkretisierung ihrer Parameter in eine parametrisch-

singuldre Uberflihrt wird, soll als parametrisch-generelle Hypothese

bezeichnet werden.

Stellt man sich die Frage, welche der beiden Hypothesen (13.1) oder
(13.2) einen hdheren empirischen Gehalt besitzt, dann wird sich man-
cher intuitiv fiir Hypothese (13.1) entscheiden, weil sie offenbar
bestimmter ist und daher mehr Uber die Realitdt aussagt. Genauer be-
deutet dies: Hypothese (13.]) verbietet mehr empirisch m6gliche Kon-
sumfunktionen als (13.2). Dieser Unterschied erweist sich a]s'das
maBgebende Kriterium zur Kennzeichnung des empirischen Gehalts von
Hypothesen, denn es sol]l die Festlegung gelten: je mehr empirisch
mbgliche Konstellationen durch eine Hypothese ausgeschlossen werden,
umso hdher ist ihr empirischer Gehalt. Diese Festlegung besagt, daB

eine Hypothese H2’ die durch Spezialisierung aus einer Hypothese H1

abgeleitet wurde, einen hBheren empirischen Gehalt als Hypothese H1

besitzt. Auf die Hypothesen zur Erkl&rung des Konsums angewendet,
heiBt dies: Hypothese (13.1) wurde aus (13.2) durch die Spezfalisie-
rung o = 0,2 abgeleitet und besitzt damit einen hS8heren empirischen
Gehalt als (13.2).

Es fragt sich, ob eine derartige Kennzeichnung auch auf stochasti-
sche Hypothesen libertragbar ist. Zur Beantwortung dieser Frage ist

es wichtig zu wissen, daB nahezu alle zur Modellierung von MZA-Model-

len verwendeten stochastischen Hypothesen zu den StdrgrdBenhypothe-

~sen zu rechnen sind. Die Verwendung von StdrgrdBenhypothesen 188t
sich durch die folgenden Uberlegungen plausibel machen: Ein Modell-
entwickler formuliert eine deterministische Hypothese wie beispiels-
weise die oben angefiihrte Konéumhypothese. Er ist sich jedoch darii-
ber im klaren, daB die auf der rechten Seite der Gleicﬁung stehenden
Variablen nicht ausschlieBlich den Wert von C(t) bestimmen; vielmehr
kommen, zusammengefaBt in einer additiv eingehenden Variablen €(t),
weitere Einfllisse zur Wirkung. Zur Kennzeichnung dieser Einfllsse,
die den urspriinglichen deterministischen Ansatz 'stdren', nimmt der
Model lentwickler an, sie seien durch eine Wahrscheinlichkeitsvertei-

lung mit dem Erwartungswert Null und einer im Zeitverlauf konstanten
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Standardabweichung beschreibbar. Das stochastische Gegenstlick der

deterministischen Konsumhypothese wird daher durch die Beziehung
c(t) = 0,2Y(t-1) + (t) e € V(p=0, o=konst) (13.3)

beschrieben. Mit € € V(u=0, o=konst) wird zum Ausdruck gebracht, daB
e ein Element einer Wahrscheinlichkeitsverteilung mit dem Erwartungs-
wert p = 0 und der Standardabweichung o= konstant ist. Stochasti-
sche Variablen, die in dem beschriebenen Sinne er Bildung der Hypo-
thesengleichungen dienen, werden als St8rgroBen oder auch Schockva-

riablen bezeichnet.

Im folgenden werden wir uns im Rahmen stoéhastischer Modellé aus-
schlieBIiéh mit StdrgréBenhypothesen beschiftigen.

In einer zum Fall deterministischer Modelle analoéen Begriffsanwen-
dung handelt es sich bei (13.3) um eine parametrisch-singulire sto-
chastische Hypothese. Es liegt die Frage nahe, ob man die beiden Hy-
Vpothesen (13.1) und (13.3) bezliglich ihres empirischen Gehaltes mit-
einander vergleichen kann. Es ist einfach zu erkennen, daB Hypothese
(13.3) Realisationen von ¢ mit bestimmten Wahrscheinlichkeiten 'er-
laubt', die von Hypothese (13.1), in welcher e=0 zu deuten ist, ver-
boten werden. In dieser Interpretationsweise besitzt eine Stdrgrds-
senhypothese stets einen geringeren empirischen Gehalt, weil sie

mehr Realisationen ‘erlaubt' als ihr deterministisches Gegenstlick.

Auf der Grundlage des entwickelten Kiassifizierungskriteriums von
Hypothesen sollen im folgenden weitere Hypothesenarten unterschieden

werden.

Formuliert jemand zur Erkldrung des Konsums in einem MA-System die

Behauptung
'Je.grdBer Y(t-1), desto hdher C(t)'

dann kann man diese Behauptung als komparative Hypothese bezeichnen,

deren Formalisierung durch
C(t) = FLY(t-1)] dC(t)/dY(t-1)>0
erfolgt. Abklirzend kann diese Beziehung auch durch

C(t) = FFIv(t-1)] (13.%)



beschrieben werden. Noch weniger gehaltvoll ist die Hypothese
C=F[v] (13.5)

welche nur behauptet, daB mit wachsendem Y auch C wdchst, ohne daB

die zeitlichen Beziehungen genauer gekennzeichnet werden.

Neben den komparativen sind auch nichtkomparative Hypothesen denkbar,
Eine solche l3ge beispielsweise im Falle einer Konsumfunktion vor,
wenn bei Uberschreitung eines bestimmten Schwellenwertés des Volks-

einkommens YS der Konsum C nicht mehr zunimmt, was durch

_raY(t-1) fir Y(t=-1)<Y
EAt) = {aYS fiir ¥ (t-1)>Y (13.6)

beschrieben werden kann oder in abgekiirzter Form (unter Verringerung

des empirischen Gehaltes) durch
C(t) = FELY(t-1)] | (13.7)

symbolisiert wird. Eine weitere Verringerung des empirischen Gehal-

tes kdme mit der Formulierung
C = FO[Y] (13.8)

zum Ausdruck.

Eine Hypothese kann auch durch mehrere Je-Desto-Aussagen gekebnzeich-

net werden. Beispielsweise flhren die beiden Behauptungen
tJe grSBer Y(t-1), desto gr8&Ber C(t)'
“und
'Je groBer 1(t-1), desto kleiner C(t)'
zy der Formalisierung
C(t) = FIY(t-1), 1{t-1)1 ac(t)/aY(t-1)>0 und 8C(t)/al(t—l)<0>
oder zu der abklirzenden Ausdrucksweise
C(t) = FIYT(t-1), 1™ (£-1)] | | (13.9)

Die Variable | soll in diesem FaT] die Inflationsrate des zu model-

lierenden Systems bezeichnen. Eine weitere Verringerung der Bestimmt-
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heit enthdlt die Hypothese
C=F[YH, 17] (13.10)

Hypothesen der Form (13.5) und (13.10) werden oft in FluBdiagrammen

zur ersten Abbildung eines Systems verwendet.

BEZEICHNUNG DER HYPO- SYMBOLISCHE DARSTELLUNG AM
THESE (DES MODELLS) BEISPIEL DER KONSUMFUNKTION
parametrisch-singul&r c(t) = 0,2v(t-1)

;_ parametrisch-generell C(t) = a¥Y(t~1)

114]

. , c(t) = FTIY(t-1)]

3

g komparativ c - FHY]

2

5 , . C(t) = FE[Y(t-1)]

£
nichtkomparativ c - Fi[Y]

, 5 C(t) = FIY(t-1)]

nichtparametrisch c - FIY] .

b o— .

el i C(t) = FIYT(t-1),17(¢-1)]

E % komparativ c ) = FIYT,1-]

E X

Tab. 13.1 Klassifikation von‘Hypothesen unterschiedlichen empiri-
schen Gehalts, die denselben Zusammenhang (Konsumhypothe-
se) beschreiben

Hypothesen, die mehrere Variablen als Wenn-Komponenten enthalten, k&n-

nen als multikausale Hypothesen bezeichnet werden. Im Gegensatz da-

zu zdhlen Hypothesen mit einer Variablen als Wenn-Komponente zu den

monokausalen Hypothesen. Die Hypothesen (13.9) und (13.10) gehSren

daher zu den komparativen multikausalen Hypothesen. Da die Hypothese

(13.2) durch Spezialisierung aus den Hypothesen (13.9) und (13.10)

ableitbar ist, besitzt sie einen hBheren empirischen Gehalt.

Als eine nichtparametrische monokausale Hypothese kdnnen schlieBlich
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die Beziehungen
C(t) = FIY(t-1)] (13.11)

oder
C = FLY] (13.12)

bezeichnet werden, die allein zum Ausdruck bringen, daB C(t) von
Y(t-1) oder - noch unbestimmter - C von Y beeinfluBt wird.

Wenn hier von Mono- und Multikausalitit die Rede ist, so wird damit
nichts Uber die in dem betreffenden System 'tatsdchlich' wirkenden
kausalen Zusammenhdnge gesagt, sondern nur, daB in der aufgestellten
Hypothese der EinfluB einer oder mehrerer zeitvariabler Wenn-Kompo-
nenten behauptet wird.

Tabelle 13.1 zeigt eine zusammenfassende Ubersicht der nach ihrem

empirischen Gehalt differenzierten Formen von Hypothesen.

C. Kontrollierte und unkontrolliierte, priméare und sekundare Hypothesen

Hypothesen k&nnen auch im Hinblick auf ihre pragmatischen Relationen
unterschieden werden, d.h. im Hinblick auf die zwischen den Hypothé-
sen und einem Hypothesen— oder Model lanwender bestehenden Beziehun-
qen. : .

Unter pragmatischen Gesichtspunkten ist die Unterscheidung von Be-
deutung, ob ein Model lanwender die Realisierung einer Verhaltensglei-
chung bewirken kann oder nicht. In diesem Sinne spricht man von kon-

trollierten und unkontrollierten Hypothesengleichungen.

Eine kontrollierte Hypothesengleichung beschreibt das Verhalten einer
Person, einer Personengruppe oder eines technischen Aggregats, wel-
ches vom Modellanwender direkt oder indirekt bewirkt wird. Die Ent-
scheidung eines Unternehmens als Modellanwender eine prozyklische

Werbepolitik entsprechend der Gleichung

w(t) = 0,05U(t-1) W = Werbeausgaben
U Umsatz

vorzunehmen, fihrt zu einer kontrollierten Verhaltensgleichung, wenn
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dieses Verhalten in einem Modell beschrieben wird. Sa8mtliche soge-
nannten Entscheidungsregeln, wie beispielsweise bestimmte Bestellpo-
litiken im Lagerwesen von Betrieben, sind den kontrollierten Verhal-
tensgleichungen zuzurechnen. Die in Lagerhal tungssystemen oft prak-
tizierte sogenannte s,5-Bestellpolitik filihrt beispielsweise zu der

Verhal tensgleichung

S-s  fiir LB(t-1)ss

B0t =407 for (B(c-1)>5
mit B: Bestel Imenge S: Referenzbestand

LB: Lagerbestand s: Schwellenbestand

Kontrollierte Verhaltensgleichungen sind einfacher zu erfassen, weil
sie die Befolgung bewuBt formulierter Verhaltensvorschriften zum Aus-
druck bringen..Schwieriger gestaltet sich dagegen die Gewinnung wirk-
lichkei tsnaher unkontrollierter Verhaltensgleichungen wie zum Bei-
spiel die Gewinnung einer Hypothese liber die Reaktion des Marktes

auf Preisdnderungen.

Im Hinblick auf den Entstehungszusammenhang kann man zwischen pri-

mdren und sekunddren Hypothesen unterscheiden. Unter primdren Hypo-

thesen werden die von einem Modellentwickler formulierten Hypothe-
sengleichungen verstanden.

Unterstellen wjr, daB ein Modellentwickler ein MA-System mit Hilfe
des bereits erdrterten MA-Modells beschreibt, dann ist die Erkla-

rungsgleichung der Investitionen

I, = BIC(1)-C(t-1)]

eine primdre Hypothese.
Sekundd@re Hypothesen ergeben sich durch mathematische Umformungen
der primdren Hypothesen.

Ausgehend von dem Ansatz

Y(t) = cle) + 1.(t) +1_(1) , (13 13)
c(t) = aY(t-1) (13.14)
1.(t) = glc(t)-C(t-1)] . (13.15)

erhalten wir mit (13:14) in (13.15) die sekund&dre Hypothese zur Er-
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k1&rung der induzierten lInvestition li

. (t) = BalY(t-1)-Y(t-2)1 (13.16)

und mit (13.13) in (13.16) die weitere sekundire Hypothese

li(t)= aB[C(t-])-C(t-2)+li(t-l)-li(t-2)+la(t-1)-la(t-2)] (13.17)

und schlieBlich mit (13.15) und (13.17) die ebenfalls sekundére
Hypothese

L (t) = (atap) 1, (t=1) - apl, (t-2) + aBl_(t=1) - aBl_(t-2) (13.18)

Die Unterscheidung zwischen primdren und sekunddren Hypothesen ist
pragmatisch bedingt, d.h. sie ist stets nur im Hinblick auf einen be-
stimmten Modellentwickler anwendbar. Denn es ist durchaus denkbar,
daB zwei Personen, die bei der Beschreibung eines Systems zu demsel -
ben Modell gelangten, sich in den primdren Hypothesen dieses Modells
voneinander unterscheiden. So wdre es vorstel lbar, daB ein Mode]f—
entwickler im Falle des MA-Modells die Hypothese (13.16) der indu-
zierten investition als primdre Hypothese wahlt, wdhrend ein anderer

von der bekannten Hypothese- (13.15) ausgeht.

Unter der minimalen Hypothese einer endogenen Variablen versteht man

die Beschreibung dieser Variablen durch ihre Endgleichung. Die Be-
ziehung (13.18) ist daher die minimale Hypothese der induzierten In-
vestitionen. Das Attribut 'minimal’ wurde gewdhlt, weil in dieser
Darstel lungsform samtliche Informationen, die zur vollstdndigen Er-
kldrung der endogenen Variablen erforderlich sind, nicht auf ver-
schiedene miteinander verknipfte Gleichungen ‘'verstreut' sind, son-
dern unter minimaler Redundanz in einer Gleichung verdichtet wurden.
Diese Bezeichnungsweise korrespondiert mit dem Von dem Wissenschafts-
theoretiker HEMPEL geprédgten Begriff eines Minimalgesetzes der wis-
senschaftlichen Erkldrung (minimal covering law). HEMPEL, der diesen
Begriff im Rahmen seiner Betrachtungen zur Explikation des Begriffs
der wissenschaftlichen Erkidrung verwendet, spricht dann von einem
Minimalgesetz der wissenschaftlichen Erkldrung, wenn es gelingt, al-
le Gesetze GT’ GZ"“’Gn’ die zur Erklarung oder Prognose eines Ph&a-

nomens notwendig sind, zu einem Gesetz G zusammenzufassen. [ 187,S.85f]
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Deutet man eine parametrisch-generelle Hypothese als ein Gesetz, d.h.
als eine Wenn-Dénn-Aussage, deren generelle Parameter einen prinzi-
piell unendlichen Individuenbereich umfassen, dann ist eine parame-
trisch-generelle minimale Hypothese als Minimalgesetz im Sinne HEM-
PELs zu verstehen.

Minimale Hypothesen werden duBerst selten als primdre Hypothesen
formuliert. Als Beispiel sei die Hypothese des Wel tbevSlkerungswachs-

tums
B(t)v= 1,02B(t-1)

angefiihrt. In fast allen Fillen sind minimale Hypothesen zugleich
sekunddre Hypothesen, d.h. sie folgen aus der deduktiven ErschlieBung
eines Modells. Die wesentliche Aufgabe der deduktiven ErschlieBung
dynamischer Modelle besteht darin, primdre Hypothesen in diejenigen
sekunddren Formen zu ilberfihren, welche bestimmte strukturelle Mo-

delleigenschaften erkennen lassen.

1.3.2. Definitionsgleichungen

Definitionsgleichungen unterscheiden sich von den anderen Gleichungs-
formen eines Modells dadurch, daB es nicht sinnvoll ist, nach ihrer

. Wahrheit zu fragen. Sie stellen bestimmte Festsetzungen des Sprach-
und Zeichengebrauchs dar, wie beispielsweise die buchhalterische

Identitdt
Gewinn = Umsatz - Kosten
oder Bestandsfortschreibungsgieichungen wie

Lagerbestand (t) = Lagerbestand (t-1) - Abgang (t-1,t) +
+ Zugang (t-1,t)

Definitionsgleichungen bilden das Grundgerlist, an das die Hypothesen
in Form von Hypothesengleichungen anknlipfen. Im Falle des MA-Modells

addieren sich, wie an dem Schema zu erkennen ist, die Dann-Komponen-
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Yit) = G(t) + 1.{t) =+ la(t)

i
\141 ‘\\\HZ ‘k\\\\\\\\\
[Y(t-1),a] [C(t),C(t-1),B] exogene Variable

\ o

Wenn-Komponenten
‘der Hypothesen

ten C(t) und Ii(t) der Hypothesen H, und H, mit der exogenen Variab-
len !a(t) anhand der Definitionsgleichung zu einer als Volkseinkom-
men definierten GréBe Y(t). Der Gebrauch von Defint}bnssg]eichungen

hangt eng mit der Disaggregierung der Modellvariablen zusammen. Be-

trachten wir beispielsweise die Bestandsgleichung der BevS&lkerung in

einem Land

B(t) = B(t-1) + G(t) - S(t)

mit B(t): Bestand der Bev8lkerung am Jahresanfang t
G(t): Anzahl der Geburten wahrend des Jahres t

S(t): Anzahl der Todesfdlle wihrend des Jahres t

Wir wollen von dieser Definitionsgleichung ausgehend ein dynamisches
Modell der. BevSlkerungsentwicklung aufstellen. Gelingt es uns, mit
Hilfe addquater Hypothesen die Sterberate S(t) und die Geburtenrate
G(t) als Dann-Komponenten einer dynamischen Hypothesengleichung zu
formulieren, dann wlirde ﬁan zur Erkldrung der BevGlkerungsentwick=-
lung mit einer Definitionsgleichung auskommen.

Gegen den Versuch, solche Hypothesen fiir S{t) und G(t) zu finden,
kdnnte der Einwand erhoben werden, daB solche hoch aggregierten Gros-
sen wie die Sterberate und die Geburtenrate der gesamten Bev&lkerung
nie durch angemessene Hypothesen erfaBt werden kénnen. Es sei viel-

mehr notwendig zu differenzieren, was etwa in folgender Weise ge-

schehen kdnnte:
Die Individuenmenge 'BevSlkerung' wird in erschdpfende Teilklassen ge-

gliedert, und es wird der Versuch unternommen, flir jede dieser Teil-
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klassen eine empirisch aufweisbare Hypothese zu finden. Entscheidet
man sich flir n Teilklassen, so flihrt das zu n+1 Definitionsgleichun-

gen, namlich
n
B(t) =.ZI B. (t)

B, (t) = B, (t-1) + G, (t) - Si(t) (i=1,2,...,n)

Die Einteilung der Klassen und damit die Disaggregierung wird unter
dem Gesichtspunkt erfolgen, mdglichst 'gute' Hypothesen zu finden,

in denen Gi(t) und Si(t) als endogene Variablen fungieren. Auf der
Suche nach bewdhrten Hypothesen flir die Sterbe- und Geburtenrate kann
man beispielsweise die Bev6lkerung nach Alters- und Berufsgruppen,
nach regionalen Merkmalen usw. aufteilen. Der Grundgedanke dieser
Disaggregierung bedeutet volkstiimlich ausgesprochen, daB man nicht al-
les 'liber einen Kamm scheren' kann, und nur eine Differenzierung zum
Erfolg fiihrt. Der Trend zur Disaggregierung dynamischer Modelle ist
heute allgemein zu beobachten und wurde durch die Einflihrung lei-
stungsféhiger EDV-Anlagen beglinstigt, welche es gestatten, mit Model-
len von mehr als tausend Gleichungen zu operieren. Wdhrend ein von
KLEIN im Jahre 1950 entwickeltes'dynamisches MZA-Modell aus 20 endo-
genen Variablen mit 5 Definitionsglieichungen gebildet wurde, setzt
sich das Brookingsmodell, ein Modell der amerikanischen Wirtschaft,
aus 230 endogenen Variablen, davon 112 Definitionsgleichungen, zusam-
men. Derzeit ist geplant; dieses Modell auf liber 1000 endogene Va-
‘riablen zu erweitern.

fm Hinblick auf das Ziel, empirisch gehaltvolle Modelle zu entwickeln,
liegt es nahe, im Falle unbefriedigender Hypothesen zu versuchen,
durch Disaggregierung bestimmte endogene Variablen Bi(t) zu finden,
die sich in befriedigender Weise durch entsprechende Hypothesen be-
schreiben lassen. Dies wiirde dazu flihren, daB auch die mit diesen Va- ‘
riablen definitorisch verkniipfte MakrogrdBe B(t) eine empirisch zu-'
treffende Erkldrung erfahren wiirde. Es zeigt sich aber oft, daB man
auf einer niedrigen Aggregationsstufe keine wesentlich besseren Hypo-
thesen findet als auf einer hdheren, so daB die Modelle zwar volumi-

noser werden und nur noch von GroBcomputern simuliert werden kGnnen,
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aber in ihrer Erkl&rungs- und Prognosekraft nicht unbedingt besser
sein missen.

Mehr noch: es ist denkbar, daB ein hoch aggregiertes Modell zu einer
besseren Verhal tensgleichung flihrt als sein disaggregiertes Gegen-
stiick. Dies ist deshalb m&glich, weil im Rahmen der Aggregation sta-
tistische Schwankungen so ausgeglichen werden kdnnen, daB3 es auf der
Makroebene zu eiher Bestimmtheit der Beziehungen kommt, die auf der
Mikroebene in dieser St3rke nicht immer feststellbar ist.

Mit diesen Bemerkungen soll nicht der Versuch in MiBkredit gebracht
werden, Modelle zu disaggregieren. Die Disaggregierung bietet sich
vielmehr als ein sinnvoller Weg zur Entwicklung realitdtsnaher Model-
le an. Es soll nur vor der Illusion gewarnt werden, man hdtte hier

ein zuverldssiges Allheiimittel zur Verfligung, mit dem es in jedem
Fall gelingt, die Wirklichkeit durch ein Modell in befriedigender Wei-
se einzufangen. |
Definitionssysteme dienen oft als Ausgangspunkt der Entwicklung dyna-
mischer MZA-Modelle. Wie im Falle eines demographischen Modells de-
monstriert wurde, entwickelt man ein Definitionssystem eines Gegen-
standsbereiches und sucht die exogenen Variablen durch Hypothesen-
gleichungen zu erkldren und damit zu 'endogenisieren.'

Umfangreiche Qefinitionssysteme sind bei der Entwicklung von Firmen-
planungsmodellien erforderlich. Solche Modelle knlipfen fast ausschlieB-
lich an das Begriffssystem des betrieblichen Rechnungswesens an. Die
wertmdBigen Transaktionen im Rahmen des Rechnungswesens eines Unter-
nehmens kdnnen in Form einer Transaktionsmatrix beschrieben werden.
Eine solche Matrix enthdlt in den Zeilen die Sollseiten und in den
Spalten die Habenseiten aller Konten. Die wéhrend einer Periode vor-
genommenen Buchungen des Betrages S vom Konto i (Soll) an Konto j
(Haben) wird durch das Matrix-Element Sij zum Ausdruck gebracht. S&mt-
liche Buchungsvorgdnge eines Unternehmens wdhrend einer Periode kdn-

nen daher durch die folgende Transaktionsmatrix beschrieben werden:

Die Addition der Elemente einer Zeile i ergibt die Summe der Sollbu-

chungen des Kontos i. Entsprechend liefert die Summe der Elemente der
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Spalte j die Summe aller Habenbuchungen.

Habenseite des Kontos j
1 Zissww o s mnlil

1 S11 STZ"STJ"S

2 SZ1 522"52j"52n

in

Sollseite des Kontos i

Anhand dieser Gr&Ben kdnnen die Fortschreibungsgleichungen flir die
Aktiv- und Passivkonten vorgenommen werden. Fiir die Aktivkonten er-
gibt sich die Definitionsgleichung1
N
A (t) = A, (t-1). +J.§T(Sij(t)-5ji(t))

1

mit
Ai(t) : Bestandsgr8Be des Aktivpostens i in Periode t

Sij(t): Kumulierter Betrag der Buchungen von Konto i an Konto j

Sji(t): Kumulierter Betrag der Buchungen von Konto j an Konto i

Die Passivkonten ergeben sich entsprechend mit:

. n
PJ.(t) = PJ.(t-1) '351(sij(t)'5j;(t))

Damit ist ein umfassender definitorischer Rahmen fiir die Entwicklung
von Bilanzplanungsmodellen geschaffen, in denen Ai'und Pj die Bilanz-
posten repradsentieren oder in groBeren Modellen liber weitere Defini-
tionen zu den Bilanzposten fiihren.

Solche Definitionssysteme k&nnen im Rahmen von Firmenplanungsmodel-
len hohe Dimensionen annehmen. So besitzt die Firma Siemens ein aus

18 000 Gleichungen bestehendes Definitionssystem.

1 Siehe im einzelnen [131,S$.196ff.]
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In diese Definitionssysteme werden dann die empirischen Hypothesen

'eingehdngt'. Betrachten wir beispielsweise die Hypothese
unter Berlicksichtigung der Kontenfestlegungen

L: Konto Kasse
6: Konto Forderungen aus Warenlieferungen

7: Konto Lagerbestand,

Sie besagt, in welcher Weise die Warenverkdufe 567 zu einem (verzo-
gerten) Eingang der Kundenzahlungen 546 fiuhren.

Sh6 und 567 sind hierbei Elemente der Transaktionsmatrix. Die besag-
te 'Einhdngung' kommt dadurch zustande, daB Su6 durch die angefihr-
te Hypothese erkldrt wird.

Im Rahmen von betrieblichen Planungsmodellen werden auch auf der
Grundlage der Transaktionselemente Sij und weiterer Variablen umfang-
reiche hierarchische Definitionssysteme geschaffen.

Als Beispiel sei das von der Firma Du-Pont entwickelte hierarchische
Definitionssystem 'Return on Investment' angef'ﬁhrt.2

Dieses Definitionssystem wird heute von vielen Firmen in zumeist ver-
feinerter Form zur Operationalisierung ihrer unternehmenspolitischen
’Zie]grﬁﬁeniQerweﬁdet. in der Bundesrepublik Deutschland hat das ZVEI-
Kennzahlensystem eine breite Anwendung gefunden. Dieses aus einer Ver-
feinerung des Du-Pont-Systems entwickelte hierarchische Definitions-
system besitzt 124 Definitionsgleichungen, in welche 82 exogene Va-
riablen als erklédrende Gr&Ben eingehen.

Da die exogenen Variablen in klarer Weise auf der Basis der ein-
schldgigen aktienrechtlichen und buchhalterischen Vorschriften spe-
zifiziert werden kdnnen, erweist sich dieses System als eine geeig-
nete Grundlage zur Entwicklung von Firmenplanungsmodellen.

In dem von FORRESTER entwickelten dynamischen Modellierungskonzept

System Dynamics nehmen Definitionen in Form von Bestandsfortschrei-

2 Siehe [ 218]
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R(t)=UG(t)-vu(t)

‘f
=%%%% VU(t)’%%%%

\

G(t)=U(t)-K(t) V(t)=AV(t)+Uv(t)

/ \

K(t)=HK(t)+VK(t)+LK(t)+uWwK(t) uv(t)=VR(t)+FO(t)+LM(t)

UG(t)

Erkldrung der Symbole:

R(t): Return on Investment " VU(t): Vermdgensumschlag
UG(t): Umsatzgewinn U(t): Umsatz

V(t): Vermdgen G(t): Gewinn

K(t): Kosten HK(t): Herstellungskosten
VK(t): Verkaufskosten LK(t): Lagerkosten
VWK(t): Verwaltungskosten AV(t): Anlagevermdgen
UV(t): Umlaufvermdgen VR(t): Vorrate _
FO(t): Forderungen LM(t): Liquide Mittel

Abb., 13.1 Das Kennzahlensystem der Firma Du-Pont als Beispiel eines
hierarchischen Definitionssystems

bungsgieichungen - von FORRESTER als Léve]gleichungen bezeichnet -
eine zentrale Stellung ein. Eine eingehende Er8rterung dieser Kon-
zeption erfolgt erst sp'aiter.3

Bei der Entwicklung gr6Berer Modelle wird man oft auf der Grundlage .
von Definitionssystemen zur EntWicklung der Hypothesen fortschreiten,

die die in den Definitionsgleichungen auftretenden Variablen erkldren.

3 Siehe S. 399ff.
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Dieses Vorgehen ist deswegen sinnvoll, weil Definitionssysteme nicht
wahr oder falsch sein kdnnen und deshalb eine sichere Ausgangslage
schaffen.

Die einzigen an ein Definitionssystem zu stellenden Forderungen sind,
daB es widerspruchsfrei sein soll und daB seine Variablen beobach-

tungsméBig aufweisbar sein miissen.

1.4. Schaubildliche Modellierung dynamischer Systeme

Eine schaubildliche Darstellung dynamischer Systeme erleichtert in
hohem MaBe die gedankliche Vergegenwdrtigung und anschauliche Inter-
pretation der Zusammenhd&nge und fiihrt damit zu einem besseren Ver-
stdndnis der Systemstruktur.

Dies ist der Grund, daB es heute wohl kein relevantes dynamisches
Modell gibt, welches nicht in irgendeiner Form durch Diagramme er-
18utert oder dokumentiert wird.

Die Darstellung bestimmter Systeme mit Hilfe von Abbildungen ist als
eine Form der Model]iérung anzusehen. Entsprechend dem empirischen

Gehalt derartiger Schaubildmodelle kann man analog zu der in Tabelle

. 13.1 angefithrten Klassifikation von Hypothesen zwischen parametrisch-
singuldren, parametr}sch—generellen, komparativen und nichtparame-
trischen Schaubildmodellen unterschei@en. .

Abbildung 14.1 enth&1t 'in Erweiterung von Tabelle 13.1 zusdtzlich ei-
ne schaubildliche Darstellung der einzelnen Hypothesenarten. Sie er-
moéglicht es auch, Schaubildmodelle im Hinblick auf ihren empirischen
Gehalt zu klassifiziefen. Nichtparametrische und komparative Schau-
bildmodelle dienen oft als Zwischenstufe der Entwicklung eines para-
Ametrisch-singuléren Differenzengleichungsmodells. Es ist aber auch
denkbar, daB aus einem parametrisch-singuldren Differenzengleichungs-
modell ein nichtparametrisches Schaubildmodell erstellt wird, welches
dazu dient, die kausalen Beziehungen, abstrahiert von ihrer konkreten

Ausgestaltung, Ubersichtlich darzustellen.

L Die zweite Forderung ist nicht zu halten, wenn die Verwendung von

Zwischenhypothesen zugelassen ist. Vgl. hierzu die spdteren Ausfiih-
rungen auf Seite 153f.
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im ersten Fall werden viele Personen‘geneigt sein, von der schaubild-
lichen Darstellung eines Systems zu sprechen, wéhrend sie bei der er-
wahnten Ableitung eines nichtparametrischen Schaubildmodells aus ei-
nem Differenzenglieichungsmodell von einer schaubildlichen Darstellung
des Modells sprechen. |n unserem Sprachgebrauch handelt es sich in
beiden Fdllen um die Entwicklung des nichtparametrischen Schaubi Idmo-
dells eines bestimmten Systems.

in diesem Abschnitt werden verschiedene Diagrammformen (oder Arten
von Schaubildmodellen) zur Beschreibung dynamischer Modelle darge-

stellt und an Beispielen demonstriert.

1.4.1. Kausaldiagramme

Nichtparametrische Modelle werden durch sogenannte Kauéaldiagramme

bildhaft beschrieben. Sie liefern im Rahmen von MZA-Modellen Aussa-
gen lber die Beeinflussungsrichtungen der Systemvariablen.

Als Beispiel sei das Kausaldiagramm eines MA-Systems angefihrt.

Y ‘ ; I a

b

Abb. 14.2 Kausaldiagramm eines MA-SQstems

Eine Pfeilspitze kennzeichnet jeweils die Variable, welche von der am
Ende des Pfeilschaftes eingetragenen Variablen beeinfluBt wird.

Im Falle eines komparativen Kausaldiagrammes werden nicht nur bestimm-

te Wenn-Dann-Beziehungen zwischen metrischen Gr&Ben behauptet, son-
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dern die Hypothesen enthalten auch eine zusdtzliche Behauptung lber
die Beeinflussungstendenz. Es handelt sich also um die Darstelliung
komparativer Modelle. Angenommen die folgenden Je-Desto-Hypothesen

iber ein MA-System seien uns bekannt.

Je groBer Y desto groBer C

Je groBer C desto grdBer Ii

Aufgrund der Definitionsgleichung Y = C + 1 + | _sind wir in der La-
ge, die folgenden Beziehungen zu formulieren, die jedoch keine Hypo-

thesen darstellen.

Je groBer li desto groBer Y
Je groBer C desto groBer Y

Je groBer Ia desto groBer Y

Kennzeichnet man eine Aussage: <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>