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In der nationalokonomischen Hexenkuche wird

jetzt manch kraftig dynamisch Tranklein ge­

braut, und wer davon genossen hat, sieht

zwar leider nicht wie Faust Helena in jedem

Weib, wohl aber ein Gewimmel 'dynamischer '
Probleme und die 'Zeit ' in jedem okonomischen

Vorgang.

Oskar Morgenstern
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Einleitung

KompJexe dynamische SimulationsmodelJe haben sich in den letzten Jah­

ren zu einem wichtigen Beschreibungs- und Analyseinstrument der wirt­

schafts- und sozialwissenschaftl ichen For~chung entwickelt. Diese

Entwicklung wurde in der Vergangenheit vor aJlem durch das zunehmen­

de Angebot an computergestutzten Systemen zur Modell ierung, Schat­

zung und AnaJyse dynamischer ModelJe erm5g1icht.

Die Tatsache, daB immer mehr Wissenschaftler auf ein standig anwach­

sendes und leicht zu handhabendes Model J ierungs~ und Analysepotential

zuruckzugreifen verm5gen, birgt groBe M5g1ichkeiten, aber auch Gefah­

ren. Eine dieser Gefahren dOrfte in der Versuchung liegen, ein 'mo­

delling without theory' zu praktizieren, d.h. dje ohne tiefergehende

theoretische Kenntnisse rezeptartige Anwendung bestimmter ModeJ lie­

rungskonzepte.

Diese Arbeit verfolgt das Ziel, sowohl die technischen Probleme der

Systemsimulation detaiJl iert und an Beispielen aufzuzeigen, als auch

die theoretischen Grundlagen der St~uktur, Interpretation und AnaJy­

se dynamischer Model1e in systematisc~er Weise darzustellen.

Sie gliedert sich in vier Kapitel, von denen die ersten beiden der

theoretischen Grundlegung dienen, wahrend sich die restl ichen zwei

Kapite1 den konkreten Methoden und Techniken der dynamischen System­

simulation zuwenden.

Das erste Kapitel, welches formal weniger scharf gefaBt ist, 5011

m5g1 ichst anschaulich und von technischen Einzelheiten befreit, in

die Grundlagen und Probleme der Analyse dynamischer Systeme einfuh-

ren.

Ausgegangen wird von der Prazisierung eines bestimmten Typs dynami­

scher Model Ie, den metrischen, zeitdiskreten, aquidistanten Model­

len. Auf der Basis dleses Model ltyps werden die begriffl ichen Elemen­

te zur Kennzeichnung dynamischer Model Ie eingefUhrt. Es folgt elne

Er5rterung der wichtigsten Impl ikationen dynamischer Modellansatze
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sowie eine ersteSkizzierung der verschiedenen 'Logiken ' zur Aufdek­

kung dieser Impl ikationen. AbschlieBend werden einige grundlegende

Verfahren zur Gewinnung und empirischen UberprUfung von Modellhypo­

thesen dargestel It.

W5hrend im ersten Kapitel eine Grundlegung und Ubersicht des Aufga­

bengebietes cler Analyse dynamischer Systeme vermittelt wird, knupft

das zweite Kapitel an spezielle Modellformen an. Anhand bestimmter

polarer Modellbegriffe wie 1inear-nichtl inear oder offen-geschlossen

wird die spezielle empirische Interpretation dieser Madelle disku­

tiert; es werden typenspezifische Impllkationen beschrieben und die

mathematischen Methoden ihrer Offenlegung dargeste11t.

Dieses Kapitel 5011 eine theoretische Basis schaffen, die 1m Rahmen

der Simulation dynamischer Modelle zu einer erhohten methodischen Si­

cherheit fOhrt sowie ein Hintergrundwissen schafft, welches zu einer

ausgewogenen und umfassenden Beurteilung der Mogl ichkei ten einer kon­

kret anstehenden Modellentwicklung fOhrt.

Wer nicht die Zeit oder auch Geduld hat, dieses Kapitel durchzuar­

beiten, oder wer der (vielleicht vorlaufigen) Auffassung anhangt,

das erste Kapitel sei als theoretische Basis ausreichend, kann Kapi­

tel 2 uberspringen. Denn, abgesehen von einigen theoretischen Ein­

schuben, sind die in den Folgekapiteln diskutierten technischen Fra­

gen der Modellsimulation auch ohne die Kenntnis von Kapitel 2 ver­

standI ich. Fur Leser, die sich mit den Methoden zur Untersuchung dy­

namischer Systemmodelle vertraut machen wollen, weil sie die Entwick­

lung eines bestimmten Model ls beabsichtigen, ist es vielleicht sogar

eine sinnvolle Strategie, das Kapitel 2 auszulassen. Spatestens nach

dem ersten Entwurf und der nachfolgenden Simulation eines Modells

stellt sich zumeist ein echtes, aus der Aufgabenstellung her moti­

viertes BedUrfnis nach einer starkeren methodisch-theoretischen Uber­

prufung und Fundierung des eignen Vorgehens ein. Zur Befriedigung

dieses BedUrfnisses 1iegt es nahe, Kapitel 2 zumindest bezUgl ich be­

stirnmter Modelltypen nachtraglich durchzuarbeiten.

Im dr itten Ka pit e 1 wi rd dasheute sehr 9e bri:i uch1 i c he Mo del lie run 9s ­

konzept 'System Dynamics ' beschrieben, anhand von Beispielen darge-
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gestellt und kritisch diskutiert. Der Erorterung dieses Konzeptes

schlieBt sich die Beschreibung zweier Verfahren zur Sensitivitatsana­

lyse und Retrodiktion von System-Dynamics-Model len an. Anknupfend

an die kritisch diskutierten Prinzipien des System Dynamics wird ei­

ne als FOlR-Modell ierung bezeichnete Alternative zu dieser Konzep­

tion vorgeschlagen und ausfuhrl ich begrundet.

Das vierte Kapitel wendet sich den computergestutzten Techniken der

Behandlung dynamischer Modelle zu. Die Simulationssprachen DYNAMO

und CSMP werden anhand von Beispielen beschrieben und miteinander

vergl ichen. Die Anwendung von FORTRAN zur Simulation von System-Dy­

namics-Modellen und klassischen Differenzengleichungsmodel len wird

eingehend erortert. Das Kapitel schlieBt ab mit der Darstellung

der heute maBgebenden Schatz- und Simulationssysteme SIMPlAN, EPL,

COMOS und TROLL.

Was hat der Leser davon, wenn er dieses Buch teilweise oder viel­

leicht sogar vollstandig durchgearbeitet hat? - Es bleibt zu hoffen,

daB er das Terrain klarer uberschaut, daB er in die Lage versetzt

worden ist, seine eigene Tatigkeit beim Arbeiten mit dynamischen Mo­

dellen methodisch besser einzuordnen, daB er sich mit den Methoden

zur Analyse dynamischer Systeme vertraut gemacht hat, aber auch ihre

Grenzen einzuschatzen vermag.

Diese erhohte methodische Sicherheit beim Arbeiten mit dynamischen

Model len sollte einhergehen mit der Vermittlung profunder Kenntnisse

in der Technik der Simulation dynamischer Modelle. Erst, wenn ein

Modellentwickler ein Kenntnis- und Anwendungsniveau erreicht hat,

welches die Simulation und Analyse eines Modells zu einer routine­

m5Bigen Tatigkeit werden.ISBt, dann kann er sich voll der wesentl i­

chen Aufgabe jeder Model lentwicklung widmen: der Hypothesengewin­

nung.

Man kann die triviale Wahrheit nicht oft genug wiederholen: jedes

dynamische Model I steht und f~llt mit der Gultigkeit seiner zeitin~

varianten Hypothesen. Uber die Methoden zur Aufstellung solcher Hy­

pothesen wird in dieser Arbeit nicht viel gesagt und kann auch nicht
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viel gesagt werden. Der Grund ist folgender: weil es keine verbind­

I iche Induktionslogik, d.h. kein zwingendes Verfahren der Hypothe­

sengewinnung gibt, ist die Auffindung testbarer, zeitinvarianter Hy­

pothesen die entscheidende kreative Leistung eines Modellentwicklers.

In den n~chsten Jahren wird die integrierte computergestUtzte Anwen­

dung sowohl deduktionslogischer Ver'fahren als auch induktionslogi­

scher Parameterschatztechniken so vereinfacht werden und weit VBr­

breitet sein, daB das Problem der Hypothesengewinnung immer starker

als das Kernproblem jeder Modellentwieklung hervortreten wird.

Mit dem Erfolg oder MiBerfolg im Auffinden empirisch gehaJtvoller

und bewahrter Verhaltenshypothesen entscheidet sleh die praktische

Relevahz dynamiseher Systemmodel Ie in den Wirtschafts- und Sozial­

wissenschaften.



1. Kennzeichnung dynamischer Systeme
und Modelle

Unser erstes Ziel ist es, eine Vorstellung vom Problemkomplex einer

Analyse dynamischer Systeme zu vermitteln. Wir beginnen mit einer

KI~rung der Beziehungen zwischen einem System und dem Modell, wel­

ches dieses System beschreiben 5011. Daran anschl ieBend fuhren wir

elne Klassifizierung der Beschreibungsformen dynamischer Systeme ein

und beschlieBen, eine bestimmte Systembeschreibungsform fur die nach­

folgenden Betrachtungen zu Grunde zu legen. Auf dieser begrifflichen

Basis werden die Ziele und Methoden der Analyse dynamischer Systeme

an einfachen Beispielen demonstriert.

AbschlieBend wird das ~roblem der empirischen Adaquanz dynamischer

Systemmodelle behandelt. Seine fundamentale Bedeutung wird deutlich,

wenn man sich klarmacht, daB jede noch so diffizile Analyse einesMo­

dells immer dann zu einem sinnlosen Unterfangen wird, wenn ein Mo­

dell das zu beschreibende System nicht hinreichend ad~quat wider-

sp i egel t.

1.1 . Systeme und Modelle

Es 5011 nicht unsere Aufgabe sein, eine prazise Definition des Wor­

tes 'System l zu 1iefern. In einer geringfugigen Einengung jedoch

wol len wir nur dann von einem System sprechen, wenn darunter ein

durch Beobachtungen aufweisbarer Zusammenhang verstanden wird. Die

unter dieseDefinition fallende Objektmenge hangt entscheidend von

der Auslegung des Begriffes der Beobachtbarkeit abo In einer restrik­

tiven Fassung des Beobachtungsbegriffes umfaBt ein System nur ma-
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terielle Ph~nomene wie eine Uhr oder eine Dampfmaschine. Erweitert

man den Begriffsumfang, indem auch nur indirekt konstatierbare Be­

ziehungen als Beobachtungen angesehen werden, so konnen auch physi­

kal ische Kraftfelder, betriebliche Organisationen, Beziehungen zwi­

~chen gesellschaftlichen Gruppen oder das 'Rechtssyitem' eines Lan­

des als System bezeichnet werden.

Vorerst wol len wir es bel dieser ersten Aufhellung des Systembegriffs

belassen und uns ohne weitere Prazisierung der Frage zuwenden: Wie

gelangt man zu nicht unmittelbar einsichtigen Informationen Uber Ei­

genschaften und Wirkungsweisen bestimmter Systeme?

Die Antwort lautet: Man entwlckle ein Model I des betreffenden Systems

und versuche, anhand dleses Model Is die noch nlcht bekannten Eigen­

schaften des Systems herauszuflnden.

Modell ist hier im ganz allgemeinen Sinne einer Abbildung gemeint.

Oiese Abblldung kann rein verbalsprachl icher Art sein. Man spricht

dann von Verbalmodellen.

Madelle konnen auch vereinfachte und verklelnerte Nachbildungen ei­

nes Zusammenhangs zum Ausdruck bringen wie etwa 1m FaIle einer Land­

karte oder eines Planetariums. Fur derartige materiel Ie Nachbildun­

gen wird die Bezeichnung ikonische Madelle verwendet.

Uns interessieren jedoch allein Symbolmodel Ie. DUTCh ein Symbolmo­

del J" werden die Informationen Uber das zu beschreibende System an­

hand empirisch interpretierter Symbole reprasentlert. Bilden diese

Symbole und lhre VerknCpfungsweisen zuglelch die Symbole und Opera­

tionsbegriffe einer bestlmmten mathematischen KalkUlsprache, dann

soIl von einem mathematlschen Modell gesprochen werden.

So ist die 1Ineare Funktion

K=100+10X

belspieJsweise ein mathematisches Modell, wenn man davon ausgeht,

daB sie den VerI auf der Kosten elnes bestimmten Betrlebes in Abhan­

gigkeit von der produzierten Menge beschrelbt, wobei folgende empi­

rische Deutung der Symbole gilt:

K: Gesamtkosten des Betriebes (OM)
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X: Produktionsmengedes Betriebes (StUck)

10: StUckkosten (DM/Stuck)

100: Mengenunabhangige Kosten (OM)

Um ein mathematisches Modell handelt es sich, weil die verwendete

lineare Funktion ein algebraischer Ausdruck ist. Ein nicht unmittel­

bar erkennbares Strukturmerkmal und daher eine Implikation des be­

schriebenen Modells bildet beispielsweise der Verlauf der sogenann­

ten Ourchschnittskosten in Abhangigkeit von,der Produktionsmenge X,

welcher anhand des Model 15 bestimmt werden kann. Er wird durch die

Funktion

K!X : 10 + 100!X

beschrieb'en. Oamit ist der Grundgedanke jeder Systemanalyse umris­

sen: Entwicklung e.ines Systemmodells und Gewinnung von Informatio­

nen, welche dem Systemuntersucher bisher nicht bekannt waren, durch

geeignete Methoden aber aus dem Systemmodell erschlossen werden kon-

nen.

Da wir beabsichtigen, verschiedene Arten dynamischer Systemmodelle

im Hinbl ick auf ihre Besonderheiten zu diskutieren, ist es ange­

bracht, kurz der Frage nachzugehen, auf welche Weise Uberhaupt be­

griffliche Differenzierungen vorgenommen werden konnen. Ublicher­

weise 'werden Individuenmengen anhand bestimmter beobachtbarer Merk­

male in Teilmengen und damit Arten differenziert. Die Tei lmenge 'Pu­

del' ergibt sich aus der Festlegung, daB alle Elemente der Individu­

enmenge 'Hund ' , welche eine Reihe bestimmter Beobachtungsmerkmale auf­

wei sen, als Pudel zu bezeichnen sind. 1m Sinne dieses Klassifika­

tionsverfahrens muB ein System, welches man als dynamisch bezeich­

net) ein Beobachtungsmerkmal besitzen, bel dessen Vorhandensein man

laut Vereinbarung von einem dynamischen System sprechen 5011. Will

man jedoch vorhandene Systeme allein nach Beobachtungsmerkmalen in

Teilklassen wie offene, geschlossene, komplexe oder ultrastabile

klassifizieren, so dUrfte schon eine Einigung uber die in Frage

kommenden BeobachtungsmerkmaJe schwierig sein.
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Wegen dieser Schwierigkeiten werden wrr eine andere Art der Klassi­

fizierung von Systemen verwenden, die als modellabhangige System­

klassifizierung bezeichnet werden kann. Ihr Grundgedanke lautet:

Will man ein bestimmtes System klassifizieren, so erfolgt diese

Klassifikation anhand der Merkmale einer Model1klasse, durch die

das System in adaquater Weise beschrieben wird. Dies bedeutet, daB

man einem bestimmten System insofern eine bestimmte Eigenschaft zu­

schreiben kann, als es sich durch einen bestimmten Model1typ abbil­

den 1aBt.

In diesem Sinne solI dann von einem dynamischen System gesprochen

werden, wenn die zu Grunde 1iegenden Phanomene von einem dynamischen

Modell in adaquater Weise reprasentiert werden konnen. Entsprechend

dieser.Sprachrege1ung bi1det ein empirischer Zusammenhang, der sich

durch ein lineares dynamisches Modell abbilden laBt, ein lineares

dynamisches System.

Ein System wird damit gleichsam mit Hi 1fe eines ihm adaquaten Mo­

dells identifiziert. Wenn im folgenden von der Analyse dynamischer

Systeme gesprochen wird, dann handelt es sich also um die Analyse

empirischer Beziehungszusammenhange, die mit Hilfe dynamischer Mo­

delle in adaquater Form reprasentiert werden konnen.

Es sei schon vorgegriffen, daB im fo1genden von dem Begriff eines

dynamischen Modells ausgegangen wird, der dazu fUhrt, daB dynami­

sche Modelle eine Teilk1asse der Symbolmodelle bilden. Dies hat zur

Folge, daB sich die Analyse dynamischer Systeme ausschl ieB1ich im

Rahmen der Analyse dynamischer (Symbol-)Modelle vollzieht.

1.2. Dynamische Madelle als Reprasentanten dynamischer
Systeme

Was unter einem dynamischen Modell verstanden werden 5011, ist eine

Frage der Definition. 1m folgenden wollen wir den von uns verwende­

ten Begriff eines dynamischen Modells durch eine sukzessive EinfUh­

rung von drei Kennzeichen festlegen.
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Erstes Kennzeichen: Ein dynamisches Modell muB vol1symbolisiert

sein; d.h. die abzubildenden Zusammenhange mussen durch eine Symbol­

sprache reprasentiert werden.

Ein einfaches Beispiel eines symbol isierten Zusammenhanges zeigt das

in Abbildung 12.1 dargestellte Sympathie-Antipathie-Schema zwischen

drei Personen. Die einzelnen Personen werden durch die Buchstaben

A,B,C reprasentiert; die Pfei lspitze zeigt die Person an, die von

derjenigen Person, von der der Pfei 1 ausgeht, beurtei It wird. 1st in

dem Kreis, der den Pfeilschaft unterbricht, ein S eingetragen, so

wird die zu beurtei1ende Person als sympathisch empfunden. Das Sym­

bol U dagegen bedeutet, daB die Person als unsympathisch beurteilt

A • G)t-----B

c

Abb. 12.1 Sympathie-Antipathie-Schema zwischen Personen als Bei­
spiel eines einfachen symbolisierten Modells

wird. Dieses Modell ist zwar vollsymbo1isiert, erfU11t jedoch nicht

das folgende von einem dynamischen Modell zu fordernde Merkmal.

Zweites Kennzeichen: Die mit Hilfe eines dynamischen Model1s symbo­

l isierten Ereignisse oder Zustande mUssen durch einen Zeitindex ge­

kennzeichnet sein.

Bezeichnet.man etwa den Umsatz eines bestimmten Unternehmens in der

Periode t=1,2,3 ... mit U{t), und laBt sich die in den vergangenen

Perioden beobachtete Umsatzentwicklung durch folgende Beziehung an­

nahernd darstellen,

U(t) = 10000 + 600t
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dann sind fur dieses Modell der Umsatzentwicklung die Kennzeichen

und 2 erfOllt. Model Ie, die die Forderung nach Symbol isierung und

zeitl icher Indizierung erfUllen, bezeichnet man als historische oder

kinetische Modelle.

Nicht vorhanden ist jedoch in derartigen Modellen das dritte Merk­

mal dynamischer Modelle:

Drittes Kennzeichen: Dynamische Model Ie mUssen zumindest eine zeit­

invariante VerknUpfung zweier zeitl ich gegeneinander verzogerter Er­

eignisse aufweisen.

Eine zeitinvariante verzogerte VerknUpfung zweier Ereignisse bedeu­

tet, daB eine Beziehung der folgenden Art in das Modell mit aufge­

nommen wi rd:

Wenn ein Ereignis A zum Zeitpunkt t realisiert wird, dann wird

immer ein Ereignis B zum Zeitpunkt tf~t realisiert.

Symbol isch formul iert:

(12.1)

Die verzogerte Beziehung zwischen den Ereignissen A und B wird deswe­

gen als 'zeitinvarlant bezeichnet, wei I sie fUr bel iebige Perioden

t= ... ,-2,-1,O,1,2, ... gelten 5011. Der.Symbolzusammenhang (12.1)

laBt sich als Wenn-Dann-Aussage deuten, in welcher eine zeitl iche

Verzogerung zwischen dem Auftreten der durch die Wenn- und Dann-Kom­

ponente beschriebenen Ereignisse behauptet wird. Derartige VerknOp­

fungen, in denen unter Vorgabe eines zeitlichen Bezugssystems die

Existenz einer stets gleichbleibenden zeitlichen Differenz zwischen

einem ·Wennereignis ' A und einem 'Dannereignis ' B gefordert wird,

werden als dynamische Hypothesen bezeichnet.

Dynamische Hypothesen kann man im Hinblick auf die in (12.1) durch

einen Pfeil dargestellte Folgebeziehung wiederum in deterministische

und stochastische Hypothesen untergl iedern. 1m Falle einer determi­

nistischen Hypothese bedeutet der Pfeil: 'folgt mit Sicherheit', wah­

rend bei Vorl legen einer stochastischen Hypothese das Eintreten des

Folgeereignisses nur mit einer bestimmten Wahrscheinl ichkeit behaup­

tet wi rd.



Beispielsweise solIder Kauf der Ware A durch den Konsumenten M in

der Periode t mit Ka(t) und der Kauf derselben Ware durch M in der

Periode t+l mit Ka(t+l) bezeichnet werden. 1st weiterhin die Wahr­

scheinl ichkeit, daB M auf die Ware zuruckgreift 0,5, so laBt sich

damit das dynamische, stochastische Modell formul ieren:

Ka (t) o,5 .. Ka ( t +1 )

Die Unterscheidung zwischen deterministisch- und stochastisch-dyna­

mischen Model len ist von fundamentaler Bedeutung und wird uns spater

noch ausfUhrlich beschaftigen. Vorerst 5011 es nur bel dieser graben

Unterscheidung bleiben.

1.2.1. Metrisch dynamische Madelle

Metrisch dynamische Modelle bilden eine Teilklasse.der dynamischen

Model Ie. Von einem metrisch dynamischen Modell 5011 gesprochen wer­

den, wenn die bisher nur allgemeln als Ereignisse bezeichneten Gr5s­

sen durch metrische (oder quantitative) Gr5Ben reprasentiert werden.

Dies sei an einem Beispiel demonstriert: Bezeichnet man die Werbe­

ausgaben elner Firma in H5he von 10 000 DM mit WID OOO(t~l), den Um­

satz entsprechend mit U130 OOO(t) und U100 OOO(t-I), so kann man die

Behauptung aUfstellen: 1

fur t=O,l, ...

Dies Ware ein einfacherdynamisch metrischer Modellansatz. Nun wird

ei~ Umsatz U130 OOO(t) sic~er nicht nur allein als Folge der Reali­

sationen von U100 ooO(t-l) und W10 OOO(t) auftreten, sondern auch

andere Kombinationen der Realisation von U(t-'l) und W(t-1) ftih'ren zu

UJ3Q 000 (t) .

Eine ersch5pfende Aufzahlung a11'er Kombinationen, die Uno OOo(t)

zur Folge haben, hat die Form:

Das aussagenlogische Symbol A entspricht der sprachl icllen Formulie­
rung 'und l

, -+ entspricht I wenn ... dann ' , :: ist zu lesen Idann und
nur c1ann l

, und >--< entspricht loder l im ausschl ieBenden Sinne.
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U130 ooo(t) ,- [U 10a ooO(t-l) 1\ W10 OOO(t-l)]>--<[ ... J>--<, ... ,[ ... ]

(12.2)

Die leeren eckigen Klammern deuten die alternativen Kombinationen

von U... (t-1) und W... (t-1) an, die U130 OOO(t) zur Folge haben.

In manchen Fallen erweisen sich nun Hypothesen als adaquat, die den

Umsatz U(t) a]s Formelausdruck der ihn bewirkenden alternativen Kom­

binationen U... (t-l) und W... (t-1) in (12.2) angeben.

Ein solcher Formelausdruck hat beispie]sweise die Form:

( ,) () r W( t - 1) ()U130 000 t = rW t-l - [ ;$ + ~ -lJU t-1 (12.3)

wobei die magI ichen Alternatlven U... (t-l) und W...(t-1) die Gleichung

130 000 = rW(t-1) - (W(~-l) + t -lJU(t-1)

zu befriedigen haben.

Die GroBen S ,r und S stellen bestimmte Konstanten dar: ~ charakterl­

siert den relativen Umsatzverlust bel Abwesenheit jegl icher Werbung,

5 bi ldet ein 5attigungsniveau des Werbeaufwandes und r kann als Ef­

fizienzfaktor der Werbeausgaben interpretiert werden.

5011 der Formelausdruck (12.3), nicht nur fUr U
130

OOO(t), sondern

fUr einen bel iebigen Umsatz U... (t) gelten, dann lautet d~s dynami­

sche Modell:

U(t) = rW(t-1) - [rW(tl) + ~ -lJU(t-l)

Dieser Ansatz ist von VIDALE und WOLFE aufgestellt worden [215J.

Er bildet ein metrisches dynamisches Modell mit der besonderen Eigen­

schaft, daB die abhangige Variable U durch eine formelmaBige Verknup­

fung der auf der rechten Seite stehenden Variablen und Konstanten be­

stimmt wird. Metrisch dynamische Modelle dieser Art sollen fortan

a15 dynamische Funktlonsmodelle bezeichnet werden.

Die folgenden Betrachtungen sol len auf dynamische Funktionsmodel Ie

beschrankt werden. Damit entfal]t die Untersuchung dynamischer Mo­

delle, in denen nicht metrisch faBbare Zustande miteinander verknUpft

sind. Als Beispiel dieser fast ausschlieBlich (nichtmetrischen) sto-
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chastischen Modelle sei die einfachste Form eines Markenwechslermo­

dells angefuhrt. Wir unterscheiden zwei Marken A und B und unterstel­

len, daB ein Kaufer, der in Periode t die Marke A gekauft hat, in

Periode t+1 mit einer Wahrscheinl ichkeit von PAA=O,6 die Marke A

und mit einer Wahrscheinl ichkeit von PAB =O,4 die Marke B kauft.

Ein Kaufer, der in Periode t die Marke B gekauft hat, 5011 sich in

der nachsten Periode mit einer Wahrscheinl ichkeit von PBA=O,3 fur

die Marke A und mit einer Wahrscheinlichkeit von PBB=O,7 fOr die

Marke B entscheiden. Schematisch lassen sich die beschrlebenen Be­

ziehungen durch die folgende Skizze darstellen.

T+1

0,7

p-.--...... 1­
o,~

~-

T

MARKE B

PERIODE

MARKE A

Abb. 12.2 Beispiel eines nichtmetrisch dynamischen Modells

1m Gegensatz zu einem metrischen Modell, in welchem die zu beschrei­

benden GraBen (in einem bestimmten Definitionsbereich) durch reelle

Zahlen ausgedruckt werden, ist die zu beschreibende GroBe in diesem

Modell nur durch zwei alternativ mogTiche und nur qualitativ be­

schreibbare Zustande faBbar: den Zustanden 'Kaufer erwirbt Marke AI

und IKaufer erwirbt Marke 8\.

Solche nichtmetrisch dynamischen Modelle werden in der folgenden Un­

tersuchung nicht .berUcksichtigt.

Eine tatsachl ich starke Einschrankung des Anwendungsbereiches der

Analyse dynamischer Systeme wird mit der Beschrankung auf metrisch

dynamische Modelle jedoch nicht bewirkt. Denn schatzungsweise 95

Prozent aller heute bekannten dynamischen Model Ie dUrften den me­

trischen Model len zugeordnet werden konnen.
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Die Elgenschaften dleser metrisch dynamischen Madelle sollen nunmehr

starker herausgearbeitet werden. Da aIle metrischen GraBen in dyna­

mischen Modellen durch einenZeitindex gekennzeichnet sind, kann'man

hinsichtl ich der Zeitstruktur grundsatzlich zwischen zwei Modellty­

pen unterscheiden: den zeitkontinuierlichen und zeitdiskreten dyna­

mischen Model len.

In zeitkontinuierlichen dynamischen Model len wird von einem kontinu­

ierl ichen ZeitmaBstab ausgegangen. Als Folge davon kann in einem

zeitkontinuierl ichen Modell zu jedem beliebigen Zeitpunkt auf der

Zeitachse ein Zahlenwert fur die zu bestimmenden metrischen GraBen

ermittelt werden. Als Beispiel sei die Integralgleichung
t

Y(t) = !F(,)Y(T)dT
t-s

angefUhrt. Die GroBe Y wird zu jedem bel iebigen Zeitpunkt t bestimmt

durch die mit F(T) gewichteten und aufsummierten Vergangenheitsaus­

pri:igungen von Y.

Die verbreitetste Modellform im FaIle zeitkontinuierl icher Madelle

bilden die Differentialgleichungen.

Als einfaches Beispiel sei elne Hypothese aus der Anspruchsanpas-

sungstheorie von MARCH und SIMON angefuhrt. [128,s.48J

Definiert man mit

A(t) :

B(t) :

Anspruchsniveau einer Person im Zeitpunkt t

Erwartete Belohnung einer Person im Zeitpunkt t

so bedeutet die Hypothese

dA/dt = a[B(t)-A(t)taJ (a>O, a>O)

daB die infinitesimal kleine Anderungsrate von A, die Dann-Komponen­

te der Hypothese, durch die auf der rechten Seite der Gleichung ste­

hende Wenn-Komponente verzogert bestimmt wird.

Dynamische Model Ie In Form von Differentialgleichungen sind gelegent­

1 ich in den Wirtschaftswissenschaften zu finden. Dennoch wollen wir

uns im folgenden nicht mit diesem Modelltyp beschaftigen, sondern al­

lein mit den zeitdiskreten dynamischen Mod~1 len. Diese Entscheidung

mag befremdl ich erscheinen, wenn man bedenkt, daB sich dieses Buch
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generell mit der Analyse dynamischer Systeme befassen 5011. Um diese

Bedenken gleich auszur~umen, sei im Vorgriff schon darauf hingewiesen,

daB jedes rea1e soziookonomische System, welches durch ein zeitkon­

tinuier1 iches Modell beschrieben wird, auch durch ein zeitdiskretes

dynamisches Modell reprasentiert werden kann.

1.2.2. Metrisch dynamische zeitdiskrete aquidistante
Madelle (MZA)

Bei der Anwendung zeitdiskreter Madelle wird unterste1 1t, daB die

Werte der betrachteten GroBen nur zu bestimmten Zeitpunkten bestimmt

werden und auch nur diese Werte einen verzogernden EinfluB ausuben.

Unterstel It man daruber hinaus, daB diese Zeitpunkte in gleichb1ei~

benden (aquidistanten) Zeitabstanden auf der Zeitachse gewahlt sind,

so laSt sich die Struktur. eines derartigen Model ls anhand von Abbi}­

dung 12.3 demonstrieren.

E

T-2 T-1 .T [P'ERIODE]

Abb. 12.3 Pfeildiagramm eines metrisch dynamischen zeitdiskreten
und aquidistanten Model 15

Die Werte der metrischen GroBen Y1' Y2 und E sind nur in den Zeit­

punkten t, t-l, t-2, ... definiert und beeinf1ussen mit diesen Werten

in verzogerter Weise die Auspragungen von Y, und Y2'

Die dynamischen Beziehungen in Abbi1dung 12.3 lassen sich durch die
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Gleichungen

Y
j
(t) F[E(t-Z), Y1(t-l), Y2(t-Z)]

YZ(t) = F[Y
2
(t-l), Yi (t) ]

beschreiben. Derartige Gleichungen bezeichnet man als Differenzen­

gleichungen. Nach der ersten Kennzeichnung zeitdiskreter aquidistan­

ter Modelle 5011 wieder die Frage aufgegriffen werden, ob es zulas­

sig ist, sich ausschl ieBl ich auf diesen Modelltyp zu beschranken und

damlt zeltkontinulerllch dynamlsche Modelle auBer acht zu lassen.

Diese Fragestel lung lauft auf die weitere Frage hlnaus, welche der

belden Modellformen, zeitkontinulerliche oder zeltdiskrete, z~r Ab­

bildung emplrischer Beziehungen besser geelgnet ist.

Eine Antwort kann sich letztl ich nur aus der Erfahrung ergeben. Al­

lerdings zeigt die Beobachtung empirischer GraBen im Zeitverlauf,

daB sich diese selten kontinuierlich andern. Fast aIle Anderungen

physlkalischer, physiologischer und auch sozialer GraBen vollziehen

sich unstetig, so daB man im empirischen Bereich geradezu von einem

'Primat der Unstetigkeit ' sprechen kann. Es ist kein physlkal isches

oder ein einer anderen Wissenschaft zugehoriges Experiment bekannt,

das die Annahme elner stetigen Anderung emplrischer Phanomene be~ta;

tigt. Auch in dem klassi3chen Anwendungsbereich stetiger Model Ie, der

Elektrotechnlk, stel len die stetigen Modelle eine Abstraktion dar. Der

elektrische StromfluB beispielsweise ist nicht stetig, sondern wird

in gewlssen einzelnen Portionen, den Elektronenladungen, befordert.

1m wirtschaftllchen Bereich sind fast nur unstetige Veranderungen

okonomischer GraBen zu beobachten: So werden Lagerbestande nur tag-

1 ich oder wochentl ich erganzt, BudgetgroBen erfahren nur in gewissen

Zeitabstanden eine Revision, und zwischen den Preisanderungen vleler

Artikel llegen gewohnlich groBere Zeitabstande.

Bei der Verwendung von Differenzengleichungen wird zwar angenommen,

daB die betrachteten okonomischen GraBen slch unstetig andern, aber

jeweils nur am Anfang oder Ende einer bestimmten stets gleichblei­

benden (~quidistanten) Periode. Innerhalb dieser Periode dagegen wer­

die GraBen als unverandert angesehen. Der Wert am Periodenanfang oder
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-ende reprasentiert damit die ganze Periode. Die Beeinflussung el­

ner Variablen Y(t) im Zeitpunkt t durch die Vergangenheitsauspra­

gungen ihrer eigenen GroBe sowie anderer Variablen kann damit so in­

terpret iert werden, I a 1.s ob lsi e nu r von den Auspragungen am Anfang

rider Ende der betreffenden Perioden beeinfluBt werden wUrde.

Die Etfahrungen bei der Entwicklung okonomischer Model Ie 'haben gezeigt,.
daB Differenzengleichungsmodel Ie im allgemeinen besser als zeitkon~

tinuierliche Modelle in der Lage sind, okonomische Phanomene zu be­

schreiben. 2 Dies liegt daran, daB viele okonomische Entscheidungen

und die durch sie ausgelosten Veranderungen der Variablen in anna­

hernd periodischen Abstanden getroffen werden, was der 5truktur der

Differenzengleichungen starker entspricht.

Betrachtet man die derzeitig vorhandenen dynamischen okonomischen Mo­

delle, die in Form von Differentialgleichungen formuliert sind, so

fuhrt ihre Analyse fast immer zu dem Urteil, daB es sinnvoller ist,

sie in eine Differenzengleichungsform umzuwandeln.

Betrachten wir beispielsweise die bereits angefuhrte Hypothese

dA/dt = a[B(t)-A(t)+a]

Es fallt schwer, sich vorzustellen, daB die Anderung des Anspruchs­

niveaus A kontinuierl ich, d.h. in infinitesimal kleinen Zeitabs.tanden

verlaufen 5011. Einleuchtender durfte die Annahme einer periodenwei­

sen Veranderung seln, was zu der folgenden Differenzengleichung fUhrt:

, A(t+1) - A(t) = a[B(t)-A(t)+a] mit t=O, 1 ,2 ...

Neben der in vielen Fallen groBeren empirischen Adaquanz der diskre­

ten Beschreibungsform bietet die Verwendung von Differenzengleichun­

gen zusatzl ich eine Reihe methodisch-operationaler Vortei Ie:

(1) Die Formul ierung dynamischer Beziehungen in Form von Differenzen­

gleichungen ist anschaulicher, und die kausale Struktur der Zusammen­

hange kommt wie bei der Verwendung von'Pfeilschemata in ihnen deut-

1icher zum Ausdruck als in KalkUlen mit stetigen Zeitargumenten.

(2) Die Anwendung von sogenannten Parameterschatztechniken ist, wie

2 Vergl. hierzu [14,5.221]' [208,5.2J
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wir sehen werden, nur bei einem Differenzengleichungsansatz durch­

fOhrba r.

(3) Komplexe nichtlineare Differenzengleichungssysteme lassen sich

mit elektronischen Digitalrechnern in nahezu bel iebigem Umfang simu­

11eren. Der Simulation entsprechender dynami5che~ KalkOle mit kon­

tinuierlichen Zeitargumenten sind wegen des technischen Leistungs­

verm5gens der hierzu erforderlichen Analogrechner Grenzen gesetzt.

Dies gilt in verstarktem MaBe fur stochastisch dynamische Modelle.

Die Simulation von Zufallszahlenfolgen in dynamischen Model len kann

mit Digitalrechnern unter Benutzung von Zufallszahlengeneratoren in

bel iebigem Umfang und mit groBer Flexibil itat durchgefDhrt werden.

Di~ Simulation stochastischer dynamischer' Model Ie mit stetigen Zeit­

argumenten ist aber nur in Sonderfallen technisch realisierbar.

Aus diesen GrUnden sollen in den weiteren Untersuchungen nur metri­

sche, zeitdiskrete und aquidistante dynamische Modelle er5rtert wer­

den, die wir abkurzend als dynamische MZA-Modelle bezeichnen wollen.

1.2.3. Strukturmerkmale dynamischer MZA-Modelle

Die Dimension eines dynamischen Model 15 bestimmt sich nach der Anzahl

der Gleichungen. Ein eindimensionales Modell ist zum Beispiel durch

U(t) = 212 + O,628U(t-l) + O,537W(t)

gegeben. 3 Es bedeuten dabei

U(t): Umsatz eines Unternehmens in Periode t

U(t-l): Umsatz eines Unternehmens in Periode t-l

W(t): Werbeausgaben des Unternehmens in Periode t

In vielen Fallen k5nnen dynamische Modelle nur durch mehrere Glei­

chungen in adaquater Weise beschrieben werden.

So besteht das von SAMUELSON entwickelte Multipl ikator-Akzelerator­

Modell aus drei Gleichungen. [173J. Dieses dreidimensionale Modell

3 Siehe zu d i esem Modell [159, S. 91 J



32

beschreibt die Beziehungen zwischen dem Volkseinkommen, dem Konsum

und den Investitionen in einer Volkswirtschaft. Die erste Hypothese

wird als Konsumfunktion bezeichnet.

C(t) ::: aY(t-l)

Sie besagt, daB der Konsum C in der Periode t dem Volkseinkommen Y

der Vorperiode proportional ist. Der Proportiona11t~t5faktor a wird

als Konsumquote bezeichnet.

Nach der zweiten Hypothese, der sogenannten Investitionsfunktion~

I. (t) ::: I3[C(t)-C(t-1)]
I

werden die durch den Konsum induzierten Investi tionen I. (t) von den
I

Unternehmern proportion?l der Anderungsrate des Konsums, d.h.

C(t)-C(t-l) bestimmt. Der Proportional itatsfaktor S wird als Akzele­

rator bezeichnet.

Die dritte Gleichung des Systems wird durch eine Definitionsglel­

chung des Volkseinkommens gebi ldet, die sich aus

y(t) = C(t) + I.(t) + I (t)
I a

bestimmt. Ole GroBe I (t) reprasentiert hierbei die autbnomen, d.h.a
nieht dureh Konsumanderungen bewirkten, Investitionen der Unternehmer.

Das Multiplikator-Akzelerator-Model I wlrd in dieser Arbeit durchge­

hend als Standardbeispiel zur Demonstration der vielfaltigen Aspek~

te einer dynamischen Model lbildung und -analyse verwendet. Aus Ab­

kurzungsgrOnden 5011 fortan von elnem MA-Modell oder MA-System ge­

sprochen werden.

Nach der beispielhaften Darstellung eines e1n- und dreldlmenslonalen

MZA-Modells 5011 eln Begriffsapparat zur Bezeichnung der Modellele­

mente eingefUhrt werden.

Betrachten wir zum Beispiel den Fall eines zweldimensionalen MZA-Mo­

dells, d. h.

F[ Y1(t-l), Y
1
(t-2), Y2(t), Y

2
(t-2), E

1
(t) ,E

1
(t-1) ,E 1 (t-2) ,E 2 (t)J

FeY1 (t-l) 'Y2(t-2) ,E 1(t)]

so lassen sieh versehiedene Typen von Variablen unterseheiden.
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Samtl iche Variablen gehoren entweder den endogenen oder exogenen Va­

riablen an. Eine Variable ist endogen, wenn ihre numerischen Werte

durch die Gleichungen des Modells bestimmt werden konnen. In unserem

Fall sind also die Variablen Y, und Y2 endogen. Exogene Variablen

mussen in einem dynamischen Modell Ivon auBen l numerisch vorgegeben

werden. Zu den exogenen Variablen zahlen die Variablen E, und E2.

Die eine endogene Variable im Zeitpunkt t beeinflussenden endogenen

und exogenen Variablenauspragungen der Vorperioden werden als ver­

zogerte endogene und verzogerte exogene Variablen bezeichnet.

Die Variablen Y,(t-'), Y, (t-2) und Y2(t-2) gehoren somit zur .Gruppe

der verzogerten endogenen, E, (t-') und E1(t-2) zu den verzogerten

exogenen Variablen. Variablen mit dem Zeitindex t dagegen werden als

unverzogerte Variablen bezeichnet. In diese Kategorie fallen Y, (t),

Y2(t), E, (t) und E2(t). Exogene Variablen lassen sich in zeitkonstan­

te und zeitvariable exogene Variablen unterscheiden. Eine zeitkon­

stante exogene Variable bleibt wahrend des Betrachtungszeitraumes

zahlenmaBig unverandert. Sie wird auch kurz als Parameter bezeichnet.

Eine zeitveranderl iche exogene Variable nimmt mit vari ierendem t un­

terschieclliche Werte an. Sind die exogenen Variablen wie im angefOhr­

ten Beispiel nur mit dem Symbol E(t) bezeichnet, so reicht diese In­

formation nicht aus, um eine Klassifizierung vorzunehmen. 1m Falle

E(t) = 0,5 handelt es sich beispielsweise um eine zeitkonstante exo­

gene Variable oder kOrzer einen Parameter; im Falle E(t) = 0,5t um

eine zeitveranderl iche exogene Variable.

Die exogenen Variablen sowie die verzogert endogenen Variablen wer­

den zur Gruppe cler vorherbestimmten Variablen zusammengefaBt. Diese

Bezeichnung ergibt sich, wie wir in KOrze erkennen werden, aus dem

Umstand, daB die numerischen Werte dieser Variab1.en vorgegeben (vor­

herbestimmt) sein mussen, um die zahlenmaBige Auspragung der unver­

verzogert endogenen Variablen bestimmen zu konnen. 1m angefuhrten

Beispiel zahlen alle auf der rechten Seite der beiden Gleichungen

stehenden Variablen zu den vorherbestimmten Variablen.

In Abbildung 12.4 ist das als Beispiel heran0ezogene dynamische Mo­

dell nach dem erorterten Begriffssystem klassifiziert.
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unverzogerte
endogene Variable

verzogerte .

endogene

Variable

unverzogerte

exogene Variable

verzogerte

exogene Variable-"- --- .

vorherbest Immte

Va-ri ab Ie

Abbildung 12.4 Beispiel der Variablenklassifizierung eines dynami­
schen Modell s

Der Grad einer Differenzengleichung entspricht der groBten Zeitver­

zogerung, die eine der verzogerten Variablen gegenUber t ~ufweist.

So ist die Gleichung fOr Y2(t) wegen Y2 (t-2) eine Differenzenglei­

chung zweiten Grades.

Die EinfOhrung des begriffl ichen Instrumentariums erfolgte bisher

unter der sti llschweigenden Annahme eines deterministischen Modells,

welches eine sichere Beziehung zwischen den vorherbestimmten und den

endogenen Modellvariablen behaupte~.

Betrachten wir beispielsweise das erw~hnte eindimensionale Modell

U(t) = 212 + O,628u(t-l) + O,537W(t)

so kann durch die zahl.enmaBige Konkretisierung von U(t-l) und W(t)

fOr jede Periode ein Zahlenwert fOr U(t) ermittelt werden.

Den deterministischen Model len stehen die sogenannten stochastischen

Model Ie gegenuber. Es I iegt daher die Frage nahe, ob die Verwendung

stochastischer Model Ie nicht zur Einfuhrung eines besonderen Be­

griffsapparats fUr stochastische Modelle zwingt.

Glucklicherweise kommt man jedoch mit den bisher entwickelten be­

grifflichen Instrumenten aus, d.h. man kann die in Abbildung 12.4

angefUhrten Variablenbegriffe auch zur Kennzeichnung stochastischer

Madelle verwenden.
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Urn diesen etwas uberraschenden Zusammenhang zu verdeut1 ichen, wollen

wir in einer ersten, vorlaufigen Darstel1ung den grundsatz1 ichen Cha­

rakter eines stochastischen MZA-Mode11s schi1dern. Betrachten wir

das dynamische Modell

Y(t) = O,Sv(t-l) + dt)

so liegt es nahe, hier von einem deterministischen Modell mit einer

endogenen Variab1en Y und einer exogenen Variab1en E zu sprechen. Nun­

mehr wtrd uns aber mitgetei1t, daB die Variable E in ihrer konkreten

numerischen Auspragung nicht bekannt sein 5011. Bekannt ist a11ein,

daB E einer Wahrscheinl ichkeitsverteilung angeh6rt. Oder anders aus­

gedruckt: von E ist nur die Wahrschetnlichkeitsvertei1ung bekannt,

aus der E in jeder Periode gewissermaBen a1s Stichprobe entnommen

wi rd.

1st von E aber nur die Wahrschein1 ichkeitsvertei lung bekannt, so

kann von der endogenen Variablen Y(t) im gOnstigsten Fall auch nur

die Wahrschein1ichkeitsvertei1ung ermitte1t werden. Dies ist das

Kennzeichen eines stochastisch dynamischen MZA-Mode11s, welches uns

die Ve ra 11 geme i nerung er 1aubt: In e i nem s tochas t i schen MZA-Mode 11

ist zumindest eine exogene Variable nur in Form ihrer Wahrschein1ich­

keitsvertei1ung bekannt, was zur Folge hat, daB die endogenen Variab­

len des Mode11s ebenfalls nur durch ihre Wahrschein1ichkeitsvertei­

1ungen beschrieben werden k6nnen.

Dem Leser wird nicht entgangen sein, daB bei diesem stochastischen

Modell mit den Begriffen einer exogenen und endogenen Variab1en ge­

arbeitet wurde. Der Grund 1iegt darin, daB es ein Prazisionsniveau

der Formu1ierung von MZA-Mode11en gibt, auf das diese Begriffe unab­

hangig von der Unterscheidung zwischen lstochastisch' und 'determi­

nistisch' anwendbar sind. Der geschi1derte Begriffsapparat kann da­

her fur beide Modellformen verwendet werden. 1m Fal1e unseres einfa­

c~en Beispie1es zeigt sich, daB die K1assifizier~ng in endogen ver­

z6gerte und exogen unverz6gerte Variablen anwendbar ist, ohne daB be­

kannt seln muB, ob es sich 1etztl ich urn ein stochastisches oder de­

terministisches Modell handelt.



Mit diesen Bemerkungen erhalten wir nur eine erste, vorlaufige Vor­

stel lung Uber die Struktur eines stochastisch dynamischen MZA-Modells,

sind aber in der Lage, den entwickelten Begriffsapparat auch auf die­

se Model le anzuwenden.

Als Ausgangspunkt einer Modellanalyse sind oft bestimmte Darstellungs­

formen dynamischer Modelle erforderlich. Von Bedeutung sind hier ins­

besondere die reduzierte Gleichung und die Endgleichung einer endo­

genen Variablen, auf dte wir 1m folgenden elngehen.

Wird in einem dynamischen Modell eine endogene Variable durch eine

Gleichung beschrieben, deren rechte Seite nur vorherbestimmte Variab­

le enthalt, so spricht man von der reduzierten Gleichung dieser endo­

genen Variablen.

1m Fal Ie des MA-Modells

Y(t) = C(t) + I.(t) + I (t)
I a

C(t) aY(t-l)

Ii (t) = B[C(t)-C(t-l)]

(12.4)

(12.5)

(12.6)

stel It die Beziehung (12.5) bereits die reduzierte Gleichung des Kon­

sums C dar.

FUr das Volkselnkommen Y 1st dessen reduzierte Gleichung erst durch

eine algebraische Umformung zu gewinnen. Wie man leicht erkennt er­

gibt sich die reduzierte Gleichung

Y(t) = aY(t-l) + f$[aY(t-l) -C(t-l)] + I (t)a (12.7)

durch Einsetzung von (12.5) in (12.6) sowie (12.5) in (12.4) und

(12.6) in (12.4). Werden samtl iche endogenen Variablen eines Modells

durch reduzierte Glelchungen beschrleben, dann spricht man davon,

daB das Model I in seiner reduzierten Form dargestel It sei.

Gelingt es durch weitere Umformungen, die in der reduzierten Glei­

chung einer bestimmten endogenen Variablen enthaltenen Ubrigen ver­

zogerten endogenen Variablen zu el iminieren, so gelangt man zu einer

Gleichungsform, bei der die betrachtete endogene Variable allein von

ihren eigenen verzogerten Auspragungen sowie den verzogerten und un­

verzogerten exogenen Variablen abhangig ist. Eine derartige Glei-
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chungsform wird mit TINBERGEN als die Endg1eichung der betreffenden

endogenen Variablen bezetchnet. Andere Autoren gebrauchen statt d~s­

sen den Ausdruck: separierte Form oder separiert reduzierte Form.

[206,5.137], [130,5.20], [51,5.17].

Die Endgleichung oder separiert reduzierte Form ergibt sich in dem

Beispiel des Multipl ikator-Akzelerator-Modells in folgender Weise:

Die Verzogerungdes Zeitargumentes um eine Periode in (12.5) liefert

C(t-l) = aY(t-2) (12.8)

Mit (12.8) und (12.7) folgt die Endgleichung von Y

yet) = (a+aS)Y(t-l) - aSY(t-2) + I (t)
a

FUr die Variable I. ergibt sich die Endgleichung bei entsprechendem
I

Vor,gehen mit

I. (t) = (a+aS) I. (t-1) - aSI. (t-2) + aSI (t) - aSI (t-l)
I I I a a

Man kann zwischen der Erk1arungs- und Standardform einer Endgleichung

unterscheiden. Die Erklarungsform
5

yet) = w1Y(t-l) + w2Y(t-2) + ... + wnY(t-n) +n~o 9 nE(t-n) (12.10)

wird im Rahmen der Aufstetlung und Interpretation von Hypothesenglei­

chungen verwendet. Mit W =-a (v=1 ,2, ... ,n) erhalt,man durch Umord-
v v

nung die Standa~dform

s
yet) + a 1Y(t-1) + ... + anY(t-n) = ~g E(t-n)

11=0 n
(12.11)

Sie bildet den Ausgangspunkt zur analytischen Untersuchung bestimm­

ter interessierender Modelllmplikatione~. Primare Hypothesenansatze

treten selten in Form von Endgleichungen auf. Daher ist es oft not­

wendig, erst die Endg1eichungen eines ~ode1ls zu ermitte1n.

Mit Hi1fe einer Endg1eichung gel ingt es, eine endogene Variable ge­

wissermaBen vom Ubrigen System labzukoppe1n l
, wei1 alle Informatio­

nen Uber den Zeitverlauf dieser endogenen Variablen in der Endglei­

chung enthalten sind, gleichgUltig, wie stark diese endogene Varia­

ble in dem System Ivermaschtl ist. 4

4 Prazise Kriterien zur Beurteilung der Vermaschung der endogenen
Variablen in einem Model I werden in Abschnitt 2.5 entwickelt.
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1.3. Strukturgleichungstypen dynamischer MZA-Modelle

1.3.1. Hypothesengleichungen

Hypothesengleichungen reprasentieren Wenn-Dann-Behauptungen uber die

in der Wirklichkeit auftretenden Beziehungen. Sie sol len im folgen­

den unter verschiedenen Bl ickrichtungen klassifiziert und beurteilt

werden.

In den ersten beiden Abschnitt.en werden Hypothesengleichungen nach

ihrem Bedeutungsgehalt und ihrem empirischen Gehalt unterschieden.

1m anschlieBenden Abschnitt werden sie nach Kriterien gegl iedert,

die sich aus den Beziehungen zwischen einem Modell und seinem Anwen­

der ergeben.

A. Technologische und institutionelle Hypothesen sowie
Verhaltenshypothesen

Nach ihrem Bedeutungsgehalt k6nnen Hypothesengleichungen in techno­

logische Gleichungen, institutionelle Gleichungen und Verhaltens­

gJeichungen eingetei It werden. Technologische Gleichungen beschrei­

ben rein technisch bedingte Beziehungen wie etwa den Zusammenhang

zwischen dem Materialeinsatz und dem ProduktionsausstoB eines Aggre­

gates. Institutionelle Gleichungen beschreiben die Einhaltung be­

stimmter Sollvorschriften, welche beispielsweise vom Gesetzgeber

erlassen werden. Die sogenannte Steuergleichung

ST(t) = 0,56STG(t)

die fur einen zu versteuernden Gewinn STG von uber 130 000 DM die Ho­

he der zu zahlenden Steuern bestimmt, gehort zu diesem Typ.

Institutionelle und technologische Gleichungen lassen sich nicht ein­

deutig von den Verhaltensgleichungen unterscheiden. Denn institutio­

nelle Gleichungen spiegeln das insti tutionel 1 erzwungene Verhalten

von Personen wider, und auch technische Relationen sind nur in den

seltensten Fal len losge16st vom Verhalten bestimmter Personen.
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Die Bestimmung von Hypothesen, die das zeitinvariante Verhalten be­

stimmter Personen behaupten, d.h. die Bestimmung vonVerhaltensglei­

chungen, ist die schwierigste und damit die zentrale' Aufgabe jeder

Modellbildung. Betrachten wir die beschriebene Investitionsfunktion

I. (t) = S[C(t)-C(t-1)]
I

Mit ihr wird behauptet, daB das Investitionsverhalten der Unterneh­

mer in jeder beliebigen Periode t dieser Gleichung gehorcht. Hier

melden sich sicher Zweifel an, ob es bei der Mannigfal tigkeit des

menschl ichen Verhaltens uberhaupt magl ich ist, derartige prazise und

unveranderliche Verhaltensgleichungen zu finden. Dieser Einwand ist

berechtigt. Seine generel le Gultigkeit wurde allerdings bedeuten,

daB man in den Wirtschafts- und Sozialwissenschaften nicht mit dyna­

mischen Modellen arbeiten durfte.

B. Parametrisch-singulare, parametrisch-generelle, komparative und
nichtkomparative Hypothesen

Hypothesengleichungen konnen nach ihrem empirischen Gehalt unter-

schi eden we rden, d. h. im Hi nb 1 i ck auf die Bes t imm the i t de r Ve r knt1p­

fung zwischen ihren Wenn- und Dann-Komponenten. Wir wollen im folgen­

den am Beispiel der Konsumfunktion eines MA-Systems eine Klassifika­

tion von Hypothesen entwickeln, deren Ordnungskriterium der empiri­

sche Gehalt einer Hypothese sein solI. Betrachten wir die Konsum­

funktion eines bestimmten MA-Systems

C(t) = O,2Y(t-1) (13.1)

Eine derartige Hypothese, in welcher jeder Parameter einen numeri­

schen Wert besitzt, 5011 als parametrisch-singulare Hypothese be-.

zeichnet werden. Nehmen wir an, einem Modellentwickler sei (vorerst)

nur bekannt, daB in dem zu model lierenden MA-System der Konsum C(t)

in einem festen Verhaltnis a vom Volkseinkommen der Vorperiode Y(t-l)

abhangt, dann kann er diese Kenntnis durch die Hypothese

C(t) = aY(t-l) (13.2)

zum Ausdruck bringen. Eine Hypothese, die wie (13.2) erst durch ei-
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ne numerische Konkretisierung ihrer Parameter in eine parametrisch­

singulare OberfUhrt wird, 5011 als parametrisch-generelle Hypothese

bezeichnet werden.

Stel It man sich die Frage, welche der beiden Hypothesen (13.1) oder

(13.2) einen hoheren empirisehen Gehaltbesitzt, dann wird sich man­

cher intuitiv fur Hypothese (13.1) entscheiden, weil sie offenbar

bestimmter ist und daher mehr uber die Real itat aussagt. Genauer be­

"deutet dies: Hypothese (13.~) verbietet mehr empirisch mogliche Kon­

sumfunktionen als (13.2). Dieser Unterschied erweist sich als das

maBgebende Kriterium zur Kennzeichnung des emplrischen Gehalts von

Hypothesen, denn es 5011 die Festlegung gelten: je mehr empirisch

magI iche Konstellationen durch eine Hypothese ausgeschlossen werden,

umso hoher ist ihr ~mpirischerGehalt. Diese Festlegung besagt, daB

eine Hypothese H2 , die durch Spezialisierung aus einer Hypothese HI

abgeleitet wurde, einen hoheren empirischen Gehalt als Hypothese H1
besitzt. Auf die Hypothesen zur Erklarung des Konsums angewendet,

heiBt dies: Hypothese (13.1) wurde aus (13.2) durch die Spezialisie­

rung a = O,2abgeleitet und besitzt damit einen hoheren empirischen

Gehalt als (13.2).

Es fragt sieh, ob eine derartige Kennzeichnung auch auf stochasti­

sche Hypothesen Obertragbar ist. Zur Beantwortung dieser Frage ist

es wichtig zu wissen, daB nahezu al Ie zur Model lierung von MZA-Model­

len,verwendeten stochastischen Hypothesen zu den StorgroBenhypothe­

sen zu rechnen sind. Die Verwendung von StorgroBenhypothesen laBt

sich durch die folgenden Uberlegungen plausibel machen: Ein Modell­

entwickler formuliert eine deterministische Hypothese wie beispiels­

weise die oben angefOhrte Konsumhypothese. Er ist sieh jedoch daru­

ber im klaren, daB die auf der rechten Seite der Gleichung stehenden"

Variablen nicht ausschl ieBlich deh Wert von C(t) bestimmen; vielmehr

kommen, ~usammengefaBt in einer additiv eingehenden Variablen e(t),

weitere EinflUsse zur Wirkung. Zur Kennzeichnung dieser EinflUsse,

die den ursprungl ichen deterministischen Ansatz 'storen ' , nimmt der

Model lentwickler an, sie seien durch eine Wahrscheinl ichkeitsvertei­

lung mit dem Erwartungswert Null und einer im Zeitverlauf konstanten
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Standardabweichung beschreibbar. Das stochastische Gegenstuck der

deterministischen Konsumhypothese wird daher durch die Beziehung

C(t) = O,2Y(t-l) + ~(t) ~ E V(ll=O, a=konst) (13.3)

beschrieben. Mit E E V(~=O, a=konst) wird zum Ausdruck gebracht, daB

E ein Element einerWahrscheinlichkeitsverteilung mit dem Erwartungs­

wert II = 0 und der Standardabweichung a= konstant ist. Stochasti­

sche Variablen, die in dem beschriebenen Sinne zur Bildung der Hypo­

thesengleichungen dienen, werden als StorgroBen oder auch Schockva­

riablen bezeichnet.

1m folgenden werden wir uns im Rahmen stochastischer Modelle aus­

schl ieBlich mit StorgroBenhypothesen beschaftigen.

In einer zum Fall deterministischer Modelle analogen Begriffsanwen­

dung handelt es sich bei (13.3) urn eine parametrisch-singulare sto­

chastische Hypothese. Es 1 iegt die Frage nahe, ob man die beiden Hy­

pothesen (13.1) und (13.3) bezUglich ihres empirischen Gehaltes mit­

einander vergleichen kann. Es ist einfach zu erkennen, daB Hypothese

(13.3) Realisationen von s mit bestimmten Wahrscheinl ichkeiten ler­

laubt ' , die von Hypothese (13.1), in welcher E=O zu deuten ist, ver­

boten werden. In dieser Interpretationsweise besitzt eine Storgros­

se~hypothese stets einen geringeren empirischen Gehalt, weil sie

mehr Realisationen lerlaubt' als ihr deterministisches Gegenstuck.

Auf der Grundlage des entwickelten Klassifizierungskriteriums von

Hypothesen sol len im folgenden weitere Hypothesenarten unterschieden

werden.

Formul iert jemand zur Erklarung des Konsums in einem MA-System die

Behauptung

'Je.groBer Y(t-l), desto hoher C(t) I

dann kann man diese Behauptung als komparative Hypothese bezeichnen,

deren Formal isierung durch

c(t) = F[Y(t-l)] dC(t)/dY(t-1»O

erfolgt. AbkUrzend kann diese Beziehung auch durch

(13.4)
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beschrieben werden. Noch weniger gehaltvoll ist die Hypothese

welche nur behauptet, daB mit wachsendem Yauch C wachst, ohne daB

die zeitlichen Beziehungen genauer gekennzeichnet werden.

Neben den komparativen sind auch nichtkomparative Hypothesen denkbar.

Eine solche n:ige beispielsweise im Falle einer Konsumfunktion vor.

wenn bei Uberschreitung eines bestimmte"n Schwellenwertes des Volks­

einkommens Ys der Konsum C nicht mehr zunimmt, was durch

fur Y(t-1)~Y

fur Y(t-1»Ys
s

(13.6)

beschrieben werden kann oder in abgekurzter Form (unterVerringerung

des empirischen Gehaltes) durch

(13.7)

symbolisiert wird. Eine weitere Verringerung des empirischen Gehal­

tes kame mi t der Formul ierung

(13.8)

zum Ausd ruck.

~ine Hypothese kann auch durch mehrere Je-Desto-Aussagen gekennzeich­

net werden. Beispielsweise ftihren die beiden Behauptungen

IJe groBer Y(t-1), desto groBer C(t) I

und

IJe groBer I (t-l). desto kleiner C(t) I

zu der Formalisierung

C(.t) = F[Y(t-1), l{t-1)] aC(t)/aY(t-1»O und ac(t)/al(t-1)<O

oder zu der abkurzenden Ausdrucksweise

Die Variable I soll in diesem Fall die Inflationsrate des zu model-

1ierenden Systems bezeichnen. Eine weitere Verringerung der Bestimmt-



43

heit enthalt die Hypothese

(13.10)

Hypothesen cler Form (13.5) und (13.10) werden oft in FluBdiagrammen

zur ersten Abbildung eines Systems verwendet.

BEZEICHNUNG DER HYPO- SYMBOLISCHE DARSTELLUNG AM
THESE (DES MODELLS) BEISPIEL DER KONSUMFUNKTION

parametrisch-singular C(t) = 0', 2Y (t-l)

parametrisch-generell C(t) = aY(t-1)-ro
F+[Y(t-1)]II'> C(t) =:::) komparat i vro C = F+[YJ,:,{.

0
c

C(t) F± [Y( t-1)]0 =E nichtkomparativ
C = F± [y ]

nichtparametrisch C(t) = F[Y(t-1)]
C = F[Y]

1-

FE y+ ( t -1) , I- ( t -1) ].- ro C(t) =.j-l II'> komparativ- :::) C = F[Y+,I-J:::) ro
E,:,{.

Tab. 13.1 Klassifikation von Hypothesen unterschiedlichen emplrl­
schen Gehalts, die denselben Zusammenhang (Konsumhypothe­
se) beschreiben

Hypothesen, die mehrere Variablen als Wenn-Komponenten enthalten, kon­

nen als multikausale Hypothesen bezeichnet werden. 1m Gegensatz da-

zu zahlen Hypothesen mit einer Variablen als Wenn-Komponente zu den

monokausalen Hypothesen. Die Hypothesen (13.9) und (13.10) gehoren

daher zu den komparativen multikausalen Hypothesen. Da die Hypothese

(13.2) durch Spezial isierung aus den Hypothesen (13.9) und (13.10)

ableitbar ist, besitzt sie einen hoheren empirischen Gehalt.

Als eine nichtparametrische monokausale Hypothese konnen schl ieBlich



die Beziehungen

C(t) = F[Y(t-1)]

oder

C = F[Y]

(13.11)

(13.12)

bezeichnet werden, die allein zum Ausdruck bringen, daB C(t) von

Y(t-1) oder - noch unbestimmter - C von Y beeinfluBt wird.

Wenn hier von Mono- und Multikausalitat die Rede ist, so wird damit

nichts uber die in dem betreffenden System Itatsachl ich ' wirkenden

kausalen Zusammenhange gesagt, sondern nur, daB in der aufgestellten

Hypothese der EinfluB einer oder mehrerer zeitvariabler Wenn-Kompo­

nenten behauptet wi rd.

Tabelle 13.1 zeigt eine zusammenfassende Ubersicht der nach ihrem

empirischen Gehalt differenzierten Formen von Hypothesen.

C. Kontrollierte und unkontrollierte, primare und sekundare Hypothesen

Hypothesen konnen auch im Hinblick auf ihre pragmatischen Relation:n

unterschieden werden, d.h. im Hinblick auf die zwischen den Hypothe­

sen und einem Hypothesen- oder Model lanwender bestehenden Beziehun­

gen._

Unter pragmatischen Gesichtspunkten ist die Unterscheidung von Be­

de~tung, ob ein Modellanwender die Realisierung einer Verhaltensglei­

chung bewirken kann oder nieht. In diesem Sinne spricht man von kon­

trollierten und unkontrollierten Hypothesengleichungen.

Eine kontrollierte Hypothesengleichung beschreibt das Verhalten einer

Person, einer Personengruppe oder eines technischen Aggregats, wel­

ches vom Model lanwender direkt oder indirekt bewirkt wird. Die Ent­

scheidung eines Unternehmens als Modellanwender eine prozyklische

Werbepolitik entsprechend der Gleichung

W
U

Werbeausgaben
Umsatz

vorzunehmen, fOhrt zu einer kontrol1 ierten Verhaltensgleichung, wenn
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dieses Verhalten in einem Modell beschrieben wird. Samtl iche soge­

nannten Entscheidungsregeln, wie beispielsweise bestimmte Bestellpo­

litiken im Lagerwesen von Betrieben, sind den kontrol lierten Verhal­

tensgleichungen zuzurechnen. Die in Lagerhaltungssystemen oft'prak­

tizierte sogenannte s,S-Bestellpolitik fUhrt beispielsweise zu der

Verhaltensgleichung

BCt) ={S-s fur LB(t-1):s;s
o fur LB(t-1»s

mit B: Bestellmenge

LB: Lagerbes tand

$: Referenzbestand

s: Schwellenbestand

Kontrollierte Verhaltensgleichungen sind einfacher zu erfassen, weil

sie die Befolgung bewuBt formul ierter Verhaltensvorschriften zum Aus­

druck bringen. Schwieriger gestaltet sich dagegen die Gewinnung wirk­

1ichkeitsnaher unkontrollierter Verhaltensgleichungen wie zum Bei­

spiel die Gewinnung einer Hypothese tiber die Reaktion des Marktes

auf Preisanderungen.

1m Hinblick auf den Entstehungszusammenhang kann man zwischen~­

maren und sekundaren Hypothesen unterscheiden. Unter primaren Hypo­

thesen werden die von einem Modellentwickler formul ierten Hypothe­

sengleich~ngen verstanden.

Unterstellen wir, daB ein Modell~ntwickler ein MA-System mit Hilfe

des bereits er5rtertenMA-Modells beschreibt, dann ist die Erkla­

rungsgleichung der Investitionen

Ii = B[C(t)-C(t-1)]

eine primare Hypothese.

Sekundare Hypothesen ergeben sich durch mathematische Umformungen

der primaren Hypothesen.

Ausgehend von dem Ansatz

Y( t) = C( t) + I. ( t) + I ( t)
I a

C(t) = aY(t-1)

I.(t) = 8[C(t)-C(t-1)]
I

(13.13)

(13.14)

(13.15)

erhalten wir mit (13:14) in (13.15) die sekundare Hypothese zur Er-
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klarung der induzierten Investition I.
I

(13.16)

und mit (13.13) in (13.16) die weitere sekundare Hypothese

I . ( t) = ct S[ C( t -1) - C( t - 2)+ I • ( t -1) - I . ( t - 2)+ I (t -1) - I (t - 2) ] ( 13 . 17)
I I I a a

und schl ieBI ich mi t (13.15) und (13. ~n die ebenfalls 'sekundare

Hypothese

1.
1
(t) = (a +a f3) I . ( t -1) - a f3 I . (t- 2) + a f3 I (t - 1) - ct f3 I (t - Z) (1 3. 18)

I I a a

Die Unterscheidung zwischen primaren und sekundaren Hypothesen ist

pragmatisch bedingt, d.h. sie ist stets nur im Hinbl ick auf einen be­

stimmten Modellentwickler anwendbar. Denn es ist durchaus denkbar,

daB zwei Personen, die bei der Beschreibung eines Systems zu demsel­

ben Modell gelangten, sich in den primaren Hypothesen dieses Model Is

voneinander unterscheiden. So ware es vorstellbar, daB ein Model 1­

entwickler im FaIle des MA-Modells die Hypothese (13.16) der indu­

zierten Investition als primare Hypothese wahlt, wahrend ein anderer

von der bekannten Hypothese- (13.15) ausgeht.

Unter der miriimalen Hypothese einer endogenen Variablen versteht man

die Beschreibung dieser Variablen durch ihre Endgleichung. Die Be­

ziehung (13.18) ist daher die minimale Hypothese der induzierten In­

vestitionen. Das Attribut 'minimal I wurde gewahlt, wei I in dieser

Darstellungsform samtliche Informationen, die zur vollstandigen Er­

klarung der endogenen Variablen erforderTich sind, nicht auf ver­

schiedene miteinander verknUpfte Gleichungen 'verstreut l sind, son­

dern unter minimaler Redundanz in elrier Gleichung verdichtet wurden.

Diese Bezeichnungsweise korrespondiert mit dem von dem Wissenschafts­

theoretiker HEMPELgepragten Begriff eines Minimalgesetzes der wis­

senschaftlichen Erkl~rung (minimal covering law). HEMPEL, der diesen

Begriff im Rahmen seiner Betrachtungen zur Explikation des Begriffs

der wissenschaftl ichen Erklarung verwendet, spricht dann von einem

Minimalgesetz der wissenschaftlichen Erklarung, wenn es gel ingt, aI­

le Gesetze G1, GZ'." ,G n , die zur Erklarung oder Prognose eines Pha­

nomens notwendig sind, zu einem Gesetz G zusammenzufassen. [187,S.85f]
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Deutet man eine parametrisch-generelle Hypothese als ein Gesetz, d.h.

als eine Wenn-Dann-Aussage, deren generel 1e Parameter einen prinzi­

piell unendlichen Individuenbereich umfassen, dann ist eine parame­

trisch-generel 1e minimale Hypothese als Minimalgesetz im Sinne HEM­

PEls zu verstehen.

Minimale Hypothesen werden ~uBerst selten als prim~re Hypothesen

formuliert. A1s Beispiel sei die Hypothese des Weltbevolkerungswachs­

turns

B(t) = 1,02B(t-l)

angefuhrt. In fast allen Fallen sind minimale Hypothesen zugleich

sekund~re Hypothesen, d.h. sie folgen aus der deduktiven Erschl ieBung

eines Modells. Die wesentliche Aufgabe der deduktiven ErschlieBung

dynamrscher Modelle besteht darin, prim~re Hypothesen in diejenigen

sekundaren Formen zu OberfOhren, welche bestimmte strukturel Ie Mo­

delleigenschaften erkennen lassen.

1.3.2. Definitionsgleichungen

Definitiqnsgleichungen unterscheiden sich von den anderen Gleichungs­

formen eines Modells dadurch, daB es 'nicht sinnvoll ist, nach ihrer

Wahrheit .zu fragen; Sie stel len bestimmte Festsetzungen des Sprach­

und Zeichengebrauchs dar, wie beispielsweise die buchhalterische

Ident i tat

Gewinn = Umsatz - Kosten

oder Bestandsfortschreibungsgleichungen wie

Lagerbestand (t) = Lagerbestand (t-1) - Abgang (t-l,t) +

+ Zugang (t-l,t)

Definitionsgleichungen bilden das Grundgerust, an das die Hypothesen

in Form von Hypothesengleichungen anknupfen. 1m FaIle des MA-Modells

addieren s'ich, wie an dem Schema zu erkennen ist, die Dann-Komponen-
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Y( t) = C(t) + I.(t) + I (t)

\H] I~H2 a~
[Y(t-l),a.] [Ctt),C(t-l),S] exogene Variable

Wenn-Komponenten
ode r Hypo thesen

ten C(t) undl i (t) der Hypothesen H] und H2 mit der exogenen Variab­

len 'a(t) anhand der Definitionsgleichung zu einer als Volkseinkom­

men definierten GroBe Y(t). Der Gebrauch von DefiniJ'0nssgleichungen

hangt e.ng mit der Disaggregierung der Modellvariablen zusammen. Be­

trachten wir beispielsweise die Bestands~1eichung der Bevolkerung in

einem Land

B(t) = B( t -1) + G(t) - 5( t)

mit B(t): Bestand der Bevolkerung am Jahresanfang t

G(t): Anzahl der Geburten wahrend desoJahres t

S(t): Anzahl der Todesfal Ie wahrend des Jahres t

Wir wollen von dieser Definitionsgleichung ausgehend ein dynamisches

Model 1 de~ Bevolkerungsentwicklung aufstel len. Gelingt es uns, mit

Hilfe adaquater Hypothesen die Sterberate S(t) und die Geburtenrate

G(t) als Dann-Komponente~ einer dynamischen Hypothesengleichung zu

formulieren, dann wUrde man zur Erklarung der Bevolkerungsentwick­

lung mit einer Definitionsgleichung auskommen.

Gegen den Versuch, solche Hypothesen fUr S(t) und G(t) zu finden,

konnte der Einwand erhoben werden, daB solche hoch aggregierten Gros­

sen wie die Sterberate und die Geburtenrate der gesamten Bevolkerung

nie durch angemessene Hypothesen erfaBt werden konnen. Es sei viel­

mehr notwendig zu differenzieren, was etwa in folgender Weise ge­

schehen konnte:

Die Individuenmenge IBevolkerung l wird in erschopfende Tei lklassen ge­

gliedert, und es wird der Versuch unternommen, fUr jede dieser Tei 1-



klassen eine empirisch aufweisbare Hypothese zu finden. Entscheidet

man sich fOr n Tei lklassen, so fOhrt das zu n+1 Definitionsgleichun­

gen, namlich
n

B(t) =i~l Bi (t)

B.(t) = B.(t-1) + G.(t) - S.(t) (i=1,2, ... ,n)
I I I I·

Die Einteilung der Klassenund damit die Disaggregierung wird unter

dem Gesichtspunkt erfolgen, magI ichst Igute l Hypothesen zu finden,

in denen Gi(t) und Sj(t) als endogene Variablen fungieren. Auf der

Suche nach bewahrten Hypothesen fOr die Sterbe- und Geburtenrate kann

man beispielsweise die Bevalkerung nach Alters- undBerufsgruppen,

nach regionalen Merkmalen usw. aufteilen. Der Grundgedanke dieser

Disaggregierung bedeutet volkstOml ich ausgesprochen, daB man nicht al­

les ·uber einen Kamm scheren ' kann, und nur eine Differenzierungzum

Erfolg fOhrt. Der Trend zur Disaggregierung dynamischer Modelle ist

heute al 1gemein zu beobachten und wurde durch die Einfuhrung lei­

stungsfahiger EDV-Anlagen begunstigt, welche es gestatten, mit Model­

len von mehr als tausend Gleichungen zu operieren. Wahrend ein von

KLEIN im Jahre 1950 entwickeltes dynamisches MZA-Modell aus 20 endo­

genen Variablen mit 5 Definitionsgleichungen gebildet wurde, setzt

sich das Brookingsmodell, ein Modell der amerikanischen Wirtschaft,

aus 230 endogenen Variablen, davon 112 Definitionsgleichungen, zusam­

men. Derzeit ist geplant, dieses Modell auf Uber 1000 endogene Va­

riablen zu erweitern.

1m Hinblic~ auf das Ziel, empirisch gehaltvolle Model le zu entwickeln,

1iegt es nahe, im Falle unbefriedigender Hypothesen zu versuchen,

durch Disaggregierung bestimmte endogene Variablen B.(t) zu finden,
I

die sich in befriedigender Weise durch entsprechende Hypothesen be-

schreiben lassen. Dies wurde dazu fUhren, daB auch die mit diesen Va­

riablen definltorisch verknOpfte MakrograBe B(t) eine empirisch zu­

treffende Erklarung erfahren wDrde. Es zeigt sich aberoft, daB man

auf einer niedrigen Aggregationsstufe keine wesentl ich besseren Hypo­

thesen findet als auf einer haheren, so daB die Model le zwar volumi­

neser werden und nur noch von GroBcomputern simul iert werden kennen,
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aber in ihrer Erkl~rungs- und Prognosekraft nicht unbedingt besser

sein mOssen.

Mehr noch: es ist denkbar, daB ein hoch aggregiertes Modell zu einer

besseren Verha1tensgleichung fOhrt a1s sein disaggregiertes Gegen­

stuck. Dies ist deshalb meg1 ich, wei I im Rahmen der Aggregation sta­

tistische Schwankungen so ausgeglichen werden kennen, daB es auf der

Makroebene zu einer Bestimmtheit der Beziehungen kommt, die auf der

Mikroebene in dieser Starke nicht immer feststellbar ist.

Mit diesen Bemerkungen 5011 nicht der Versuch in MiBkredit gebracht

werden, Modelle zu disaggregieren. Die Disaggregierung bietet sich

vielmehr als ein sinnvoller Weg zur Entwicklung realitatsnaher Model­

Ie an. Es 5011 nur vor der Illusion gewarnt werden, man hatte hier

ein zuverlassiges Allheilmittel zur VerfOgung, mit dem es in jedem

Fall gelingt, die Wirklichkeit durch ein Modell in befriedigender Wei­

se einzufangen.

D~finitionssysteme dienen oft als Ausgangspunkt der Entwicklung dyna­

mischer MZA-Model Ie. Wie im FaIle ein~s demographischen Model 15 de­

monstriert wurde, entwicke1t man ein Definitionssystem eines Gegen­

standsbereiches und sucht die exogenen Variablen durch Hypothesen­

gleichungen zu erklaren und damit zu lendogenisieren. '
Umfangreiche Definitionssysteme sind bei der Entwicklung von Firmen­

planungsmodellen erforderlich. Solche Model le knOpfen fast ausschlieB­

1ich an das Begriffssystem des betrieblichen Rechnungswesens an. Die

wertmaBigen Transaktionen im Rahmen des Rechnungswesens eines Unter­

nehmens kennen in Form einer Transaktionsmatrix beschrieben werden.

Eine solche Matrix entha1t in den Zei1en die Sol lseiten und in den

Spalten die Habenseiten a11er Konten. Die w~hrend einer Periode vor­

genommenen Buchungen des Betrages S vom Konto i (So11) an Konto j

(Haben) wird durch das Matrix-Element S.. zum Ausdruck gebracht. Samt-
t J

1iche Buchungsvorgange eines Unternehmens wahrend einer Periode ken-

nen claher durch die folgende Transaktionsmatrix beschrieben werden:

Die Addition der E1emente einer Zei1e i ergibt die Summe der Sollbu­

chungen des Kontos i. Entsprechend 1iefert die Summe der Elemente der
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Spalte j die Summe aller Habenbuchungen.

Habenseite des Kontos j

1 2.... j .... n
III
0

S11 5 12 , ,S1j' .S1n+-J

c
0

::.c 2 52' 522 , ,S2j .. S2n
III
(J)

-0

(J)

Si , S. 2' ,S .. , . S.+-J

(J)
I I J In

III

0
S S r'S ... 5VI n n1 n nJ nn

Anhand dieser GraBen konnen die Fortschreibungsgleichungen fOr die

Aktiv- und Passivkonten vorgenommen werden. FUr die Aktivkonten er­

gibt sich die Definitionsgleichung'
n

A·1(t) = A.(t-1). +.k
1

(S .. (t)-5 .. (t})
I J=, I J J I

mit

Ai (t) .BestandsgraBe des Aktivpostens i in Periode t

S.. ( t) : Kumul ierter Betrag der Buchungen von Konto an Konto j
IJ

S.. (t): Kumul ierter Betrag der Buchungen von Konto j an Konto i
JI

Die Passivkonten ergeben sich entsprechend mit:
. n

P.(t) = P.(t-1) -.k,(S .. (t}-5 .. (t))
J J 1= IJ JI

Damit ist ein umfassender definitorischer Rahmen fOr die Entwicklung

von Bilanzplanungsmodellen geschaffen, in denen A. und P. die Bilanz-
I J

posten reprasentieren oder in graBeren Model len uber weitere Defini-

tionen zu den Bi lanzposten fOhren.

Solche Definitionssysteme kannen im Rahmen von Firmenplanungsmodel­

len hohe Dimensionen annehmen. So besitzt die Firma Siemens ein aus

18 000 Gleichungen bestehendes Definitionssystem.

1 Siehe im einzelnen [131 ,5.196ff.]
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In diese Definitionssysteme werden dann die empirischen Hypothesen

'eingehangt l
• Betrachten wir beispielsweise die Hypothese

unter 6erucksichtigung der Kontenfestlegungen

4: ' Ko nto Ka sse

6: Konto Forderungen aus Warenl ieferungen

7: Konto Lagerbestand.

5ie besagt J in welcher Weise die Warenverkaufe 567 zu einem (verzo­

gerten) Eingang der Kund~nzahlungen 546 fOhr~n.

546 und S67 sind hierbei Elemente der Transaktionsmatrix.' Die besag­

te 'Einhangung' kommt dadurch zustande J daB S46 durch die angefOhr­

te Hypothese erklart wird.

1m Rahmen von betrieblichen Planungsmodellen werden auch auf der

Grundlage der Transaktionselemente S.. und weiterer Variablen umfang-
IJ

reiche hierarchische Definitionssysteme geschaffen.

Als Beispiel sei das von der Firma Du-Pont entwickelte hierarchische

Definitionssystem 'Return on Investment' angefOhrt. 2

Dieses Definitionssystem wird heute von vielen Firmen in zumeist ver­

feinerter Form zur Operationalisierung ihrer unternehmenspolitischen

ZielgroBen'verwen'det. In der Bundesrepublik Deutschland hat das ZVEI­

Kennzahlensystem eine breite Anwendung gefunden. Dieses aus einer Ver­

feinerung des Du-Pont-Systems entwickelte hierarchische Definitions­

system besitzt 124 Definitionsgleichungen, in welche 82 exogene Va­

riablen als erklarende GroBen eingehen.

Da die exogenen Variablen in'klarer Weise auf der Basis der ein­

schlagigen aktienrechtl ichen und buchhalterischen Vorschriften spe­

zifiziert werden konnen J erweist sich dieses System als eine geeig­

nete Grundlage zur Entwicklung von Fi rmenplanungsmodel len.

In dem von FcrRRE5TER entwickelten dynamischen Model lierungskonz~pt

System Dynamics nehmen Definitionen ~n Form von Bestandsfortschre~-

2 5iehe [218]
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R(t)=UG(t)·VU(t)

! "UG(t) G(t) VU(t)~U(t)
U(t) V(t)

I
G(t)=U(t)-K(t)

!
\

v(t) =AV (t) +UV ( t)

\
K(t)=HK(t)+VK(t)+LK(t)+VWK(t)

Erklarung der Symbole:

R(t): Return on Investment

UG(t): Umsatzgewinn

V(t): Vermogen

K(t}: Kosten

VK(t): Ve~kaufskosten

VWK(t): Verwaltungskosten

UV(t): Umlaufvermogen

FO(t): Forderungen

UV(t)=VR(t)+FO(t)+LM(t)

VU(t): Vermogens~~schlag

U(t): Ul1lSa tz

G(t}: Gewinn

HK(t): Herstellungskosten

LK(t): Lagerkosten

AV(t): Anlagevermogen

VR (t): Vo r ra te

LM(t): Liquide Mittel

Abb. 13.1 Das Kennzahlensystem der Firma Du-Pont als Beispiel eines
hierarchischen Definitionssystems

bungsgleichungen - von FORRESTER als Levelgleichungen bezeichnet ­

eine zentrale Stellung ein. Eine eingehende Erorterung dieser Kon­

zeption erfolgt erst spater. 3

Bei der Entwicklung groBerer Model le wird man oft auf der Grundlage.

von Definitionssystemen zur Entwicklung der ~ypothesen fortschreiten,

die die in den Definitiohsgleichungen auftretenden Variabl~n erklaren.

3 Siehe S. 399ff.



Dieses Vorgehen ist deswegen sinnvol I, weil Definitionssysteme nicht

wahr oder falsch sein konnen und deshalb eine sichere Ausgangslage

schaffen.

Die einzigen an ein Definitionssystem zu stel lenden Forderungen sind,

daB es widerspruchsfrei sein 5011 und daB seine Variablenbeobach~

tungsmaBig aufweisbar sein mUssen.
4

1.4. Schaubildliche Modellierung dynamischer Systeme

Eine schaubildl iche Darstellung dynamischer Systeme erleichtert in

hohem MaBe die gedankliche Vergegenwartigung und anschauliche Inter­

pretation der Zusammenhange und fUhrt damit zu einem besseren Ver­

standnis der Systemstruktur.

Dies ist der Grund, daB es heute wohl kein relevantes dynamisches

Modell gibt, welches nicht in irgendeiner Form durch Diagramme er­

lautert oder dokumentiert wird.

Die Darstellung bestimmter Systeme mit Hilfe von Abbildungen ist als

eine Form der Model lierung anzusehen. Entsprechend dem empirischen

Gehalt derartiger Schaubi ldmodelle kann man analog zu der ih Tabel Ie

13.1angefUhrten Klassifikation von Hypothesen zwischen parametrisc~­

singularen, parametrisch-generellen, komparativen,und nichtparame­

trischen Schaubildmodellen unterscheiden.

Abbi ldung 14.1 enthalt 'in Erweiterung von Tabelle 13.1 zusatzl ich ei­

ne schaubildl iche Darstellung der einzelnen Hypothesenarten. Sie er­

magl icht es auch, ~chaubildmodelle im Hinblick auf ihren empirischen

Gehalt zu klassifizieren. Nichtparametrische und komparative Schau­

bildmodelle dienen oft als Zwischenstufe der Entwicklung eines para­

metfisch-singularen Differenzengleichungsmodells. Es ist aber auch

~enkbar, daB aus einem parametrisch-singularen bifferenzen~lelchungs~

model I ein nichtparametrisches Schaubildmodel I erstellt wird, welches

dazu dient, die kausalen Beziehungen, abstrahiert von ihrer konkreten

Ausgestaltung, ubersichtl ich darzustellen.
4 Die zweite Forderung ist nicht zu halten, wenn die Verwendung von

Zwischenhypothesen zugelassen ist. Vgl. hierzu die spateren Ausfuh­
rungen auf Seite 153f.
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1m ersten Fall werden viele Personen geneigt seln, von derschaubild­

lichen Darstellung eines Systems zu sprechen, w~hrend sie bel der er­

wahnten Ableitung eines nichtparametri5chen Schaubildmodel 15 aus ei­

nem Differenzengleichungsmodell von einer schaubildl ichen Darstellung

des Model 15 sprechen. In unserem Sprachgebrauch handelt es sich in

beiden Fal len um die Entwicklung des nichtparametrischen Schaubildmo­

dells eines bestimmten Systems.

In diesem Abschnitt werden verschiedene Diagrammformen (oder Arten

von Schaubildmodel1en) zur Beschreibung dynamischer Model Ie darge­

stel1t und an Beispie1en demonstriert.

1.4.1 .. Kausaldiagramme

Nichtparametrische Model1e werden durch sogenannte Kausaldiagramme

bildhaft beschrieben. Sie liefern im Rahmen von MZA-Model1en Aussa­

gen Uber die Beeinflussungsrichtungen der Systemvariablen.

Als Beispiel sei das Kausaldiagramm eines MA-Systems angefUhrt.

y .....-----------

1 i

c~

Abb. 14.2 Kausaldiagramm eines MA-Systems

Eine Pfeilspitze kennzeichnet jewei15 die Variable, welche von der am

Ende des Pfeilschaftes eingetragenen Variab1en beeinfluBt wird.

1m FaIle eines komparativen Kau5a1diagrammes werden nicht nur bestimm­

te Wenn-Dann-Beziehungen zwischen metrischen GroBen behauptet, 50n-
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dern die Hypothesen enthalten auch eine zusatzl iche Behauptung uber

die Beeinflussungstendenz. Es handelt sich also urn die Darstel lung

komparativer Modelle. Angenommen die folgenden Je-Desto-Hypothesen

uber ein MA-System seien uns bekannt.

Je groBer Y desto groBer C

Je groBer C desto groBer I.
I

Aufgrund der Definitionsgleichung Y = C + I. + I sind wir in der La-
. I a

ge, die folgenden Beziehungen Zu formulieren, die jedoch keine Hypo-

thesen darstel len.

Je groBer I. desto groBer Y
I

Je groBer C desto 9roBer Y

Je groBer I desto groBer Ya

Kennzeichnet man eine AU5sage: IJe groBer X desto kleiner y l dutch

einen mit einem Minuszeichen versehenen Pfeil, wahrend im umgekehrten

Fal I der Pfeil mit einem Pluszeichen versehen wird, dann laBt sich

die in den fUnf Satzen steckende Information durch das komparative

Kausaldiagramm ausdrOcken.

+

+

C + I.
""'--- J I
---~

Abb. 14.3 Komparatives Kausaldiagramm eines MA-Systems

Komparative Kausaldiagramme werden sehr oft zur ersten Vorstrukturie­

rung dynamischer Modelleverwendet~ Abbildung 14.4 zeigt beispiels­

weise ein komparatives Kausaldiagramm, welches dem von MEADOWS ent-
. -

wickelten Weltmodell zugrunde 1iegt.
1 Ubersetzung ins Deutsche durch Verf. [134,5.14]
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UMWELTVER­
SCHMUTZUNG

+

\

KAPITAL

NAHRUNGSBE-

+
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LANDWIRT­
SCHAFTUC
GENUTZTE

FLACHE

NAHRUNG/

+1- +
DARF PRO KOPF

KAPITAL 1M DIENST-~L~NDWI;TSCHAFT-
LEISTUNGSSEKTOR LICHES KAPITAL

+

1NVEST IT IONSRATE

NICHT REGENERIERBARE

ROHSTOFFE _~

~INDUSTRIEOUTPUT

KAPIT~LPRODUK- +1
TIVITAT -

+ (+) IjTRIEK\AL~ +

INDUSTRIELLE ABSCHREIBUNGEN

+ IN/VES:1TIONEN _ '"

DURCHSCHNITTLICHE
NUTZUNGSDAUER VON

+

~EV5LKERUNG~
GEBURTEN) \ + TODESFALLE
PRO J~ ~PRO JAHR

;' + . +\
_ FRUCHTBARKEIT STERBLICHKEIT

/ - , +- ~ '"
INDUSTRIEOUTPUT GEPLANTE FAMI- GESUNDHEITS- NAHRUNG
PRO KOPF LIENGROSSE FURSORGE KOPF

+ r 1+ -I +
DIENSTLEISTUNGEN GESAMTINVESTITION-
PRO KOPF NEN IN DER LAND­

\1IRTSCHAFT

Abb.14.4 Komparatives Kausaldiagramm des Weltmodells von MEADO\.JS
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Komparative Kausaldiagramme sind so unbestimmt, daB ihre weitere Kon­

kretisierung sowohl zu einem dynamischen als auch zu einem stati­

schen Modell fOhren kann. Sie sind daher kein speziel les Instrument

der Analyse dynamischer Modelle. Auch sind sie nicht generell anwend­

bar. Denn es ist denkbar, daB die Dann-Komponente einer Hypothese

wachsende und fallende Verlaufe aufweisen kann. Als Beispiel sei nur

auf den Zusammenhang zwischen Lebensstandard und Geburtenrateverwie­

sen. Wahrend die Geburtenrate mit wachsendem Lebensstandard ansteigt,

wird sie nach der bisherigen Erfahrung von einem bestimmten AusmaB an

wieder abnehmen. Die strikte Anwendung eines komparativen Kausaldia­

grammes setzt damit voraus, daB ein vorliegendes System keine nicht­

komparativen Hypothesen enthalt.

Findet man in einem Kausaldiagramm eine geschlossene Beeinflussungs­

kette, 50 kann dieser Zusammenhang als ein Feedback- oder Ruckkopp­

lungskreis bezeichnet werden. Kausaldiagramme mit Feedback- oder

ROckkopplungskreisen werden Feedback- oder Ruckkopplungsdiagramme

genannt. Ein Feedbackkreis wird als negativ bezeichnet, wenn eine an-

VERKAUFER

EINSTELLUNGS­
RATE VERKAUFER

"-- ABSATZ
BUDGET

GEBUCHTE
AUFTRAGE

Abb. 14.5 Beispiel eines p05itiven Feedbackkreises aus dem Absatzbe­
reich eines Unternehmens
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genommene Erhohung des Wertes einer Variablen in diesem Kreis verzo­

gert zu einer tendenziellen Verminderung dieses Variablenwertes fUhrt.

Ein positiver Feedbackkreis bewirkt dagegen eine tendenziel Ie Erha­

hung des Variablenwertes. Ein positiver Feedbackkreis wird beispiels­

weise durch das Diagramm 14.5 beschrieben, welches die Beziehungen im

Absatzbereich eines Unternehmens beschreiben 5011.
2

Ein negativer Feedbackkreis kommtdurch das folgende Diagramm zum

Ausdruck, welches ebenfal Is dem Absatzbereich eines Unternehmens ent­

stammt.

ENTSTEHENDE
LI EFERVERZt)GERUNG .

/AUFTRAGS­
BESTAND

GEBUCHTE
AUFTRAGE

VERKAUFS-
EFFEKTI VI TAT

Abb. 14.6 Beispiel eines negativen Feedbackkreises aus dem Absatzbe­
reich eines Unternehmens

In Diagrammen mit Variablen, die vielfaltig miteinander verknOpft

sind, tritt jedochschon bei kleineren Modellen eine solche FOlIe

von Feedbackkreisen auf, daB nicht alle einzeln ~erfolgt unci in lh-

rem Charakter als positive oder negative Feedbackkreise identifi-
. d k" . 3Ziert wer en onnen.

Wenn Feedbackkreise miteinander vermascht sind, ist es oft nicht mag­

I ich zu entscheiden, ob es sich um positive oder negative Feedbacks

2 Zu den beiden Diagrammen [55,S.2-22J
3 Vgl. zur formalen Identifizierung solcher Kreise Seite 356 u. 360f.
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handelt.

Betrachten wir beispielsweise einen Feedbackkreis, der uber die Va­

riablen Y, und YZ lauft und unterstellen wir, daB die Variable Y1

durch die Hypothese

(14.1)

beschrieben sei. Weiter 5011 die partielle Ableitung 3Y,/3Y Z die Form

aY,
- 10 - Y3oY

Z
-

(14.Z)

besitzen. Eine gedachte Erhohung von YZ gestattet unter diesen Um­

standen keine eindeutige Je-Desto-Aussage uber die Beziehung zwischen

Y
Z

und y,. Denn im FaIle Y
3

<10 ftihrt eine Erhohung von YZ zu einer

tendenzie1len Erhohung von Y" im FaIle Y3>10 dagegen aber zu einer

Verminderung. Wenn ein Mode1lentwickler in diesem Fall die Absicht

hatte, einen tiber YZ und Y, laufenden Feedbackkreis a1s positiv oder

negativ einzuordnen, so wird ihm dies nicht mog1ich sein, falls Y3
im Verlauf des betrachteten Prozesses Werte annehmen kann, die groBer

und kleiner als '0 sind. 4 Eine Feedbackdiagrammdarstellung wird sich

daher insbesondere bei groBeren Model len darauf beschranken, bestimm­

te, als wichtig angesehene RUckkopplungen (durch Numerierung der

Schleifen) herauszuheben, und unter tlmstanden auch als positive und

negative RUckkopplungen zu identifizieren.

1.4.2. Pfeil-, Block- und SignalfluBdiagramme

In den Wirtschaftswissenschaften wird oft ein von TINBERGEN einge­

ftihrtes Pfeildiagramm zur Darstel lung dynamischer Systeme, auch Tin­

bergensches Pfeildiagramm genannt, verwendet.

Derartige Pfeildiagramme konnen a1s eine info~mationelle Verfeine­

rung eines Kausaldiagrammes gedeutet werden, die dadurch zustande

kommt, daB di~ zeitl ichen Abhangigkeiten der Variab1eneinflUsse be­

rUcksichtigt werden. Abbildung '4.7 zeigt das Pfeildiagramm eines

4 Zu einem Beispiel siehe Seite 427f.
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MA-Systems.

Y

c

I·I

t t-l

CCt) =o<YCt-l)

o InCt) = 5000

Abb. 14.7 Tinbergensches Pfei ldiagramm eines MA-Systems

Ein weiteres Darstel\ungsmittel ist die Blockdiagrammdarstel lung.

Hier gibt es verschiedene Darstellungskonventionen.

Die 1infachste Blockdiagrammdarstellung besteht darin, jede Hypothe­

sen- oder Definitionsgleichung durch einen Block zu reprasentieren.

Dieser Block kann als eine Art Maschinerie verstanden werden, welche

die Beziehung zwischen der AusgangsgroBe und den EingangsgroBen be­

stimmt. Die AusgangsgroBe, deren Wirkungsrichtung durch einen Pfeil

.gekennzeichnet wird, entspricht der endogenen Variablen der vorl ie­

gendenGleichung, wahrend die EingangsgroBen durch die unverzogerten

exogenen Variablen reprasentiert werden.

Ein MA-System wird entsprechend dieser Festlegung durch Abbildung

14.8 wiedergegeben. Blockdiagrammdarstellungen dieser Art zahlen zu

den parametrisch-singularen Schaubildmodellen.
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- I Ct )
a

YCt)=CCt)+I.Ct)+] Cd -=::
I.Ct)I a

I

C(t) = O,8YCt-l) I.Cd = 2[CCd-cCt-l)] I--.-I
CCd

..
Abb. 14.8 Blockdiagrammdarstellung eines MA-Systems

Diese Darstellungsweise kann weiter differenziert werden, indem die

Addition oder Subtraktion von EingangsgraBen durch ein speziel les

Symbol, einen sogenannten Additionspunkt oder Subtraktionspunkt, be­

schrieben wird. Eine entsprechende Veranderung des ursprungl ichen

Blockdiagrammes zeigt Abbildun~ 14.9.

y( t)

C( t) .. O. 8Y (t-1) I. (t) .. 2[C(t)-c(t-l)]
I

I. (t)
I

Abb. 14.9 Blockdiagrammdarstellung eines MA-Systems unter Verwen­
dung eines Summationspunktes

Die Interaktion in den Blacken wurde in Abbi ldung 14.9 durch die Ein­

tragung der Hypothesen- und Definitionsgleichungen beschrieben. 1m

Rahmen der Regelungstheorie ist es ublich, die Beziehung zwischen den
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Ein- und Ausgangen der Slocke in anderer Weise darzustellen:

In die einzelnen Blocke wird eine schematische Zeichnung der Einheits­

sprungantworten des betreffenclen Blockes eingetragen. Eine Einheits­

sprungantwort beschreibt den Zeitverlauf der Ausgangsvariablen, der

sich ergibt, wenn.~an dem Block vom Zeitpunkt 0 an eihe Eingangsgros­

se von E(t)=l (t=0,1,2, ... ) aufpragt.

1m FaIle des betrachteten MA-Systems ergibt sich das folgende Block­

diagramm.

yet)

C(t)

2

-1 0 2

I . (t )
I

Abb. 14.10 Blockdiagrammdarstellung eines MA-Systems mit graphischer
Darstel lung der Einheits~prungantworten

Handelt es sich u~ die Analyse 1 inearer Systeme, so wird in die Blok­

ke zumeist ein Ausdruck eingetragen, der als die Operatorenform der

Ubergangsfunktion bezeichnet wird. Wir wollen auf diesen Ausdruck hier

nicht weiter eingehen. Es genUgt uns zu wissen, daB mit der Operato­

renform der Ubergangsfunktion G(K) eines Blockes die Beziehung zwi­

schen clem Eingang E(t) und dem.Ausgang Y(t) durch

V(t) G(K)E(t)

vollstandig beschrieben wird.

FOr das vorliegende MA-System ergibt sich in diesem Fal le das fol­

gende Slockdiagramm:
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yet)

I ( t )
a

I . ( t)
I

'----...r;:J.-----4....--..~~_2_-_2_K_-_1__t---..,.,
~ C(t) _

Abb. 14.11 B10ckdiagrammdarste1lung eines MA-Systems unter Verwen­
dung von Ubergangsfunktionen in Operatorenform

Se1bst wenn man sich mit der nur angedeuteten Aufgabe der Operatoren­

darste1 lung der Ubergangsfunktion zufrieden gibt~ 1legt dennoch die

Frage nahe, welche zusatz1 iche Information eine derartige Diagramm­

darstel lu~g im Gegensatz zu den Abbild~ngen 14.8 oder 14.9 bieten

so 11 .

Diese berechtigte Frage fUhrt uns zueinem ~eiteren Ziel der Ent­

wick1ung von Diagrammodellen. Manche Darste11ungen dienen wie im vor­

l iegenden Fa1 I nicht mehr primar der Vergegenwartigung der Systemzu­

sammenhange, sondern vor a1 lem der sich daran anschlieBenden Imp1 i­

kationenaufdeckung. Werden in B10ckdiagrammen Ubergangsfunktionen in

Operatorenform verwendet, so 1iegt der Zweck dieser Darstellung aus­

schlieB1ich darin, durch sukzessive Veranderung der Diagramme die End­

gleichung einer bestimmten Systemvariablen zu ermitteln.

Dieses Ziel versucht man 1m Fa1le I inearer Systeme auch mit sogenann­

ten Signalf1uBdiagrammen zu erreichen. 'Diese sind noch einfacher auf­

gebaut als Blockdiagramme und eignen sich daher zur Darste1 lung gros­

serer Systeme. Sie bestehen aus nur zwei Elementen: den Verbindungen

und den VerknOpfungspunkten.
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Die Verknupfungspunkte symbol isieren die endogenen Systemvariablen.

Zwischen diesen Variablen bestehen in einem dynamischen System be­

kanntl ich verzogerte und unverzogerte Beziehungen, welche in einem

SignalfluBdiagramm angezeigt werden. Uber den Pfeilen wird in einem

SignalfluBdiagramm die entsprechende Operatorenubergangsfunktion ein­

getragen. Die Verknupfungspunkte entsprechen zugJeich auch den Ad­

ditionspunkten in einem Blockdiagramm.

Abbiidung 14.12 zeigt noch einmal das Blockdiagramm eines MA-Modells

und sein entsprechendes SignalfluBdiagramm.

yet)

2-2K -1

1. (t)
I

cet)

yet)

2-2K -1

C(t)

Abb. 14.12 Block- und SignalfluBdiagramm eines MA-Modells



67

Man erkennt, daB die Blocke in der Blockdiagrammdarstellung durch

Strecken ersetzt werden. Ein Vergleich mit der Kausaldiagrammdarstel­

lung in Abbildung 14.2 zeigt die formale Ahnlichkeit der beiden Dar­

stellungen, jedoch mit dem Unterschied, daB das SignalfluBdiagramm

durch die zusatzl iche Angabe der Ubergangsfunktionen eine vollstan­

dige Reprasentation des parametrisch-singularen MA-Modells bildet.

Auf die weitere Anwendung von Block- und SignalfluBdiagrammen zur Ana­

lyse dynamischer Systeme wird erst an spaterer Stelle eingegangen.

Uns genugt an dieser Stel Ie ein vorlaufiger Uberblick.

1.4.3. System-Dynamics-Diagramme

Als letztes 5011 eine weitere Darstellungsform dynamischer Systeme

vorgestel It werden, die man jedoch nicht einfach als die schaubi ld­

1iche Darstellung eines Differenzengleichungsmodells deuten kann.

Es handelt sich urn eine Diagrammdarstellung dynamischer Systeme, die

auf der Modell ierungskonzeption ISystem Dynamics l b~ruht.5

Es 5011 nur ein erster Uberbl ick gegeben werden:

Jedes System laBt sich nach dieser Konzeption durch eine Menge von

miteinander in Beziehung stehenden BestandsgroBen, den sogenannten

Leveln, beschreiben. Solche BestandsgroBen sind beispielsweise die

Bevolkerungsanzahl, der Bestand an Investitionen oder die Anzahl der

von einer bestimmten Krankheit befallenen Personen~ Die Bestandsho­

hen dieser Level werden (wie bei einem Wasserbehalter) durch die Zu­

und Abf)usse beeinfluBt, welche als Raten bezeichnet werden. Die gra­

phische Darstellung eines Levels mit einer Zu- und einer AbfluBrate

zeigt Abbildung 14.13.

Level werden durch Rechtecke und Raten durch Venti lsymbole dargestellt,

wahrend die in den Level hinein- und aus dem Level herausstromenden

FIUsse durch Pfeile gekennzeichnet werden. Die ZufluB- und AbfluBra­

ten der Level werden verzogert von anderen Leveln beeinfluBt. Diese

5 Zur ausfuhrl ichen Erorterung dieser Konzeption siehe Seite 399ff.
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ZUFLUSSRATE

LEVEL

ABFLUSSRATE

Abb. 14.13 Schaubi 1dl iche Darstellung einer Level-Raten-Beziehung
im Rahmen des System-Dynamics~Konzeptes

I ....
I

.....
....

/ .....
.....

I .....
....

I , .........

\
I

I
./

\ ,/--\

\

\

" ....... - --

Abb. 14.14 Beispielhafte Darstellung eines Diagramms im Rahmen des
System-Dynamics-Konzeptes
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Beeinflussung und ihre Richtungen werden durch unterbrochene pfei Ie

beschrieben. Ein System-Dynamics-Diagramm wird damit, wie in Abbi 1­

dung 14.14 beispielhaft angefUhrt, durch ein Geflecht einander gegen­

seitig beeinf~ussender Level und Raten gekennzeichnet.

Mit Hilfe der in dieser Diagrammdarstellung zum Ausdruck kommenden

Level-Raten-Interpretation k6nnen komplexe Zusammenh~nge durch rela­

tiv einfache Teilbeziehungen sukzessiv aufgebaut werden. Es sind Sy­

stem-Dynamics-Diagramme bekannt, welche Hunderte von Symbolen ent­

halten. (Vgl. z.B. [134])

Die Entwicklung von System-Dynamics-Diagrammen vollzieht sich oft

auf der Grundlage von Feedbackdiagrammen, d.h. in einem ersten Schritt

wird ein Feedbackdiagramm entwickelt, aus welchem durch Hinzunahme

weiterer Strukturinformationen ein System-Dynamics-Diagramm gewonnen

wird. Auch ein System-Dynamics-Diagramm enth~lt aber noch-nicht den

Informationsgehalt, den das letztl ich zu entwickelnde parametrisch­

singul~re dynamische Modell besitzt. Die Darstellungskonventionen

von System-Dynamics-Diagrammen werden sp~ter eingehend er6rtert.

1.5. Implikationen dynamischer MZA-Modelle

Das Arbeiten mit dynamischen Modellen ersch6pft sich nicht in der Ent­

wicklung eines Modellansatzes. Wie erw~hnt, sollen vielmehr anhand

der entwickelten Modelle bestimmte Informationen Ober das beschriebe­

ne System gewonnen wer.den, die zwar im Modellansatz impl izit enthal­

ten, aber nicht direkt erkennbar sind. Diese Strukturmerkmale von Mo­

dellen wurden bereits als Implikationen bezeichnet. Implikationen

eines dynamischen Modells sind somit bestimmte Strukturmerkmale, die

sich logisch zwingend aus dem Modellansatz ergeben, deren Vorhanden­

seln oder deren konkrete Struktur aus diesem Modellansatz aber nicht

unmittelbar zu ersehen ist. Es ist vielmehr notwendig, die Impl ika­

tionen eines Modells mit Hilfe bestimmter ~rschl ieBungsverfahren of-
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fenzulegen. Die Aufdeckung von Impl ikationen kann verschiedene~ Zie­

len dienen:

(1) .Der Gewinnung von Einsichten Ober Struktur und Entwicklung des

Sys~ems. Ei'ne Fragestellung im Rahmen dieser Zielsetzung konnte

fOr ein konkretes Modell zum Beispiel lauten: Welchen Wert wird

die endogene Variable Y im Jahre 1990 annehmen?

(2) Der empirischen UberprOfung des Modellansatzes. Hier bieten sich

Fragen an wie:Kann das Modell als empirisch akzeptabel angese­

hen werden, wenn die nur als positiv definierte Variable Y im

Jahre 19~O negativ wird?

(3) Der zielgerichteten B~einflussungdes Systems. Eine solche Ziel­

setzung umfaBt zum Beispiel dle Frage: Welche Auspr5gung mGssen

die von einem Entscheider beeinfluBbaren exogenen Variablen er­

fahren, damit die (unerwOnschte) Fluktuation der endogenen Va­

riablen Y ged5mpft wird?

1m ersten Fal I sol I vom liel der Einsichtenerweiterung, im zweiten

Fall vom Ziel der GUltigkeitsprUfung und 1m dritten Fall vom Ziel

der zielgerichteten Systembeeinflussung gesprochen werden.

Die Verfolgung der ersten beiden liele f51lt in den Bereich der Ana­

lyse dynamischer Systeme. Sie ist eine der Modellentwicklung folgen­

de Phase, in welcher durch Aufdeckung von Implikationen sowohl die

empirische GOltigkeit des Model1ansatzes OberprOft wird als auch neue

Einsichten Ober das beschriebene System gewonnen werden sol len.

Auf diese Weise neu gewonnene Einsichten Ober den GGltigkeitsanspruch

konnen dazu fOhren, daB der ursprOngl iche Modellansatz modifiziert

wird, mit der Folge, daB die Phasen der Modellentwicklung und -analy­

se einander ablosen.

Mit dieser Bemerkung 15Bt sich nunmehr auch die Ziel richtung dieses

Buches etwas starker herausarbeiten: Es beschaftigt sich primar nicht

mit der zielgerichteten Beeinflussung dynamischer Systeme. Vielmehr

steht das Ziel der Einsichtenerweiterung im Vordergrund. Die ErfOl­

lung der Forde(ung nach Einsichtenerweiterung dient zugleich dem Ziel
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der Gultigkeitsprufung.

1m folgenden wird in verschiedenen Zusammenhangen dargestellt, in

welcher Weise die durch eine Modellerschl ieBung gewonnenen Einsich­

ten zur GDltigkeitsprufung verwendet werden kannen. In diesem Ab­

schnitt wollen wir uns ein Bild uber die gemeinhin als relevant anzu­

?ehenden Implikationen machen, den Impl ikationen also, die zur Auf­

deckung neuer Einsichten uber ein vorliegendes System fuhren.

Diese nur als erste Orientierung an~usehende, von technischen De­

tails weitgehend befreite Darste1lung wird bei der Behand1ung der

einze1nen Modelltypen vertieft und um weitere typenspezifische Be­

trachtungen erweitert.

Bevor wir auf die inha1tliche Interpretation verschiedener Imp1ika­

tionen eingehen, 5011 die Unterscheidung zwischen genere11en und sin­

gu1aren Impl ikationen eingefuhrt werden.

Genere11e ImplikatLonen reprasentieren eine Behauptung, die einen po­

tentiell unendl ichen Bereich von Individuen betrifft.

Betrachten wir die Endgleichung eines parametrisch-generellen MA­

Modells fur Y beim Fehlen autonomer Investitionen, d.h.

Eine generelle Implikat10n 1st die formelm~Bige Beschreibung des Ze1t­

verlaufs von Y fUr t:::O,1,2., ... in Abhangigkeit von den (generellen)

Parametern a und 6 sowie den Anfangswerten Y(O) und Y(l). Diese Zeit­

pfadformel fur Y wird durch

Y(t)

mit

. t=O , 1 ,2, ...

beschrieb~n.1 Es handelt sich um eine generelle Implikation, weil sie

den Zeitpfad von Y fUr al Ie prinzipiell unendl ichen Kankretisierungs­

magI ichkeiten der Parameter a und S beschreibt. 2 Singulare Impl ikatio-

1 Zur Errnittlung siehe Seite·.179ff.
2 Mit Ausnahme des Falles as:::; (a2+2a 2 S+a2 S2 )j4
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nen dagegen liefern nur Aussagen, welche aus einem numerisch vol I kon­

kretisierten Modej,l folgen. Sie sind daher numerische Werte wie die

Werte einer Zahlenfolge, welche den Zeitverlauf einer endogenen Varia­

bIen beschreibt. Die oben beschriebene generelle Impl ikation geht da­

mit in eine singul~re Uber, wenn man fUr a,S,Y(O) und Y(l) numerische

Werte in die Gleichungen einsetzt.

1.5.1. Zeitverlauf der endogenen Variablen

A. Deterministische Madelle

Sind in dynamisch deterministischen Differenzengleichungsmodel len

die Anfangswerte und der Verlauf der exogenen Variablen bekannt, so

ist der numerische Verlauf der endogenen Variablen als eine Implika­

tion des Model Is anzusehen.

Sind die exogenen Variablen in ihren Verl~ufen als geschlossene end­

1iche FormelausdrUcke vorgegeben, so kannen in bestimmten Fallen auch

die Zeitverlaufe der endogenen Variablen als FormelausdrUcke ermit­

telt werden. 3 Manspricht in ~iesem Fall von der Funktionslasung des

Differenzengleichungsmodells. Angenommen, ein MA-Modell weist mit

a = 0,9 und S = 0,4 folgende Form auf:

C(t) = 0,9Y(t-1)

Ii (t) = O,4[C(t)-C(t-l)]

Y(t) = C(t) + I. (t) + I (t)
I a

Wenn weiterhin die Anfangswerte Y(0)=10000, Y(1)=11 000 sowie

I (t)=2500 vorgegeben sind, dann l~Bt sich (wie sp~ter dargelegt wird)
a

der zeit] iche Verlauf von Y durch die Funktionslasung

t=O; 1,2 ...

beschreiben.

Wenn ein Differenzengleichungsmodel 1 auf seine reduzierte Form oder

auf seine Endgleichungen umgeformt wird, dann ist es magl ich, den

Zeitverlauf der endogenen Variablen durch sukzessive Berechnung aus

3 Vgl. Seite 179f.
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den vorherbestimmten Variablen zu ermitteln. Eine derartige Bestim­

mung des Zeitverlaufs der endogenen Variablen sol I als periodische

Regressionslasung bezeichnet werden, da der Wert der endogenen Va­

riablen jeder Periode durch einen sukzessivenROckgriff auf die vor­

her bestimmten Variablen ermittelt wird.

Die allgemeine Form der reduzi~rten Gleichung eines MA-Model 15 wur­

de auf Seite 36 fOr Y bestimmt und besitzt die Form:

Y(t) ::: aY(t-1) + B[aY(t-1)-C(t-1)] + I (t)
a

Unter Einsetzung der angegebenen numerischen Werte fOr a und 6 er­

gibt sich die reduzierte Gleichung des vorliegenden Model 15 durch:

y(t) ::: 1,26Y(t-l) - 0,4C(t-l) + la(t)

Zusammen mit der Konsumfunktion

C( t) = 0, 9Y ( t -1 )

kann der Zeitverlauf von Y und C durch sukzessive Berechnung ermit­

telt werden. Wie man aus Tabel Ie 15.1 erkennt, fOhrt die (ohne Her­

leitung angefUhrte Funktionslasung von Y) zu demselben Zeitverlauf.

Das Beispiel zeigt ebenfalls, daB die Bestimmung des Zeitpfades der

endogenen Variablen die Angabe bestimmter Anfangswerte (in unserem

Fall yeO) und y(1)) voraussetzt.

Funk t ionsl asung Reqressionslosun
von Y(t) von Y(t) von C(t)

-19343,18' 4343,18' 1,26' -0,4 . 0,9'

t 25000 .(0,822)t ... (0,438)t Y(t) ·Y(t-1) 'C(t-1) 2500 ·Y(t-l)

0 25000 -19343 4343 10000 - - - -
1 25000 -15902 1902 11000 - - - 9000
2 25000 -13073 833 12760 13860 -3600 2500 9900
3 25000 -10747 365 14618 16078 -3960 2500 11484
4 25000 - 8835 160 16325 18418 -4593 2500 13156
5 25000 - 7264 71 17807 20569 -5262 2500 14692

Tab. 15.1 Periodische Regressions- und Funktionslasung cler en­
dogenen Variablen Y im FaIle eines MA-Modells auf
Grundlage der reduzierten Gleichung von Y

1st es im Gegensatz zu dem angefOhrten Beispiel nicht maglich, aus

einem dynamischen MZ~-Model I die Endgleichungen oder nur die reduzier-
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ten Gleichungen abzu)eiten, so wirddas vorl iegende Model I durch ein

analytisch nicht 10sbares simu1tanes Gleichungssystem beschrieben.

Um dennoch fOr jede Periode die numerischenWerte der unverzogert en­

dogenen Variablen zu ermitteln, muB man versuchen, das vorliegende

Gleichungssystem durch numerische Naherungsmethoden zu losen.
4

Eine

derartige Bestimmung des Zeitverlaufs der endogenen Variablen 5011

a!s periodische Simultanlosung bezeichnet werden, da fOr jede Perio­

de ein simultanes Glelchungssystem zu losen ist.

Betrachten wir beispielsweise das Gleichungssystem

Y, (t) = Y1(t) y 2 ( t) + 0,5 Y, (t-I)

Y
2

(t) ='EY
I

(t)]2Y2 (t) + 2Y,(t-1) + Y
3

(t)

Y
3
(t) = O,5EY

3
(t)]3Y,(t) + Y2 (t) Y

3
(t) - Y1 (t-1)

so ist es nicht mogl ich, fUr Y" Y2 und Y3 die reduzierte Form zu er­

mitteln, d.h. Y" Y2 und Y
3

als Funktion der vorherbestimmten Varia­

bIen auszudrUcken. Die Ermittlung von Y" Y2 und YJ in jeder Perio­

de t ist daher nur in Form einer periodischen Simultanlosung mogl ich.

B. Stachastische Madelle

Stochastische Modelle wurden bisher nur kurz charakterisiert. Deutlich

wurde jedoch, daB die endogenen Variablen aufgrund der 'Verseuchung'

durch stochastische exogene Variablen nur in Form ihrer Wahrschein­

lichkeitsverteilungen beschrieben werden konnen. Als Imp1 ikationen

eines stochastischen Modells kann daher nicht der numerische Werte­

verlauf einer endogenen Variablen, sondern allein cler zeitl iche Ver­

lauf ihrer Wahrscheinl ichkeitsvertei lung bestimmt werden.

Greifen wir zur Verdeutl ichung wieder auf unser MA-Modell zurUck. Er­

ganzend wird angenommen, daB die lnvestitionsfunktion zusatzl ich durch

eine stochastische Variable E beeinfluBt wird, d.h.

I • (t) = BE C( t) - C( t -1)] +d t)
I

wobei uber E nicht mehr bekannt ist, als daB es die Stichprobe aus

einer Normalverteilung mit dem Mittelwert Null und der Standardab­

wei chung a sein 5011.

4 Zur Besprechung dieser Verfahren siehe Seite 343f.
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Das Mode 11

Y(t) = C(t) t I.(t) t I (t)
I a

C(t) = aY(t-l)

I . (t) = S[C(t}-C(t-l)] + s(t)
I

wird durch £ Istochastisch verseucht', denn Y, C und I. sind nur noch
I

stochastischbeschreibbar.

Der Zeitverlauf des Erwartungswertes und der Varianz der Wahrschein­

1 ichkeitsverteilungen der endogenen Variablen kann wie spater darge­

legt wird, durch FormelausdrUcke beschrieben werden. 5

Wahlen wir beispielsweise a=0,9, 13=0,4, Y(-2)=10 000, Y(-1)=ll 000

und I =2 000, und gehen wi r we iter von der Annahme aus, daB E: e i nera
Normalvertei lung mi t der Standardabweichung 0=1000 und dem Erwar-

tungswert Null angehoren 5011, dann kann der Zeitverlauf des Erwar­
6tungswertes Y (t) durch-. e

Y (t) = 391(0,438)t - 8131(0,822)t t 20000
e. fUr t=O,l ,2, ... (15.1)

beschrieben werden.

Der zeitl iche Verlauf der Varianz von Y(t) d.h. Y (t), ergibt sich mit:, v.

Y (t) = 106[(1-0,8222 (t+l))14,12t(1-0,438 2(t+1))1,61-v
-(1-(0,36)t+1)7,62] (15.2)

Es ist nur in wenigen Fal len moglich, den Zeitverlauf der Parameter

werte zu bestimmen, die die Wahrscheinl ichkeitsvertei lung der endo­

genen Variablen stochastischer Modelle beschreiben, da geeignete ma­

thematische Verfahren bisher nicht zur VerfUgung stehen.

1.5.2. Stabilitatsverhalten

Das Wort 'Stabilitat' ist nicht so evident, wie es dem intuitiven

Vorverstandnis erscheinen mag. Es gibt vielmehr eine ganze Reihe von

unterschiedl ichen 5tabilitatsdefinitionen. Der gemeinsame Kern die­

ser Definitionen beruht jedoch auf folgendem Konzept: [122,5.13]

Man bezeichnet den VerI auf einer bestimmten endogenen Systemvariablen

5 Siehe Seite 386f.
6 Zur Berechnung siehe Seite 380
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als GJeichgewichtspfad oder ungestorten Zustand. Auf diesen unge­

storten Zustand wird eine Storung ausgeUbt, was zu einem VariabJen­

verlauf fOhrt, der sich von dem Gleichgewichtspfad unterscheidet.

Die Zeitpfade des Systems ohne und mit Storung werden sodann mitein­

ander verglichen.

Dazu wird ein MaG eingefuhrt, das die Abweichungen zwischen dem ge­

storten und dem ungestorten Verlauf der endogenen Variablen beschreibt.

Wird eine bestimmte Norm dieses MaBes uberschritten, so gilt das Sy­

stem als instabil; im anderen Fall sieht man es als stabil an.

Fur okonomische dynamische Analysen unterscheidet man im allgemeinen

nur zwischen der asymptotischen Stabil itat und der nicht asymptoti­

schen Stab i 1i tat oder Ljapunov Stab i 1i tat. Fur okonomi sche Untersu­

chungen ist der Begriff der asymptotischen Stabi1 itat am wichtigsten.

Asymptotische Stabilitat 1iegt vor, wenn nach Einwirkung einer Sto­

rung der Verlauf der endogenen Variab1en mit fortschreitender Zeit

gegen den Gleichgewichtspfad konvergiert.

Zum Vor1iegen einer Ljapunov Stabi1 itat dagegen ist es nur erforder­

1ich, daB sich der Verlauf der endogenen Variablen nach der Storung

dem Gleichgewlchtsverlauf 'annahert ' . Dabei ist einKriterium zu de~

finieren, nach welchem zu entscheiden ist, ob das betrachtete System

a1s stabil oder instabi 1 zu bezeichnen ist.

Die Stabi1 itat eines Systems kann unter Umstanden von der GroBe der

durch eine exogene Variable erfo1gten Storung abhangen. Dies 5011

durch ein mechanisches Beispiel verdeutlicht werden.

Die Bahn, auf der sich in Abbi1dung 15.1 der Ball bewegt, solI durch

Abb.15.1 System mit Instabi1itat im groBen und Stabi1itat im kleinen
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eine bestimmte Langeneinteilung gekennzeichnet werden, womit das Lan­

genmaB, das die Lage des Balles kennzeichnet, dem Wert der endogenen

Variablen eines dynamischen Systems als ahalog angesehen werden kann.

Die Lage des Balles in der Abbildung kann als im kleinen stabil be­

zeichnet werden, wei I bei kleinen Starungen in Form von StoBen der

Ball stets wieder im Punkt P zur Ruhe kommt. DemgegenOber ist das Sy­

stem im groBen instabil, da starkere Storungen den Ball Uber die Mul­

de hinaustreiben und die Ruhelage im Punkt P nicht mehr herbeigefUhrt

werden kann.

Wenn ein System unabhangig von der GroBe der Storung stabil ist, d.h.

stabil im kleinen und stabil im groBen, so spricht man von globaler

Stabil itat. Erweist sich ein System zumindest im Hinblick auf eine

exogene Starung als stabil, so spricht.man von dem Vorhandensein~­

kaler StabilitiH. Erweist sich ein System als lokal stabil, so bleibt

offen, ob das System auch global stabil ist. Die Erfahrung spricht

dafUr, daB physikal ische, biologische und insbesondere auch soziale

Systeme keine globale Stabilitat besitzen. Sie werden vielmehr gene­

reI 1 im groBen instabi I sein. So ist der menschl iche Karper normaler­

weise in der Lage, die Bluttemperatur 1m Rahmen bestimmter Tempera­

turschwankungen der Umgebung zu stabilisieren. Werden die Schwankun­

gen jedoch zu groB, so bricht das System zusammen.ln gleicher Wei­

se wird ein Betrieb nur in der Lage sein, die Einhaltung des finan:

ziel len Gleichgewichts zu gew5hrleisten, wenn nicht zu starke exo­

gene Storungen, wie extrem hohe auBerordentliche Ausgaben, Forde­

rungsverluste etc., auf ihn einwirken.

Mathematische Analysen zeigen, daB 1ineare Differenzengleichungsmo­

del le mit konstanten Koeffizienten bei Vorliegen von Stabilitat stets

eine globale asymptotische Stabilitat besitzen. 7

Geht man von der plausiblen Hypothese aus, daB soziale Systeme bei

sehr groBen Starungen letztlich instabil werden, so kannen lineare

Differenzengleichungsmodelle offensichtl ich nur begrenzt zur adaqua­

ten Beschreibung sozialer dynamischer Systeme verwendet werden. Die­

ses Ergebnis 1st insofern von Bedeutung, als gerade dieser Modelltyp

am haufigsten in der dynamischen okonomischen Analyse vorkommt.
7 Vgl. Seite 208
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An dieser Stelle 1st eine Anmerkung zum Begriff der Starung angebracht.

Viele Personen sehen den Begriff der Starung im Zusammenhang mit tech­

ni schen Regel krei sen. Ei ne Starung kommt nach i'hrer Auffassung durch

eine unbeeinf1uBbare exogene Variable zum Ausdruck, die zu einer So11­

Ist-Abweichung fuhrtund deren unerwunschter Einf1uB mag1 ichst schnell

beseitigt werden 5011. Diese Deutung des Begriffs einer Starung a1s

einer negativen Einf1uBgraBe ist fur den von uns zugrunde ge1egten

Storungsbegriff zu restriktiv. Denn der rege1ungstechnische Storungs­

begriff unterstel It von vornherein die Existenz eines erstrebenswer­

ten Zie1es, nam1 ich eines Sollwertver1aufs, der in unserer Sprache

dem G1eichgewichtspfad entspricht. Vor einer solchen pauscha1en G1eich­

setzung sol 1te man sich aber hOten, wei1 erstens versteckte Zielvor­

stel1ungen schon imp1 izit in die Analyse miteinf1 ieBen konnen uno

zweitens Systeme denkbar sind, bei denen eine zie10rientierte Beein­

f1ussung nicht auf die Einha1tung eines vorgegebenen Sollwertes aus­

geri chtet i st.

Hinsicht1 ich der Gleichgewichtspfade lassen sich Model 1e mit Evolu­

tinns- und Niveaustabi1 itat unterscheiden. Ein Modell mit Niveausta­

bi1itat zeichnet sich dadurch aus, daB der G1eichgewichtspfad der en­

dogenen Variablen zeitkonstant verlauft, d.h. in einem Zeitdiagramm

eine waagerechte Linie beschreibt. Dieser Fall entspricht d~r intui­

tiven Auffassung des Begriffes der Stabi1 itat: Nach Einwirkung einer

Starung wird letzt1 ich wieder ein Zustand erreicht, in dem die Werte

der endogenen Variablen im Zeitver1auf unveranderl ich bleiben.

Verdeutl ichen wir uns den Charakter einer Niveaustabi1itit an hand ei­

nes MA-Mode11s. A1s Ausgangspunkt wahlen wir die Variante mit a=O,8,

8=1 und I (t)=2 000, d.h.
a

Y(t) C(t) +I.(t} +2000
I

C(t} O,8Y(t-l)

Ii (t) = 1[C(t)-C(t-l)]

sowie den Anfangswerten Y(O)=Y(l)=lO DOD. Mit dlesen Anfangswerten

befindet sich das System in einem Niveaugleichgewicht, welches in der

5ten Periode durch eine IStorung l in Form einer einma1 ig erhohten au-
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tonomen Investition I (5)=1000 aus dem Gleichgewicht gebracht wird.
a

Abb. 15.2 zeigt, daB die endogene Systemvariable Y nach dem Einwir-

ken der Storung wiederum dem Niveaugleichgewichtspfad zustrebt, d.h.

es handelt sich um ein System mit Niveaustabilitat.
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Abb. 15.2 Beispiel der Storung eines stabilen im Gleichgewicht be­
findl ichen dynamischen Modells [Einheit T: Tausend]

Bei Evolutionsstabil itat dagegen zeigt der Gleichgewichtspfad keinen

konstanten Verlauf, sondern eine wachsende oder fallende Tendenz.

Hier ist eine Ful Ie von Verlaufsformen denkbar wie monoton oder zyk­

I isch wachsend, monotones Wachstum mit Zwischenniveaus etc .. Wieder

sei zur Illustration auf ein MA-Modell verwiesen. Als Grundlage dient
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eine Modellvers'lon mit den Parametern a=O,9, B=l und I (t)=1000·t,
a

womit sich die Version ergibt:

= 1000 . t

c(t) + I. (t) + I (t)
I a

O,9Y(t-l)

=l[C(t)-C(t-l)]

y (t)

C(t) =
I. (t)

I

I (t)a .

Wahlt man die Anfangswerte Y(O)=Y(1)=10 000, so kann der in Abbildung

15.3 mit G beschriebene Zeitverlauf als Gleichgewichtspfad angesehen

werden. Der Zeitverlauf von Y beschreibt eine in Periode 5 einwirken-
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Abb. 15.3. Beispiel der Storung eines dynamischen Systems mit Evo­
lutionsstabil itat [Einheit T: Tausend]
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de einmal ige StBrung in .HBhe von 5(5)=4 000. Der durch die StBrung

bewirkte Zeitverlauf nahert sich mit gedampften Schwingungen dem

Gleichgewichtspfad (G). 1m vorliegenden Fall liegt damit eine Evolu­

tionsstabil itat vor. Soviel zur Kennzeichnung der wichtigsten Sta­

bilitatsarten.

1m Fal Ie technischer Systemeist es durch~us mBglich, die Stabilitat

eines Systems zu beobachten. Man·unterdruckt auf kunstl ichem Wege die

StBrungen, laSt damit das System in seinen Gleichgewichtszustand uber­

gehen und Ubt dann eine typische StBrung auf das System aus. Die Sy­

stemantwort, d.h. der Verlauf der endogenen Variablen, gestattet es

dann, ein Urtei 1 Uber das Stabil itatsverhalten abzugeben. Eine solche

Situation laSt sich bezuglich sozialer Systeme jedoch nicht zustande­

bringen, da man StBrungen wie etwa unvorhergesehene Investitionen

oder Bestellungen nicht verbieten kann und wi 11.

Ein soziales System ist standig irgendwelchen 'StBrungen' ausgesetzt,

welche in ihrer Aufeinanderfolge bewirken, daB die real isierten Va­

riablen permanent um den Gleichgewichtspfad 'herumtanzen'. Es laBt

sich deshalb nicht beobachten., ob das System stabil ist, d.h. ob die

endogene Variable nach der AusUbung einer begrenzten StBrung dem

Gleichgewichtspfad zustrebt.

Um dies zu zeigen, sei das in Abbi ldung 15.3 nur von einemlmpuls ge-.

stBrte System einer .Kette von StBrungsimpulsen ausgesetzt, die in Ab­

bildung 15.4 durch den Buchstaben S gekennzeichnet ist.

Es durfte anhand von Abbildung 15.4 kaum magI ich sein, ein Urteil

uber das Vorhandsein einer Systemeigenschaft 'Evolutionsstabilitat'

abzugeben.

Ein gangbarer Weg, Eigenschaften wie Stabilitat oder auch andere we­

sentliche Impl ikationen dynamischer Modelle zu ermitteln, besteht in

folgendem Vorgehen:

Man entwickle ein adaquates Model I des zu untersuchenden dynamischen

Systems, und in dieses Modell fUhre man Annahmen ein, die in der Rea­

l itat nicht beobachtbar sind, deren Konsequenzen jedoch zur Gewinnung

bisher unbekannter Eigenschaften des tatsachl ich vorliegenden Systems

fOhren.
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Abb. 15.4 Dynamisches System mit Evolutionsstabilitat (Y), welches
einer Kette von St6rimpulsen (S) ausgesetzt ist
[Einheit T: Tausend]

Beispielsweise 5011 die folgende Version eines MA-Modells auf Stabi­

litat untersucht werden:

Y(t) = C(t) + I.(t) + I (t)
I a

C(t) = 0,8Y(t-l)

I. (t) = 1 [C(t)-C(t-1)] + E(t)
I

I (t) = 2000 Y(0)=13 600, Y(1)=19800a

Als StorgroBe wird E angesehen, welches einer Normalverteilung mit
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einem Mittelwert Null und einer konstanten Standardabweichung ange­

horen 5011.

Die periodische Regressionslosung dieser Model Ivers ion wUrde keine

schlUssige Auskunft Ober die Stabilitat des Modells liefern. Wahlt

man Y(0)=Y(1)=10 000, d.h. die Anfangswerte eines Systemgleichgewich~

tes und ersetzt die StorgroBe E durch eine einmalige Storung in Pe­

riode 5, so erhalt man den in Abbildung 15.2 dargestel lten Zeitpfad,

der ein eindeutiges Urteil liber die Stabil itat des vorl iegenden Sy-

5 tems er 1aub t.

1m Rahmen der Evolutions- und Niveaustabil itat kann man weiterhin

zwischen einer mo.notonen und oszillatorischen Stabi litat unterschei­

den. 1m FaIle einer oszillatorischen Stabilitat nahert sich das gestor­

te System in gedampften Schwingungen dem Gleichgewichtspfad. Abbil­

dung 15.3 liefert hierfUr ein Beispiel. Liegt dagegen eine monotone

Stabilitat vor, so strebt die gestorte Variable schwingungsfrei dem

Gleichgewichtspfad zu.

1.5.3. Retrodiktion endogener Variablen

Wie wir wissen, ist es ein wichtiges liel der dynamischen Modellana­

lyse, den zeitl ichen Verlauf der endogenen Variablen eines dynami­

schen Modells zu ermitteln~ Wenn der leitverlauf in die Zukunft fOhrt,

stellt der ermittelte Variablenverlauf eine Prognose dar. Prognosen

sind von groBer praktischer Bedeutung, da die Aufhellung der lukunft

ein elementares BedUrfnis der Menschen befriedigt.

Die ersten Erfolge in der Geschichte der naturwissenschaftl ichen Prog­

nostik stellten die Voraussage von Mond- und Sonnenfinsternissen dar.

Aber gerade im Falle astronomischer-Untersuchungen ist es schon lan­

ge UbI ich, auch eine Art RUckwartsprognose vorzunehmen. Ein Astronom

kann beispielsweise bel Kenntnis der Planetenkonstellationen im Jahre

1975 die in den letzten 200 Jahren stattgefundenen Sonnenfinsternisse

rOckprognostizieren. Ein solches zwingendes SchluBverfahren von zeit­

1ich spater folgenden auf frUher stattgefundene Ereignisse nennt man



84

in der wissenschaftstheoretischen Fachsprache eine Retrodiktion.

Es I iegt nun die Frage nahe, ob man mit einem dynamischen Modell nicht

auch eine Retrodiktion vornehmen kann. Dabei iehen wir vorerst von der

Frage ab, welchem Zweck eine solches Vorgehen dienen konnte.

Betrachten wir das einfache dynamische Modell

Y(t) = 0,5Y(t-1) mit Y(0) =100, fO r t=O, 1 ,2, ...

dann laBt sich dieser Ansatz umformen in:

Y(t-l) = 2Y(t)

Lassen wir den Zeitindex negativ werden, so ergibt sich fOr die er­

sten drei retrodizierten Perioden der zeitl iche Verlauf:

t Y

a 100
- 1 200
- 2 400
-·3 800

In diesem einfachen Fall ist eine Retrodiktion magl ich. Gi It dies je­

doch generell fOr dynamische Modelle? Die Sentenz 'es. fOhren viele

Wege nach Rom I dokumentiert die Erfahrung, daB verschiedene MaBnah­

men zum selben Ergebnis fOhren kannen. Auf die Kategorien der Modell­

bildung Obertragen bedeutet dies, daB in einer zeitinvarianten Hypo­

these verschiedene Kombinationen vorherbestimmter Variablen zu der­

selben Auspr5gung der endogenen Variablen fOhren konnen.

·Es scheint daher fraglich, ob man anhand eines dynamischen Modells

eine Retrodiktion durchfOhren kann. Denn zeigt es sich, daB mehrere

Kombinationen der sogenannten vorherbestimmten Variablen zu dersel­

ben Auspr5gung einer vorgegebenen endogenen Variablen fOhren, dann

ist es unentscheidbar, welche dieser Kombinationen nun tatsachlich

zu dem bekannten Ergebnis gefOhrt hat. Urn dieses· Problem st5rker auf­

zuhellen, betrachten wir die Endgleichung eines MA-Modells fur Y, d.h.

und stellen uns die Frage, in welcher Weise wir anhand dieser Bezie­

hung eine Retrodiktion der Variablen Y vornehmen konnen. Nehmen wir
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an, der Wert von Y(2) sei bekannt. Wenn die Endgleichung (12.9) das

vorliegende System adaquat beschreibt, dann gi It die Beziehung:

v(2) = (a+CL S) Y(1) - CL BY (0) + I (2)a

Wol len wir nunmehr den Wert fOr V(1) bestimmen, d.h. eine Retrodik­

tion von Y(2) auf Y(l) vornehmen, dann ist dies nicht magI ich, denn

es gibt eine ganze Reihe von Kombinationen der ZahlenwerteY(O), Y(l)

und la(2), die den vorgegebenen Wert V(2) 1iefert.

Geht man jedoch davon aus, daB die numerischen Werte der exogenen Va­

riablen fOr die vorgesehene Retrodiktionsperiode bekannt sein sol len

und unterstel1t zusatzl ich, daB auch Y(l) bekannt ist, dann laBt sich

Y(O) eineindeutig ermitteln. Hat man aber Y(O) ermittelt, so lassen

sich durch sukzessive Anwendung des beschriebenen Vorgehens Y(-l),

Y(-2) usw. berechnen.

Das beschriebene Vorgehen laBt sich verallgemeinern: Hat man die End­

gleichung n-ten Grades einer bestimmten endogenen Modellvariablen Y

entwickelt und sind sowoh1 n-1 Anfangswerte fUr Y sowie die exogenen

Variablenver1aufe im Retrodiktionszeitraum bekannt, so ist eine Re­

trodiktion magI ich. FUr bestimmte nichtl ineare Zusammenhange ergeben

sich gewisse Einschrankungen, die spater zu diskutierensind. 8 Zu­

mindest fUhren diese Anmerkungen aber zu der Einsicht, daB eine ~e­

trodiktion auch bei dynamischen Model len prinzipiel1 durchfUhrbar ist.

1m Fal Ie des angefuhrten Beispiels kann eine Retrodiktion in folgen­

der Weise durchgefUhrt werden:

Aus der Endgleichung (12.9) folgt cler Retrodiktionsansatz

Y(t) = ((l+S)/a)Y(t+1) - (1/CL!3)Y(t+2) + la~l)/(CLf3)

und mit CL=O,9; 13=0,4; I =2500; Y(1)=11 000 und Y(0)=10 000a .

Y(t) = .3,5V(t+1) - (1/0,36)Y(t+2) + 2500/0,36

Mit diesem Ansatz ist man in cler Lage, die numerischen ~erte von

y(t) fur t=-l,-2,-3, ... zu berechnen. Ta·belle 15.2 zeigt die Ergeb­

nisse dieser Ruckrechnung. Y wachst offenbar mit abnehmendem t un­

begrenzt. Dies ist eine Imp! ikation, die den Modellansatz kaum ak­

zeptierbar erscheinen laBt.

8 Siehe Seite 472f.
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Y( t) 3,5*Y(t+1) -1/O.36*Y(t+2) 2500/0.36

-1 11388.89 35J1J1J1.~.0 -30555.55 6944.45
-2 19.027.8.0 39861.13 - 27777 . 77 6944.45
-3 419.05.88 66597:25 -31635.82 6944.45
-4 10.076.0 . .0~ 14667J1.56 -52855.~J1 6944.45
-5 243199.25 35266J1 . .0.0 -1164.05.19 6944.45
-6 578252~94 851197.38 -279888.88 6944.45
-7 1355275 . .0.0 2.023885 . .0.0 -675553.44 6944.45
-8 3144148.fl.0 4743462 . .0.0 -16.06258.fl~ 6944.45
-9 724681.0 . .0.0 11.0.04518 . .0.0 -3764652 . .0.0 6944.45

-10 16637.024 . .0.0 25363824 . .0.0 -8733744.21.0 6944.45

Tab. 15.2 Retrodiktion eines MA-Modells durch periodische Regression

Das Rechenverfahren zeigt auch, daB der zeitl iche Verlauf der exoge­

nen Variablen I w13hrend des Retrodiktionszeitraumes vorgegeben sein
a

muB. Oft ist es auch von Interesse, nicht nur eine Endgleichung zu re-

trodizieren, sondern ein ganzes System von Hypothesen. Dies gilt ins­

besondere fUr den Fall nicht1 inearer Modelle, da diese nur in Ausnah­

mef1311en in ihre Endgleichungsform UberfUhrt werden konnen.

Zur Retrodiktion eines Hypothesensystems betrachten wir die Gleichun­

gen des MA-Modells, d.h.

yet) = C(t) + I.(t) + I (t)
I a

li(t) = 8[C(t)-C(t-1)]

c(t) = aY(t-l-)

Wir gehen von der Annahme aus, die numerischen Werte der endogenen

Variablen in der Periode t=1970 seien uns bekannt, d.h. Y(1970),

li(1970) und C(1970) ~ Weiter sei uns der Verlauf der exogenen Variab­

len la fUr den Retrodiktionszeitraum vorgegeben. Zur Ermittlung der

Werte fUr Y(1969), Ii (1969) und C(1969) sind die Gleichungen

Y(1969) = C(1969) + I i(1969) + 'a(1969)

1.(1970) = 8C(1970) - 6C(1969)
I

C(1970) = aY(1969)

heranzuziehen. Man erkennt, daB C(1969) und Y(1969) aus den Gleichun­

gen fUr I. und C erm i tte I t werden konnen, wah rend· I . (1969) aufg rund
I I
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der Definitionsgleichung von Y, d.h. durch

bestimmt wird.

Nach der Gewi nnung der numer i schen Werte von Y, I. und C fur das Jahr
I

1969 lassen sich in analoger Anwendung die endogenen Variablenwerte

fOr 1968, 1967 usw. ermitteln.

1m vorliegenden Fall eines MA-Modells handelt es sich urn die Retro­

diktion eines linearen Modells. In vielen Fallen sind dynamische Mo­

delle jedoch nichtl inear, und es stellt sich die Frage, ob auch in

diesen Fallen Retrodiktionen megl ich sind. 9 Es laBt sich zeigen, daB

jedes nichtl ineare Modell in ein System von (nichtlinearen) Diffe­

renzengleichungen ersten Grades uberfuhrt werden kann, d.h. in ein
, 10

Gleichungssystem der Form

v,j=1,2, ... ,m

1st Y.(t) numerisch vorgegeben, so lassen sich die numerischen Werte
J

von Yv(t-l) durch Lesung des (zumeist simultanen) nichtlinearen Glei-

chungssystems

F.[Y (t-1)] - Y.(t) = 0
J. v J

ermitteln. Durch sukzessives Einsetzen der ermittelten Werte kann

das Modell beliebig weit retrodiziert werden. Bei der Ererterung der

sogenannten System-Dynamics-Konzeption zur Modell ierung dynamischer

Systeme wird ein Verfahren demonstriert, mit dessen Hilfe nichtline­

are System-Dynamics-Modelle retrodiziert werden k6nnen.

1.5.4. Sensitivitat eines Modells

Mit der Sensitivitat 5011 die 'Reaktionsstarke l der endogenen Varia­

blen eines Modells bezUgl ich bestimmter Anderungen seiner Parameter

ausgedruckt werden. In einer ersten groben Kennzeichnung HiBt sich

sagen:

9 Zur Unterscheidung von 1inearen und nichtl inearen Model len s.S.164ff.
10 Siehe Seite 264f.
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Ein Hodel I reagiert umso sensitiver bezugl ich eines Parameters, je

starker sich eine Anderung dieses Parameters auf den Verlauf seiner

endogenen Variablen auswirkt. Es wird oft von der Sensitivitat eines

Hodel Is oder Systems gesprochen. Eine solche Ausdrucksweise kann zu

MiBverstandnissen fOhren, wei] stets nur die Sensitivitat einer oder

mehrerer endogener Variablen bezuglich eines Parameters untersucht

wird. Spricht man daher von einem sensitiven Hodell, so ist diese Be­

zeichnung so zu deuten, daB sich. in dem vorliegenden Hodell zumin- ~

dest ein Parameter finden laBt, auf dessen Anderung samtl iche endoge­

nen Variablen stark reagieren.

Diese Charakterisierung der Sensitivi.tat ist relativ vage, doch sie
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Abb. 15.5 Sensitivitat eines HA-Hodel 15 gegenuber dem Parameter a
[Einheit T: Tausend]
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reicht fur eine erste Orientierung aus.

Anhand eines MA-Modells verdeutlichen wir uns den Vorgang einer Sen­

sitivitatsuntersuchung. Wir wahlen fur ein MA-Modell a=0,8, 8=1,

Y(O)=12 000, Y(1)=10 000, 'a(t)=2 500 und erhalten den Ansatz

Y(t) = C(t) + I.(t) + I (t)
I a

l.(t) =][C(t)-C(t-l)]
I

C(t) = O,8Y(t-l)

Abbildung 15.5 zeigt den ,Variablenverlauf von Y fur a=O,8 und einer

Erhohung von a urn zehn Prozent, d.h. a=O,88.

In Abbildung 15.6 ist a unverandert, der Parameterwert von S dagegen
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Abb. 15.6 Sensitivitat eines MA-Modells gegenUber dem Parameter S
[Einheit T: Tausend]
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urn zehn Prozent erhoht, d.h. 0=0,8 und S=l,l.

Man erkennt, daB das System auf die relative Anderung von a viel hef­

tiger reagiert als auf die gleiche relative Anderung von S. Noch

eindrucksvol ler erweist sich die Sensitivitat des Modells in der

Grundversion 0=0,99 und S=l.

Aus Abbildung 15.7 erkennt man die unterschiedlichen Verlaufsformen

von Y bei nur geringer Anderung von a .

...
t.':' >- ............

t..> t..> t.:l t.' t.:l
~:t: ···.·1·········,·········1·········1·········,

IS>
N

I

I

I

• • • • • • • I

Abb. 15.7 Sensitivitat eines MA-Modells gegenuber 0 in cler Ausgangs­
version 0=0,99 undS=l [Einheiten T: Tausend,M: Millfonen]

Halten wir fest: die Sensitivitat laBt sich nur definieren bezugl ich

des vorgegebenen Zeitverlaufs einer bestimmten endogenen Variablen.
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In der praktischen Anwendung verzichtet man zumeist auf ein bestimm­

tes Sensitivit~tsmaB und beschr~nkt sich, wie wir es auch getan ha­

ben, auf einen visuellen Vergleich des Variablenverlaufes.

Eine wichtige Aufgabe besteht darin, die Parameter zu finden, auf die

ein dynamisches Modell am empfindlichsten reagiert. Betrachten wir

das einfache Modell

Y(t) = aY(t-1) mit a=O,98 und dem Anfangswert Y(O)

dann kann der monoton gegen Null strebende Zeitverlauf von Y durch

beschrieben werden.

Man erkennt leicht, daO das Modell auf ~nderungen von a extrem emp­

findl ich reagiert. Denn eine ~nderung urn drei Prozent wUrde schon zu

einem explodierenden VerI auf

fUhren.

In Model len mit vielen Parametern wird die Suche nach den Parametern,

die eine hohe Sensitivitat bewirken, zu einem schwierigen Problem. Es

gilt hierbei insbesondere die Parameter zu finden, deren ~nderung wie

in dem beschriebenen Beispiel zu einer sprunghaften Ver~nderung des

Modellverhalt~ns fOhren. Solche qual itativen VerhaltensprOnge treten

auch be i dem uns bere its vertrauten MA-Mode 11 in beacht 1 i chem Umfa n­

ge auf. So zeigt Abbildung 15.8 voneinander abgegrenzte Flachen, die

bestimmte Kombinationen der Parameter a und 8 umschlieBen. Ohne na­

here Erklarung sel darauf hingewiesen, daB diese Parameterflachen

qualitative VerhaltensprOnge der endogenen Variablen voneinander ab­

grenzen. 11 Die qualitativ unterschiedlichen Verlaufe von Y in Abbi 1­

dung 15.7 liegen, wie man leicht nachprUfen kann, jewel1s in einem .

anderen Flachenbereich. Die in dem" Diagramm erkennbare Abhangigkeit

des Systemverhaltens von den Parametern a und 8 solI dazu dienen,

den bisher unterstellten leinparametrischen ' Sensitivit~tsbegriff

auf seine ZweckmaBigkeit hin zu untersuchen.
11 Siehe im Einzelnen Seite 216f.
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a 1,0

0.15

0,5

0,25

C1- _C! 13 .
(j;j3)7

o 1 2 3 4

Abb. 15.8 Verha1tensdiagramm eines MA-Mode11s in Abhangigkeit ~on

den Parametern a und B

Angenommen, die Parameterwerte a=O,9 und 8=1 seien fur ein bestimmtes

System gefunden. Wahlen wir die Mode11version I (t)=100, dann zeigt
a .

sich, daB bei einer Erhohung oder Verminderung von a um.zehn Prozent

keine Veranderung des Stabil itatsverhaltens auftritt. Auch eine gleich­

zeitige Verminderung von S urn zehn Prozent fOhrt, wie aus Abbi1dung

15.9 zu erkennen ist, nicht zur Instabi1 itat. Eine Erhohung von S urn

zehn Prozent zeigt ebenfalls keine Anderung, wenn man nicht gleich­

zeitig a urn mehr als ein Prozent erhC5ht. In diesem Fall wird das Mo­

dell instabil.

Wenn man davon ausgeht, daB es das Ziel einer Sensitivitatsanalyse

ist, die Starke der Variablenverlaufsreaktion auf geringfOgige Para­

meteranderungen zu beurteilen, dann zeigt sich, daB der bisher ver­

wendete Sensitivitatsbegriff dieser Forderung nicht vall genOgen kann;

denn er basiert auf der Erfassung der Model 1reaktion bezug1 ich eines

Parameters. Das eben geschilderte Beispiel zeigte aber, daB das Modell
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Abb. 15.9. Auswirkungen verschiedener Parametervariationen auf das
Verhalten eines MA-Modells

im Falle der Anderung eines Parameters (a) nur wenig, im Falle der

gleichzeitigen geringfugigen Anderung eines weiteren Parameters (s)

aber sehr heftig reagiert. Auch indiesem Fall wurde man sagen, daB

das System sehr sensitiv reagiert, weil eine geringfugige kombinier­

te Anderung von zwei Parametern zu einer starken Systemreaktion fOhrt,

w~brend dies aber bei einer isolierten Parameter~nderung nicht der

Fall ist.

1m Sinne dieses erweiterten Sensitivitatsbegriffes ist ein Modell

auch dann als sensitiv zu bezeichnen, wenn es auf eine bestimmte kom­

binierte geringfugige Parameteranderung stark reagiert.



Die Ermittlung einer hohen Sensitivitat bei einer isolierten Parame­

teranderung erlaubt es zwar, das vorliegende Model I als sensitiv zu

bezeichnen. Stellt man jedoch eine geringe Sensitivitat bel einer je­

weils isol ierten Anderung der einzelnen Parameter eines Modells fest,

dann kann daraus nicht der SchluB gezogen werden, das Modell wOrde

auch bezUglich einer kombinierten Anderung seiner Parameter eine ge­

ringe Sensitivitat aufweisen. Da komplexe dynamische Modelle analy­

tisch nicht untersucht werden k6nnen, mUBten im FaIle einer umfassen­

den Sensitivitatsanalyse jeweils al Ie m6g1 i~hen Auspragungen von n

Modellparametern in bel iebiger Weise miteinander kombiniert und zur

Ermittlung der Modell reaktion das entsprechende Modell simuliert wer­

den. Bei Modellen mit drei- bis vierhundert Parametern wUrde die Zahl

derben6tigten Simulationslaufe astronomische Gr6Behordnungen anneh­

men. 1m Einzelfall wird man sicher durch Strukturanalysen bestimmte

Parameter.als irrelevant aussondern konnen, so daB die Anzahl der in

Frage kommenden Parameter gesenkt werden kann und die sich stellende

Aufgabe nicht 50 aufwendig wird wie oben beschrieben. Aber der in die­

5em Zusammenhang gepragte Ausdruck yom 'Fluch der Dimension ' kenn­

zeichnet dennoch ein schwer zu Uberwindendes Hindernis bei der Sen­

sitivitatsanalyse dynamischer Modelle.

DIe Sensitivitatsuntersuchung ist einer der wichtigsten Aufgabenberei­

che im Rahmen der Analyse dynamischer Model Ie, wei I, wie wir spater

sehen werden, die Sensitivitat eines Model Is als Indikator seiner em­

pirischen Relevanz verwendet werden kann. Die spater erorterte Model­

lierungskonzepti6n System Dynami6s-~eht v6n der GUltlgkeit einer ge­

nerellen Insensitivitat sozialer Systeme aus, einer Behauptung also,

die sich durch eine Untersuchung der Sensitivitat des betreffenden

Systemmodel Is erharten oder. falsifizieren laBt.

Bisher wurde der Begriff der Sensitivitat nur verbal umschrieben. Um

im Rahmen der Sensitivitatsuntersuchung unseres MA-Modells auch ei­

nen quantitativen Eindruck bezUgl ich der Sensitivitatsstarke zu er­

halten, 5011 als MaS der Abweichung der Verlaufe einer endogenen Va­

riablen der sogenannte Theilsche Ungleichheitskoeffizient verwendet
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12werden. 1m Falle der Identitat von zwei Zeitreihen nimmt diese MaB-

groBe den Wert 0 an, wahrend der Wert 1 den Grenzfall einer 'totalen '
Abweichung kennzeichnet. Werte zwischen 0 und 1 sind daher ein MaG

fur die Abweichungsstarke.

In Abbildung 15.10 sind die Hohenlinien der Parameterkombinationen

gleicher Abweichungsstarke dargestel It, die durch den Theilschen Un­

gleichheitskoeffizienten beschrieben werden;13

a

1 0.82 0.85 0.89 0.92 0.95 0.97

0.99 0.73 0.77

~
0.93

0.98 0.63 0.66 0.84O. I .74 . 0.8
0.97 0 0.55 0.58 0.62 0.6 2 0.7
0.96 0.42 0.44 0.46 0.62

0.95 0.33 0.34 0.36 0.38 O. 0.5
0.'94 0.25 0.25 0.26 0.28

0.93 0.17 0.18 0, 18 0.20 0.3
0.92 0.11 0.11 0.11 0.12 0.21

0.91 0.07 0.06 0.05 0.06

0.9· 0.06 0.05 0.03 0 0.1
0.875 0.14 0.14 0.13

0.85 0.23 0.22 0.22 0.~2 0.21 0.21 0.2

0.825 O.~Q 0 :lQ 0 29 0 29 Q,29 0.29 0.3
0.8 0.36 0.36 0.35 0.35 0.35 0.35 0.4

0.85 0.9 0.95 1 1. 05 1.1 8

Abb. '15.10 Sensitivitat eines MA-Model1s bezUglich der Ausgangslage
a=O,9 und 8=1

12 Zur Definition des Theilschen Ungleichheitskoeffizienten siehe
Se i te 137

13 Als Vergleichszeitraum wurden 30 Perioden gewahlt.
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Man erkennt, daB die Sensitivitatshohenl inien ungleichmaBige Verlau­

fe aufweisen. Auch in diesem FaIle zeigt sich: Isolierte Parameter­

anderungen I iefern, obwohl dies oft (impl izi·t) unterstel It wird, kei­

ne zuverlassigen Aussagen zur Beurteilung der Sensitivitat von Model­

len.

Man muB sich bei einer Verallgemeinerung dieser Ergebnisse zudem im

klaren sein, daB eiM MA-Modell ein sehr einfaches I ineares Modell dar­

stel1t. Real itatsnahere nichtl ineare Model Ie besitzen Dutzende ja

manchmal sagar Hunderte von Parametern. Wurde man in Erweiterung der

Abbi Idung 15.10 einen n-dimensionalen Hyperraum fur n-Parameter kon­

struieren, so erhielte man (analog zu den.Hohenl inien) n-dimensiona­

Ie Gebilde, deren Oberflache die Parameterkombinationen gleicher Ab­

weichungsstarke ausdrUcken. Die entstehenden Gebilde dUrften im FaI­

le nichtl inearer Modelle so zerklOftet und deformiert sein, daB es

schwierig sein wird bei Kenntnis einiger benachbarter Ordinatenpunk­

te, etwas Ober die Sensitivitat der Umgebung auszusagen. Die Sensi­

tivitatsbeurteilung dynamischer Systeme ist also ein schwieriges Un­

terfangen.

1.5.5. Stochastische Implikationen

Dem Zeitverlauf der endogenen Variablen in deterministischen Model­

len entsprichtin stochastischen Model len der Zeitverlauf der Wahr­

scheinl ichkeitsverteilung der endogenen Variablen.

Ein vorrangiges Anliegen der Untersuchung stochastischer dynamischer

Model Ie ist es, den Verlauf dieser Wahrschei~l ichkeitsverteilung oder

den Verlauf einiger ihrer wichtigsten.Parameter zu bestimmen. Als Pa­

rameter dienen, wie erw~hnt, meist das arithmetischeMittel und die

Standardabweichung.

In vielen Fal len wird es wegen mathemat~5cher Schwierigkeiten nicht

moglich sein, in zwingender Weise den Verlauf der Wahrscheinl ichkeits­

verteilung zu ermitteln. Beim Fehlen geeigneter mathematischer Verfah­

ren versucht man daher, zumindest zu einer Schatzung des Verlaufes

cler Wahrscheinl ichkeitsvertei lung zu gelangen.
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Gehen wir von unserem Grundbeispiel eines MA-Modells aus: Das im Kopf

der Tabelle 15.3 angegebene Schema zeigt die Berechnung zwanzig en­

dogener Variablenwerte von Y in der zehnten Periode, d.h. Y(10) mit

Hilfe von periodischen Regressionslosungen. Wir gehen dabei von dem

schon auf Seite 74f. beschriebenen stochastischen MA-Modell mit den

Parametern a=0,9, S==0,4, Y(-2)==10 000, Y(-1)==11 000, I ==2000 und
a

0==1000 aus. Diese Realisationen konnen als Stichproben aus der Wahr-

scheinlichkeitsverteilung von Y(10) angesehen werden.

Anz.d. Y(10) Y(9) Y(8) I d10)Simul. a

1 16 928 16 036 17 803 2000 1131
2 19 485 18 233 17 930 2000 966
3 20 829 20 800 20 353 2000 -52
4 18'056 18 002 16 833 2000 -566
5 18 738 17 350 17 317 2000 1111
6 19 755 20 800 23 043 2000 -156
7 17 315 16 394 16 491 2000 . 595
8 20 192 20 241 20 134 2000 -69
9 21 189 22 612 21 711 2000 -1486

10 21 595 21 442 22 743 2000 765
11 17 277 17 018 16 745 2000 -137
12 17 339 16 593 14 869 2000 -215
13 20 209 18 326 16 827 2000 1175
14 19 319 19 434 19 605 2000 -116
15 19 689 20 855 19 229 2000 -1666
16 19 771 19 459 20 151 2000 507
17 14 652 14 829 14 814 2000 -700
18 16 274 15924 14 105 2000 -7

'
2

19 17 384 16 698 17 624 2000 689
20 20 393 19 741 18 972 2000 349

Summe 376 389

Schatzungen:
-Arithmetisches Mittel: Ye

376 389
20 18 819

Y 3 357 200vVarianz:

Standardabweichung: y
5

1832 y =~
5 v

Tab. 15.3 Ermittlung eines Schatzwertes Y (10) des arithmetischen
Mitteis der stochastischen Vari~blen Y(10) eines MA-Modells
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Die numerischen Werte von s werden durch ein hier nicht weiter er­

klartes IStichprobenziehverfahren ' aus einer Gesamtheit ermittelt,

die durch eine Normalverteilung mit ~=O und a=1000 beschrieben wird.

Dieses Verfahren hat zur Folge, daB auch die ermittelten zwanzig Zah­

lenwerte als Stichproben aus der Y(10) zugrunde 1iegenden Verteilung

angesehen werden konnen. Ye(10) ist daher ein Schatzwert des arith­

metischen Mittels dieser Verteilung.

Aus den analytisch ermittelten Formeln (14.1) und (14.2) des Zeitver­

laufes und der Varianz von Y ergeben sich fOr t=10 die Werte

Y (10)=18 854 und Y (10)=2814. Diese Werte weichen von den anhand vone 5

Tabelle 15.3 ermittelten Schatzwerten ~ '(10)=18 819 und ~(10)=1832es
ab. 14 Hieraus entstehende Fragen werden jedoch vorerst zurOckgestellt.

Festzuhalten ist: Bei einem vorliegenden dynamischstochastischen Mo­

dell kann man fOr jede Periode mit Hilfe von ·Stichprobenziehverfah­

ren l eine Schatzung des arithmetischen Mittels und auch anderer Para­

meter, wie beispielsweise der Standardabweichung der Wahrscheinl ich­

keitsverteilung von Y(t), gewinnen.

Auf der Grundlage der Verlaufsbestimmung der Wahrscheinl ichkeitsver­

teilung 5011 der Begriff der stochastischen Stabilit~h eingefOhrt wer­

den. Von einer Niveaustabil itat 5011 gesprochen werden, wenn das arith­

metische' Mittel eines stochastischen Modells mit wachsendem t gegen

einen zeitkonstanten Gleichgewichtspfad konvergie·rt. Der Stabili­

tatsbegriff kann auch auf weitere Parameter der Wahrscheinlichkeits­

verteilung der endogenen Variablen bezogen werden. Zum Beispiel kann

eine Stabil itatsdefinition hinsichtlich der Varianz der Wahrschein-

1ichkeitsverteilung vorgenommen werden. Von einer Stabilitat hinsicht­

1 ich der Standardabweichung (Stabil itat 2.Grades) 5011 immer dann ge­

sprochen werden, wenn die Standardabweichung der betrachteten Wahr­

scheinlichkeitsverteilung mit wachsendem t einem endlichen Grenzwert

zustrebt. In allen anderen Fallenliegt Instabilitat vor.

14 Vg 1. Se i te 97
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1.6. Methoden der ErschlieBung von Modellimplikationen

Bisher wurden Begriff und Arten der Implikationdynamischer Modelle

beschrieben. Dabei wurde bereits darauf hingewiesen, daB es unter­

schiedl iche Methoden zur Aufdeckung von Modell impl ikationen gibt.

Man kann hier zwischen den Verfahren einer deduktiven und pseudoin­

duktiven Modellerschl ieBung unterscheiden. Diese Erschl ieBungs­

methoden, welche im Rahmen der Abschnitte Uber die verschiedenen

.Arten dynamischer Modelle detaill iert beschrieben werden, sollen

im folgenden allein unter wissenschaftstheoretischen Gesichts­

punkten diskutiert werden.

1.6.1. Deduktive ErschlieBung von Modellimplikationen

Eine deduktive Argumentation zeichnet sich dadurch aus, daB bei ei­

ner Akzeptierung der Pr~missen als wahr die gezogenen SchluBfolge­

rung en aus logisch zwingenden GrUnden auch als wahr akzeptiert wer­

den mUssen. Berechnet man von einem dynamischen Modell die Funktions­

losung, dann handelt es sich um eine deduktive Argumentation, in der

das dynamische Modell die Pramisse, die FunktionslOsung dagegen die

SchluBfolgerung oder Modellimpl ikation darstellt.

Die Erschl ieBung der lmplika~ionen erfolgt im deduktiven Fall mit

Hilfe der Ableitungsregeln des DifferenzengleichungskalkUls, wobei

im FaIle stochastischer Model Ie zusatzlich die Axiome der Wahrschein­

1ichkeitstheorie mit herangezogen werden. Die Ermittlung der Funk­

tionslosung, die Bestimmung der periodischen Regressionslosung und

die Retrodiktion eines dynamischen Modells si~d Beispiele der Anwen­

dung deduktiver Methoden.

1.6.2. Pseudoinduktive ErschlieBung von Modell­
implikationen

In vielen Fallen reicht die mathematische Theorie bisher noch nicht

aus, geeignete Verfahren zur Deduktion bestimmter relevanter Impli-
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kationen zur VerfUgung zu stellen. Dies gilt insbesondere fUr den

GroBteil der nichtl inearen dynamischen Modelle. Als Ausweg bietet

sich hier ein Verfahren an, welches die Existenz bestimmter Impl ika­

tionen nicht logisch zwingend aufweist, sendern zu Wahrscheinl ich­

keitsaussagen Uber die Existenz oder Nichtexistenz dieser Impl ika­

tionenfOhrt.

Dieses Verfahren laBt sich schlagwortartig als pseudoinduktive Mo­

del lerschlieBung bezeichnen.

In konkreten Systemen dienen Experimente der Aufdeckung bestimmter

Struktureigenschaften. Einige Struktureigenschaften dieser Systeme

lassen sich jedoch nicht zwingend aus beliebig vielen Experimenten

und damit Beobachtungen folgern. Die Erhartung einer bestimmten Hy­

pothese bezOgl ich eines vorliegenden Systems ist hier nur mit Hilfe

induktiver SchluBverfahren moglich.

Will man beispielsweise die Hypothese UberprUfen, daB ein technisches

Regelsystem globale Stabil itat besitzt, so berechtigen beliebig vie­

le Experimente, die eine lokale Stabilitat aufzeigen, nicht zu dem

zwingenden SchluB, das vorliegende System sei auch global stabil.

Bei einer wachsenden ·Zahl vergeblicher Versuche, die Hypothese einer

globalen Stabi I itat zu widerlegen, ist jedoch der (nicht logisch

zwingende) i~duktive SchluB berechtigt, daB eine globale Stabilitat

vorliegt. Mit Hilfe eines de~artigen Verfahrens werden Hypothesen

Uber die Struktureigenschaften von Systemen erhartet oder verworfen.

Die pseudoinduktive Model lerschl ieBung zeichnet sich gegenuber der

beschriebenen induktiven Systemerschl ieBung dadurch aus, daB die in­

duktiven Verfahren nicht an dem eigentlichen System, sondern an dem

das System beschreibenden Model I vorgenommen werden.

Auch unter der Annahme einer adaquaten Systembeschreibung erlaubt

das gewonnene Model I mangels mathematischer Analysemethoden oft nicht

die Entscheidung, ob eine globale Stabil itat vorl iegt. In diesem Fall

kann man analog zum beschriebenen Vorgehen versuchen, die Hypothese

einer globalen Stabil itat mit Hilfe einer pseudoinduktiven Modellun­

tersuchung zu erharten oder zu verwerfen.

Bei einer naheren Betrachtung der pseudoinduktiven Modellerschlies-
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sung ist es zweckmaBig, zwischender ErschlieBung deterministischer

und stochastischer dynami5cher Modelle zu unterscheiden.

Als Beispiel einer pseudoinduktiven deterministischen Modellerschl ies­

sung sei der Fall angefGhrt, daB man eine Aussage Ober die Sensitivi­

tat eines Modells gewinnen will. Die Parameter ,des Modells werden in

einem vorgegebenen Streubereich durch einen ZufallsprozeB ausgewahlt,

und der Zeitverlauf der endogenen Variablen wird ermittelt. Weist das

Model I bei vielen Experimenten mit derartig veranderten Parametern

keine starke Abweichung auf, so wird die Hypothese (oder Impl ikations­

behauptung) erhartet, daB das System nur eine geringe Sensitivitat

besitzt.

Die Schatzung des arithmetischen Mittels der endogenen Variablen Y

in der zehnten Periode wurde an hand von Tabelle 15.3 demonstriert.

Hier handelt es sich um ein Beispiel der pseudoinduktiven Erschlies­

sung eines stochastischen Modells. Da5 geschatzte arithmetische Mit­

tel Y=18819 entspricht, wie wir feststel len konnten, auch nicht
" e "
dem tatsachl ichen arithmetischen Mittei Y =18854. Es stellt jedoche
einen brauchbaren Schatzwert dar.

Wie wir spater im einzelnen sehen werden, ist es magI ich, Wahrschein­

lichkeitsaussag"en Ober die Lage de-s arithmetisdien Mittels vorzuneh­

men. In unserem Fall beispielsweise laBt sich berechnen, daB das

arithmetische Mittel mit einer Wahrscheinl ichkeit von 95 Prozent in

das Interva 11 18 819±852 fall t. 1 Wenn so lche Methoden zur VerfUgung

stehen, ist es einleuchtend, daB auch mit pseudoinduktiven Verfahren

Einsichten gewonnen werden kannen, die die Kenntni"sse Uber die Struk­

turbestandteile eines Systems erhahen.

1.6.3. Simulati"on, Simulationsexperiment und Modell­
experiment als ErschlieBungsmethoden von Modell­
implikationen

Beim Studium der Literatur Uber dynamische Modelle staBt man oft auf

die Begriffe 'Simulation', 'Simulationsexperiment ' und IModellexperi­

1 Siehe Seite 392
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ment ' , die von vielen Autoren mehr oder minder deutlich als eine Me­

thode zur ErschlieBung von Model"limplikationen verstanden werden.

Wir wollen uns im folgenden den Deutungsmogl ichkeiten dieser Begrif­

fe zuwenden und dabei der Frage nachgehen, in welchem Umfang es die

gewonnenen Begriffsauslegungen erlauben, von einer Erschl ieBungsme­

thode zu sprechen.

A. Begriffliche Deutung derTerme 'Simulation', 'Simulationsexperiment',
'Modellexperiment' und ihre Beurteilung als ErschlieBungsmethode

Die wei teste begriffliche Auslegung versteht unter Simulation die

an einer Zielfunktion ausgerichtete sukzessive Variation eines dyna­

mischen Modells. Manche Autoren sprechen generell dann von Simulation,

wenn die sukzessive Variation anhand nicht zwingend optimaler Such­

verfahren (unter Anwendung eines Rechners) erfolgt. In dieser Deu­

tung erweist sich die Simulation als der Vorgang einer normativ aus­

gerichteten Modifizierung eines dynamischen Modells.

Die zweite Verwendungsweise versteht unter Simulation die Ermittlung

des Zeitpfades einer oder mehrerer endogener Variablen eines parame­

trisch-singularen Modells. Simulation wird in diesem Fal I als der

Rechenablauf zur Bestimmung der singularen Implikation in Form des

Zeityerlaufes bestimmter endogener Variablen aufgefaBt.

Die dritte Verwendungsweise des Simulationsbegr~ffes geht Uber die

ausschl ieBI iche Ermittlung von Zeitpfaden hinaus. Ziel einer Simula­

tion ist es in diesem Fal I, mit Hilfe der Bestimmung einer endlichen

Anzahl von singularen Implikationen zu bestimmten generellen Impl i­

kationen zu gelangen.

Hierzu sei an das Beispiel zur StUtzung der Implikation: IDas System

besitzt globale Stabilitat ' , erinnert. Aufgrund der Feststellung, daB

eine groBe Anzahl von Parametervariationen eines Model 15 zu der singu­

Hiren Implikation 'lokale Stabilitat ' fDhren, wird auf die generelle

lmplikation einer globalen Systemstabilitat geschlossen.

In ahnl icher Weise lassen sich aneinander anknupfende Simulationen

zur Untersuchung der Sensitivitat bestimmter Parameter interpretieren,

da sie zur Stutzung bestimmter qual itativer Aussagen Uberdas Systemver-
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halten ftihren. Ein Beispiel hierftir bietet etwa die Aussage: IDas Sy­

stem reagiert bei einer gleichzeitigen Erhohung der Parameter ° und

B auBerordentl ich stark ' . Dieser Satz reprasentiert eine unscharfe ge-

Ziel des Vorgehens: Ermittlung genere11er Imp1 ikationen
(Erkundungsexperiment)

.MODELLEXPERIMENT

Phase der Modellexperimentdurchfilhrung

A - Ersetzung der Parameter °1 , °2 "" , °n
Simulation durch numerische Werte im Differenzen-

(Modellantwort) gleichungsmodell

I~
,

Phase der Modellexperimentauswertung

Anhand der Model1antwort A

Wahl einer modifizierten Parameter--
kombination

REALEXPERIMENT

Phase der RealexperimentdurchfOhrung

Rea 1i s i e rung der numerischen Werte
A -

(Systemantwort) doer kontrol1ierbaren P-ar:ameter

°1 ' ° 2 , ... , on des Systems

'j!"

Phase der Realexperimentauswertung

Anhand der Systemantwort A

Wahleiner modifizierten Parameter--
kombination

Abbruch des Verfahrens, wenn Experimenta~or glaubt,

hinlangliche Informationen zur Formulierung der gewunschten

oder gefundenen generellen lmplikationsbehauptung zu

besitzen.

Abb. 16.1 Darstellung des methodisch analogen Vorgehens in Real­
und Modellexperimenten
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nere1 le Imp1 ikationenbehauptung, da es sich um eine Aussage uber ei­

ne (nicht klar abgegrenzte) Menge verschiedener Mode1lalternativen

hand~lt. Das beschriebene Verfahren zeigt eLne g~oBe ~hnl ichkeit mit

der DurchfOhrung von Experimenten an realen Systemen. Die bestehende

Ana10gie des Vorgehens kommt in den Schemata der Abbi1dung 16.1 zum

Ausdruck.

1m Sinne der hier deutlich werdenden methodischen Analogie zwischen

Mode1l- und Systemuntersuchung bezeichnet man heute die durch das

Schema gekennzeichnete Art der Model luntersuchung auch als Modellex­

periment oder noch spezifischer a1s Simulationsexperiment.

In der dritten Verwendungsweise entspricht der Begriff der Simulation

daher den Begriffen eines Simulations- oder Modellexperiments. In die­

ser Deutung erweist sich die Simulation als die Realisierung pseudoin­

duktiver Methoden zur Gewinnung genereller Modell impl ikationen.

1m folgenden 5011 von der zweiten Deutungsweise ausgegangen werden,

d.h. unter Simulation wird die numerisch konkrete Bestimmung des

Zeitverlaufes der endogenen Variablen eines Modells mit Hilfe eines

Rechnets verstanden. 1m Fa11e der dritten Deutung werden aussch1ieB­

1ich die Begriffe Modell- oder Simulationsexperiment gebraucht.

B. Verwendbarkeit realexperimenteller Verfahren als ErschlieBungsmethode
von Modellimplikationen

In diesem Abschnitt sol len die GrundzOge der sogenannten 'Theorie der

Versuchsplanung' entwickelt werden. Auf dieser Basis wollen wir der

Frage nachgehen, ob die dort entwicke1te Methodik in analoger Weise

im Rahmen von Model lexperimenten zur Bestimmung genere11er Modell im­

p1ikationen anwendbar ist.

a) Methoden der Planung und Auswertung von Realexperimenten

Wir wenden uns zunachst dem im Rahmen einer Versuchsp1anung verwende­

ten Begriffssystem zu.

Das Ergebnis eines realen Experiments ist die ReaktionsgrBBe A. Die

GroBen, welche in einem Rea1experiment systematisch variiert werden,
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bezeichnet man al~ Faktoren. Die Auspr~gung eines Faktors wird a1s

sein Niveau bezeichnet. Die Gesamtheit al ler moglichen Niveaus wird

durch den sogenannten Faktorraum beschrieben. Jede Niveaukombination

repr~sentiert einen Punkt dieses Raumes. Die Wahl einer Niveaukombi­

nation fOhrt damit zu einer Systemantwort oder -reaktion in Form der

ReaktionsgroBe A.

Als Reaktionsoberfl~che bezeichnet man di~ bestehende VerknOpfung zwi­

schen der ReaktionsgroBe A und den durch den Faktorraum repr~sentier­

ten Niveaukombinationen. Sind die Faktoren durch metrische GroBen be­

schreibbar, so kann diesem Begriff im Falle von zwei Faktoren eine

inhaltliche Deutung gegeben werden: In einem dreidimensionalen Koor­

dinatensystem lassen sich di~ Ober den zwei Faktoren angeordneten Wer­

te von A als ein flachenhaftes Gebilde, d.h. die Reaktionsoberflache,

auffas sen.

Wenn die Faktoren eines Experiments durch reelle Zahlen beschrieben

werden konnen, dann ist es Ublich zur Ermittlung ihrer EinfluBstarke

von einer bestimmten stochastischen A-priori-Hypothese auszugehen.

1m Falle zweier Faktoren (Xl und a2 wird der Ansatz

(16.1)

verwendet. E 5011 hierbei eine stochastische Variable mit dem Erwar­

tungswert Null reprasentieren.

1m vorliegenden Fall schatzt man anhand der durch Experimente ermit­

telten Werte von A, (Xl und (X2 die Parameter.6.1 bis .6.3. Unter der Vor­

aussetzung, daB die A-priori-Hypothese gilt, kann man zu einer Aus­

sage Uber die Faktoreneffekte gelangen.

Die geschatzten Parameter ~l und ~2 konnen als.MaBgr~Be~ des ~auptef­

fektes der Faktoren (Xl bzw. (X2 angesehen werden, wahrend ~3 die Star­

ke des' Interaktionseffektes zum Ausdruck bringt. Da die gesch~tzten

Parameter aber keinen sicheren RUckschluB auf die tatsachlichen Pa­

rameter erlauben, ist es auch Oblich, unter Vorgabe einer bestimmten

Sicherheitswahrscheinlichkeit die Hypothese zu prOfen, ob einer der

Parameter Null ist oder nicht. Hangt das Experiment von drei Fakto­

ren ab, so wird der Ansatz
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A = tqcq + 11202 + 11303 + 1140102 + 1150103 + 1160203 +

+ 117010203 + c:

verwendet .

(16.2)

. Bei einer groBeren Anzahl von Faktoren wird ein entsprechend erwei­

terter Ansatz> gewahlt. Derartige Ansatze sol len als FaktoreinfluBpo­

lynome bezeichnet werden.

Mit einer Versuchsplanung will man demnach herausfinden, ob die Va~

riation eines Faktors das Versuchsergebnis A beeinfluB~ und ob dar­

Uber hinaus Interaktionseffekte zwischen den Faktoren vorliegen. Als

MaBgroBen fUr die Starke dieser Effekte dienen die geschatzten Para-
'\"

meter t:,. ••
I

b) .Obertragbarkeit realexperimenteller Planungs- und Auswertungsmethoden
auf Modellexperimente

Die geschilderte 'Theorie der Versuchsplanung ' setzt voraus,

(1) daB sich bestimmte Faktoren 01,02,'" ,0 identifizieren und expe­
n

rimentel I variieren lassen,

(2) daB eine ReaktionsgroBe A definiert wird und

.(3) daB ein stochastischer ProzeB vorl iegt, der durch ein Faktorein­

fluBpolynom beschrieben werden kann.

Versuchen wir diese Begriffsbildungen und Annahmen auf ein Modell zur

Durchfuhrung eines analogen Modellexperimentes zu ubertragen. Die Fak­

toren 01,02, ••• ,0 in einem Realexperiment entsprechen bestimmten Para-n
metern eines Modells. Wie in einem Realexperiment die Faktoren vari-

iert werden, so konnen diese Parameter i~ Rahmen verschiedener Simu­

lationen verandert werden. Hier ist eine Korrespondenz gegeben.

Bezuglich der Wahl einer ReaktionsgroBe A zeigt es sich aber, daB

nicht jede wunschenswerte singulare Impl ikation eines Model Is als Re­

aktionsgroBe interpretiert werden kann.

Bei dynamischen Model len kann man zwischen zwei Arten von singularen

lmplikationen unterscheiden: den Zahlenwert- und den Zahlenfolgeim­

pI ikationen.

Eine Zahlenwertimpl ikation ist eine einzelne empirisch interpretier-
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te Zahl wie beispielsweise der numerische Wert eines Systemmultipli­

kators.
2

Eine Zahlenfolgeimplikation dagegen reprasentiert eine Fol­

ge numerischer Werte; als Beispiel sei die Zeitreihe einer endogenen

Variablen genannt.

Das }m Rahmen cler Versuchsplanung verwendete Begriffssystem geht da­

von aus, daB eine sogenannte ReaktionsgroBe stets durch eine MaBzahl

beschrieben werden kann. Diese Einschrankung, die sich historisch aus

der Annahme ausschlieBTich statischer Modelle erklart, muB bei der

Ubertragung der Begriffsanwendung in den Bereich der Modellexperimen­

te beachtet werden, d.h. Zahlenfolgeimpl ikationen sind mit diesem be­

griffl ichen Konzept nicht faBbar.

Die dritte Voraussetzung besagt, daB die Existenz eines stochasti­

schen Prozesses unterstellt wird, der durch ein bestimmtes Faktorein­

fluBpolynorn beschrieben werden kann. Diese Annahme ist im Falle de­

terministischer Modelle nicht zutreffend, denn die Wiederholung ei­

nes Experirnentes fOhrt in diesem Fall stets zu einer identischen Re­

aktionsgroBe A.

Wenn unter Variation der Parameter eines deterministischen Modells

I Beobachtungswerte' von A gewonnen werden und mit diesen die Parame­

ter der Faktorpolynomfunktion geschatzt werden,9Cinn handel t es sic;h

nur noch begrenzt urn die analoge Anwendung einer Methodik der Ver­

suchsplanung. Schatzt man die Parameter einer vorgesehenen Faktorpo.

lynomfunktion in diesem Fall nach der Methode der kleinsten Quadrate,

so laBt sich dieser Vorgang so deuten: ein unbekannter funktionaler

Zusammenhang zwischen einer abhangigen Variablen A und den unabhan­

gigen Variablen ul,u2, ... ,an 5011 durch .eine Polynomfunktion approxi­

rntert werden. Unterder Voraussetzung, daB die Approximation gelingt,

k5nnen di e berechneten Pa rameter ~. a Is HaBg roBen der i sol i erten und
I

i nterakti ven Pa rametere i nf 1Osse angesehen werden. ·'Das erm i tte 1te Fak-

toreinfluBpolynom ist hierbei als eine generelle Implikation des un­

tersuchten Modells aufzufassen, weil es eine Aussage uber den Ein­

fluB einer Menge alternativer Parameterkombinationen auf die System­

antwort A 1iefert.

Betrachten wir beispielsweise die Endgleichunq eines MA-Modells

2 Zum Begriff siehe Sei te 210
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yet) = (a+aS)Y(t-1) - a8Y(t-2) + 2000

und wahlen als ReaktionsgroBe A

Y(0)=Y(1)=10 000

Nehmen wir weiter an, daB die Parameter a und 8 dem Bereich O<a<l,

0<8<0,75 entstammen sol len. Unter diesen Bedingungen wurden durch Zu­

fallsauswahl fGnfzig Kombinationen von a und S bestimmt und die ent­

sprechenden GraBen fur A ermittelt. Eine Kleinstquadratschatzung nach

(16.1) ergab die Parameterwerte (mit a=a 1 und S'=a Z)

60=19,.164, 61=136,768, 62=-101,845 und li3=159,092

Als MaBgroBe fUr den Approximationsgrad kann das BestimmtheitsmaB R2

verwendet werden, welches Werte zwischen 0 und 1 annimmt. 1m Falle

R2=1 wUrden in unserem Beispiel alle simulierten Wer.te von A durch

das Polynom beschrieben. Oa sich R2 nur auf 0,73 belief, dUrfte im

angefGhrten Fall eine ausreichende Approximation nicht gegeben sein.

Da es moglich ist; den durch das Modell bestimmten Zu~ammenhang zwi­

schen A und den Faktoren a und 8 aus clem MA-Modell deduktiv abzulei-

ten, ist es von Interesse, welche Beziehung zwischen A einerseits

sowie a und e andererseits tatsachl ich zum Tragen kommt. Oer genaue

Zusammenhang wird durch die folgende funktionale VerknUpfung be­

'schr i eben. 3

Die Feststellung, daB eine groBe formale Ahnl ichkeit mit dem Ansatz

3 Zum Berechnungsverfahren siehe Seite 194f.
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(16.1) nicht vorl iegt, berechtigt indessen nicht zu dem Sch1uB, das

unterstel 1te Faktoreinf1uBpolynom sei fOr eine Schatzung ungeeignet.

A1s maBgebendes Kriterium fOr die Akzeptierbarkeit der Approximation

dient im Fa1 1e deterministischer Model 1e al lein das BestimmtheitsmaB.

1m Falle eines stochastischen Model 15 wird von der Annahme ausgegan­

gen, daB dieses durch ein stochastisches Faktoreinf1uBpolynomanna­

hernd approximiert werden kann. Mit Hi1fe bestimmter statistischer

Tests kann Oberprtift werden, ob die in der A-priori-Hypothese zum Aus­

druck kommenden Annahmen akzeptabe1 sind. Die Anwendung statistischer

Tests in Form von F- oder t-Tests erlaubt, wie schon erwahnt, die Ge­

winnung einer Wahrs~heinlichkeitsausage,daB einer der Parameter 6

der Hypothese Null sei.

Die Frage nach der Existenz einer Nullhypothese 1auft auf die Frage

hinaus, ob ein Parameter Oberhaupt einen iso1 ierten oder interakti­

ven EinfluB hat. Diese. Frage stellt sich beim Vorl legen eines dynami­

schen Mode1ls nicht, da man aU5 der Model lstruktur des primaren An­

satzes stets das Vorliegen derartiger Einf10sse erkennen kann.

Mit wachsender Zahl der in die A-priori-Hypothese eingehenden Para­

meter n~mmt der mit einer Kleinstquadratschatzung verbundene Aufwand

Oberproportiona1 zu .. Bei n Parameternsind im Rahmen eirier polyriomeli

Regression 2n-1 Variab1en zu definieren. Das Schatzprogramm des SPSS­

Programmpaketes beispie1sweise gestat~et die BerOcksichtigung von

maximal 100 Variab1en, so daB im Hochstfal1 sechs Parameter unter­

sucht werden konnen.
4

Nach Kenntnis des Autors wurde eine Versuchsp1anung an einem graBen

stochastischen Simulationsmode11 bisher nur von BONINI durchgefuhrt,

der den EinfluB von acht Faktoren mit jewei1s zwei Auspragungsmog-

I ichkeiten untersuchte [20,S.89ff]. Er praktizierte hierbei ein a1s

fraktionierte Versuchsplanung bezeichnetes Verfahren, welches es ge­

stattet, die Anzahl der zur Feststel lung der Effekte notwendi~en Re­

aktionswerte von A zu reduzieren. 5 Die Anwendung dieses Verfahrens

basiert a11erdings auf der stillschweigenden Annahme des Fehlens von

Interaktionseffekten, eine Unterstel lung, die bei dynamischen Model­

len nicht unprob1ematisch ist.
~ SPSS (Statistical Package for the Social Sciences)
5 Zum Verfahren der fraktionierten Versuchsauswertung siehe [109,S.287ff]
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1.7. Gewinnung und Oberprufung dynamischer Madelle

Die bisherige Betrachtung fuhrte vom Aufbau dynamischer Modelle zu

ihren Impl ikationen sowie den Methoden, mit welchen Impl ikationen

~us dynamischen Modellen erschlossen werden konnen. Die Relevanz die­

ser Ausfuhrungen wird entscheidend von der Frage beeinfluBt, ob es

moglich und auch wahrscheinl ich ist, in den Wirtschafts- und $ozial­

wfssenschaften empirisch akzeptable dynamische Model le zu entwickeln.

Die Probleme der Gewinnung und empirischen Uberprufung dynamischer

Model le sind Gegenstand dieses Abschnittes.

1.7.1. Gewinnung dynamischer Hypothesen

Die Gewinnung real itatsnaher Hypothesen stellt heute das H~uptproblem

jeder dynamischen Modellentwicklung dar. Es 1iegt die Frage nahe, ob

sich nicht ein Verfahren finden laSt, das in verbindl icher Weise ei­

nen Weg zur Gewinnung derartiger Hypothesen vorschreibt. Gabe es ein

solches Verfahren, so ware das Problem der Hypothesengewinnung ge­

lost, denn seine konsequente Befolgung wUrde zu den gewunschten Hy­

pothesen fuhren. Ein solches Hypothesengewinnungsverfahren kann of­

fenba r nu r da rauf ausger: i chtet se in, aus den vorha ndenen. Be9!;lC?~htungs­

werten eines bestimmten Gegenstandsbereiches mit Hilfe einer eindeu­

tigen Vorschrift zu den Hypothesen zu gelangen, die diese Beobachtungs~

werte 'erzeugt l haben. Bisher ist es nicht gelungen, ein derartiges

zwingendes Verfahren zu entwickeln, und viele Wissenschaftstheoreti­

ker sind der Auffassung, daB dies aus prinzipiellen GrUnden auch in

Zukunft nicht megl ich sein wird. Denn die Gewinnung eines derartigen

Verfahrens I iefe auf die Losung des sogenannten Induktionsproblems

hinaus. Aus diesem Grunde ist die Entwi~klung erfolgreicher Hypothe­

sen weitgehend dem Gespur eines Wissenschaftlers Oberlassen.

Wenn e$ auch kein verbindl iches Hypothesengewinnungsverfahren gibt,

so lassen sich jedoch im Bereich stochastischer Hypothesen bestimmte

Verfahren aufzeigen, die - unter Vorbehalt - als Hypothesengewinnungs­

verfahren anzusehen sind. Der folgende Abschnitt geht insbesondere
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auf diejenigen Verfahren starker ein, die zum etabl ierten Bestand

der statistischen Schatztheorie geharen. Da wir uns ausschl ieBl ich

mit metrisch-dynamischen Modellen beschaftigen, verengt sich unsere

Betrachtung auf den als Okonometrie bezeichneten TeiJbereich der sta­

tistischen Schatztheorie.

Die folgenden AusfUhrungen kannen und sollen keinesfalJs die umfang­

reiche ,5tandard0erke fOllenden Verfahren der ~konometrie wieder­

geben. Es geht allein darum, dem Leser einen ersten intuitiven Ein­

druck von den Mag 1ichkei ten und Grenzen der Anwendung statistischer

Schatzverfahren zu vermitteln.'

A. Gewinnung stochastischer Hypothesen

Stochastische Hypothesen lassen sich' in parametrisch-singulare und

parametrisch-generel1e Hypothesen eintei len. [VgJ .5. 39f.]

Die stochastische Hypothese

Y(t) = O,5Y(t-l) + E(t) e:( t) E NV ( 0 , 10) (17.1)

ist beispielsweise parametrisch-singular, denn samtl iche Parameter

sind numerisch bestimmt. Die Hypothese

a>O E;' (' t) E. NV ( 0 ,a) (1 7. 2)

dagegen ist eine parametrisch-generelle Hypothese, wei 1 die Parame­

ter a und a unterschiedl iche numerische Werte annehmen kannen.

Die Gewinnung stochastischer Hypothesen vollzieht sich im allgemei­

nen zweistufig: 1m ersten Schritt wird eine numerisch unbestimmte

Hypothese zur Beschreibung eines konkreten Sachverhaltes formul iert,

deren Parameter in einem zweiten Schritt anhand der vorliegenden Beob­

achtungswerte numerisch spezifiziert werden. Die parametrisch-gene­

relle stoch~stische Hypothese wird daher in eine parametrisch-singu­

lare Hypothese Uberfuhrt. Hinter der Formul ierung 'UberfOhrt ' ver­

birgt sich dabei das bereits angesprochene Hypothesengewinnungsver­

fahren.
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Angenommen, ein Mode1lentwickler findet aufgr.und bestimmter Uberle­

gungen, daB die Hypothese (17.2) gel ten solle, dann bedeutet dies:

das vor1iegende System wird durch eine Hypothese beschrieben, die

sich aus der zahlenmaBigen Konkretisierung der Parameter a und cr er­

gibt. Hypothese (17.2) bes~gt damit: die zur Beschreibung des Systems

in Frage kommende numerisch bestimmte Hypothese entstammt stets der

d~rc~ den Ausdruck (17.2) zuge1assenen Hypothesenme~ge. Der 'Schritt

zur Gewinnung einer numerisch bestimmten Hypothese versucht aus die­

ser Hypothesenmenge die Hypothese herauszusuchen, der, angesichts der

vorgegebenen .Beobachtungen, die gr6Bte VorziehenswUrdigkejt zukommt.

So ware es beispielsweise denkbar, daB sich im Lichte bestimmter Be­

obachtungswerte die parametrisch-singu1are Hypothese (17.1) unter

den durch (17.2) beschriebenen Alternativhypothesen a·1s am vorzie­

henswurdigsten erweist. Ein Hypothesengewinnungsverfahren 1iegt in­

sofern vor, als im Rahmen einer rational begrUndbaren Methode eine

der a1ternativen Hypothesen zur welteren Verwendung ausgew~hlt wird.

Diese erste grobe Kennzelchnung dUrfte schon deutl ich machen, daB

die Konkretisierung des angeqeuteten Verfahrens zu zwei Problemen

fUhrt. Das erste Problem laBt sich durch die Frage charakterisieren,

oheine von vornherein getroffene Begrenzung auf eine Teilmeng.e von

Alternativhypothesen nicht zu einer unzulassigen Aussperrung anderer

stochastischer Hypothesen fUhrt.

Das zweite Problem knOpft an das Kriterium der Vorziehenswurdigkeit

alternativer Hypothesen an: es stel It sich die Frage, ob es ein sinn­

volles und berechenbares MaB der VorziehenswOrdigkeit gibt.

Hierzu sei folgende Uber1egung vorgenommen: Unterstellen wir fur die

parametrisch-generelle Hypothese (17.2), daB bezUgl ich der Variablen

Y die Beobachtungen aus p Perioden Y*(1) ,Y*(2), ... ,Y*(p) vorl iegen,

so kann eine Schatzung des Parame~ers a in (17.2), deren Wert durch

a gekennzeichnet wird, durch die unspezifische Beziehung

a = F[ Y* (1) , Y* (2) , ..• , y* (p) ] (17.3)

beschrieben werden.

Diese Beziehung bringt nur zum Ausdruck, daB der Schatzwert von a
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durch eine funktionale VerknUpfung der Beobachtungswerte Y*(1),Y*(2) •

... ,Y*(p) zustande kommt. Die Frage nach der VorziehenswUrdigkeit al­

ternativer numerischer Konkretisierungen des Parameters a kann damit

in die Frage OberfUhrt werden, welche der funktionalen VerknUpfungs­

formen F[ ... J zur 'besten ' Schatzung von a fGhrt.

Bevor wir dieser Frage weiter nachgehen, mussen wir uns klarmachen,

daB die Beobachtungswerte Y*(1),Y*(2) •.•. ,Y*(p) stochastische Varia­

blen sind, da sie sich ja voraussetzungsgemaB als eine Stichprobe

aus einer der in (17.2) beschriebenen statistischen Hypothesen inter­

pretieren lassen. Wenn diese Beobachtungswerte sich jedoch als Stich­

proben eines Zufal1sprozesses deuten lassen, so ist aufgrund cler ein­

deutigen funktionalen Verknupfung (17.3) der Schatzwert a ebenfalls

eine stochastische Variab~e. die sich mit Hilfe einer Verteilungs­

funktion beschreiben laBt. Sind also die numerischen Werte der Para­

meter a und cr in (17.2) und die konkrete Form der Schatzfunktion

(17.3) bekannt, dann ist es prinzipiell moglich. die Verteilungsfunk­

tion des Schatzwertes a zu ermitteln. Der Verlauf dieser Schatzwert­

verteilungsfunktion a im Verhaltnis zu dem tatsachl ichen Parameter a

kann als Kriterium fur die VorziehenswUrdigkeit verschiedener Funk­

tionsformen F[ .. ;J verwendetwerden.

Ein Beurteilungskriterium fur die Gute einer Schatzfunktion ist ihre

Verzerrung. Hierunter ver-steht man die Differenz zwischen dem Erwar­

tungswert der Vertei l~ngsfunktion von a und dem tatsachlichen Parame­

ter a, d.h.

Verzerrung = E(a) - a

Eine Schatzfunktion wird als unverzerrt bezeichnet, wenn ihre Verzer­

rung Null ist. Einen solchen Fall beschreibt cler linke Teil der Ab­

bildung 17.1, wahrend im rechten Teil zwischen dem Parameter a und

E(a) eine Abweichung, d.h. eine Verzerrung besteht.

Ein wei teres Kriterium fur die Gute der Schatzfunktion ist die Va­

rianz derParameterschatzvertei lung. 1st eine Schatzfunktion verzer­

rungsfrei, dann ist es erstrebenswert, daB sie daruber hinaus auch

noch eine moglichst geringe Varianz besitzt. In Abbildung 17.2 sind
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zwei unverzerrte Sch~tzfunktionenmit ~ifferierender Varianz ange­

fOh rt.

VERZERRUNG

a

= E(a)

p (a')

a.

E(a-)

..

Abb. 17.1 Sch~tzverteilung des Parameters amit und ohne Verzerrung

p (a)

-a
a

Abb. 17.2 Unverzerrte Schatzverteilungen des Parameters a mit ver­
schiedenen Varianzen

Es leuchtet ein, daB die Schatzverteilung II der Sch13tzverteilung I

vorzuziehen ist, weil die Realisationen von a dichter um den tats~ch-
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1ichen Parameterwert a gelagert sind.

Es I iegt nahe, unter allen verfUgbaren Schatzfunktionen diejenige

auszuwahlen, die zum einen verzerrungsfrei ist undo darOber hinaus

auch die geringste Varianz aufweist. Eine Schatzfunktion, die diese

Eigenschaften besitzt, wird als effiziente Schatzfunktion bezeichnet.

Die Frage nach der VorziehenswUrdigkeit bestimmter Alternativhypothe­

sen lauft daher auf die Wahl einer effizienten Schatzfunktion F[ ... J

hinaus.

Legt man die Menge aller I inearen Schatzfunktionen zugrunde, so kann

gezeigt werden, daB die Anwendung der bekannten Parameterschatzmetho­

de der kleinsten Quadrate zu einer effizienten Schatzung fUhrt.' Die­

ser mathematisch einfache und erstrebenswerte Fall I iegt jedoch nur

dann vor, wenn die parametrisch-generel le stochastische Hypothese be­

stimmte (klassische) Annahmen erfUllt. Diese Annahmen sind:

Erstens: 8 ist eine Zufallsvariable mit einem Erwartungswert von Null.

Zweitens: Die Varianz von E ist in jeder Periode unverandert.

Drittens: Die Real isation der Zufallsvariablen E ist in den einzel­

nen Perioden stochastisch unabhangig. Dies bedeutet, daB die Reali­

sation von E in einer Periode unabhangig ist von der Real isation von

E: in den vorangegangenen Perioden.

Viertens: Die Zufal lsvariable E wi rd nicht von den vorherbestimmten

Variablen beeinfluBt. Hiermit wird zum Ausdruck gebracht, daB zwi­

schen den Schockvariablen und den vorherbestimmten Variablen keine

Beziehungen bestehen. Exakter ausgedrUckt setzt dieses voraus, daB

die Kovarianzen zwischen E(t) und den vorherbestimmten Variablen Null
. .. 2seln mussen.

Falls eine dieser Annahmen verletzt wird, fOhrt dies dazu, daB die

Effizienz der Schatzfunktion nicht mehr gewahrleistet ist. Uberdie

erwahnten Annahmen hinausgehend, wird meistens unterstel It, daB die

stochastische Variable E durch ~ine Normalvertei lung beschrieben wer­

den kann. Unter dieser Voraussetzung laBt sich zelgen, daB die Ver-

1 Zum Bewe iss iehe [201, S. 11 9f J
2 Zu einer detaill ierten Darstellung dieser Voraussetzungen siehe

[201 ,S. 106ffJ



116

tei lungsfunktion der Parameterschatzwerte (in unserem Beispiel a)
ebenfal Is normalverteilt j~t. Dieser Umstand wiederum ermogl icht es,

Wahrscheinl ichkeitsaussagen Ober den Bereich vorzunehmen, in dem die

tatsachl ichen Parameter (in unserem Beispiel a) auftreten. Zahlen­

maBig exakte Aussagen uber die Beziehung zwischen Schatzwert und tat­

sachlichem Parameterwert liefern der sogenannte t-Test und der Stan­

dardfehlertest. 3

Die IStrammheit ' des funktionalen Zusammenhangs zwischen der endoge­

nen unverzogerten Variablen und den vorherbestimmten Variablen einer

Hypothese wird durch das BestimmtheitsmaB zum Ausdruck gebracht.

Weil man zur DurchfOhrung einer effizienten Schatzung im Rahmen der

Kleinstquadratmethode von den erwahnten Annahmen bezOglich der Hypo­

thesenstruktur au~geht, stehen bestimmte Tests zur Verfugung, mit de-
f

ne~ man uberprOfen kann, ob die unterstellten Annahmen auch tatsach-

lich zutreffen~ Diese statistischen Tests, die in den einschlagigen

okonometrischen Publikationen eingehend diskutiert werden, zeichnen

sich jedoc~ dadurch aus, daB bei der DurchfOhrung solcher Tests von

der GGltigkeit zumindest einer der anderen Annahmen ausgegangen wird.

Dies fDhrt letzten Endes zu einem Zirkel, der die Anwendung derarti­

ger Annahmetests pro_blematlsch macht.

Mit Hilfe der Methode der kleinsten Quadrate konnen auch die Parame­

ter nichtlinearer Hypothesen geschatzt werden, wenn es gel ingt, die­

se Hypothesen in eine lineare Form zu ilberfilhren.

Hierzu gehoren die sogenannten Polynomhypothesen. Unterstel It man

beispielsweise eine Hypothese der Form

Y = a,x, + a 2x2 + a3x,x2 + E

so erh§lt·man mit der Definition

die 1ineare Funktion

Y = alz, + a 2z2 + a3z3 + E

welche mit Hilfe der Methode der kleinsten Quadrate geschatzt werden

kann.
3 Vg I. im e i nze Inen [201, S. 13 Off. ]
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Die vorangegangenen Bemerkungen dienen ausschlieBli~h einer ersten

motivierenden Charakterisierung der Probleme, welche bei der Gewin- .

nung stochastischer Hypothesen auftreten. Eine detaill ierte Beschaf­

tigung mit diesem Problemkomplex ist stets dann erforderlich, wenn

man tatsachlich Parameterschatzu~gen vornehmen will. Schwierigkeiten

entstehen insbesondere dann, wenn eine oder mehrere der fur eine ef­

fiziente Kieinstquadratschatzung erforderl ichen Annahmen verletzt

sind. Dies ist beispielsweise bezUglich der dritten Annahme bei in­

terdependenten Hypothesenmodellen der Fall. 4

Unter diesen Umstanden sind mathematisch aufwendigere Schatzverfah­

ren erforderl ich.

Vollzieht sich die statistische Schatzung jedoch im Rahmen der heute

vielfach verwendeten ~ekursiven Modelle, so ist die praktische Durch­

fuhrung·von Kleinstquadratschatzungen, die Interpretation der Schatz­

ergebnisse sowie die Anwendung von Tests zur PramissenuberprUfung mit

einer nur geringen Einarbeitungszeit verbunden. 5 Denn die technische

DurchfOhrung des Schatzverfahrens und die Ermittlung der diversen

statistischen KenngroBen wird heute von entsprechenden computerge­

stUtzten statistischen Programmsystemen wie beispielsweise SPSS oder

TSP vorgenommen. 6 DieEi narbei tungszeit zur instrumentellen Handha­

bung solcher Programmsysteme betragt bei systematischer Anweisung

nicht mehr als ein bis zwei Stunden. Dies setzt voraus, daB der Pro­

grammanwender in der Lage ist, die erhaltenen Informationen im Lich­

te der zugrunde I iegenden Schatztheorie richtig zu interpretieren.

Der nur von praktischen Zielen geleitete Anwender erhalt eine fur.

viele Probleme ausreichende Fundierung, wenn er die von umfassenden

theoretischen Begrundungen weitgehend freien AnwendungseinfUhrungen

in den entsprechenden Beschreibungen der EDV-Schatzprogramme Ilest. 7'

Abschl ieBend 5011 unter Verwendung des statistischen Schatzsystems

TSP die DurchfUhrung einer Parameterschatzung an dem uns bereits be­
4 Naheres siehe Seite 323f.
5 Zum Aufbau rekursiver Model le siehe Seite 316ff.
6 TSP (Time Series Processor)
7 Siehe zum Beispiel [148,S.320-397J
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kannten Multipl ikator-Akzeleratormodel1 vorgenommen werden. 1m fol­

genden ist das TSP-Programm angefuhrt, mit welchem unter Vorgabe von

27 Beobachtungswerten fur Y, C und I. anhand der parametri sch-gene-
I

rellen stochastischen Hypothesen

C(t) = aY(t-1) + E:
1

Ii (t) = (3[C(t)-C(t-1)J+ E: 2

die Parameter fUr a und S geschatzt werden.

NAME D5olMTSP;
LOAD;
SMPL 1 27;
GiNR YLAG1=Y(-1);

3 GENR COLAG1 a CO(-1);
~ GEM! DCO=CO-COLAG1;
E SMPL 2 27;
g OLSQ CO YLAG1;
~ OLSQ I I DCO;

STOP;
END;
SMPL 1 27;
L01D Y;
8000,8860.3,9341.3,8932.2,8935.8,9801.3,10763,11322,11345,
12083,11917,10658,9779.4,9068.8,10223,10675,11209,11292,
12ol88,12947,12091,12321,1~07,13510,12425,12126,12968;

LOAD CO;·
7200,7387 .. 2-,77'1'3 .5 ,-8083. 2,8-lol6 .7,8273 .-5,8SS9-, 9'766 .-8,- 1'/12-54 -,
1058ol,10689,10129,9530.2,8358.2,853ol.3,9217.5,9934,9928.7,
10621,11395,11287,10827,11330,12032,11647,1100ol,11129;

3 LOAD II;
~ 200,173.11,267.79,49.096,-10.92,27.79,374.2,855.26,390.ol4,
~ 199.6ol,-71.831.,-271.03,-550.8,-789.46,188.77,557.43,375.26,
o -37.015,466.32,652.73,-96.779,-206.16,376.11,478.25,

-222.14,-577.37,139.05;
IND;

Das gesamte TSP-Programm zerfallt in den Programmteil, der mit der

Anweisung END schl ieBt und dem sich daran anschlieBenden Datenteil.

Die erste Zei le des Programmteils beginnt mit der Bezeichnung des

Programmnamens D54MTSP, der sich die Anweisung LOAD zum Laden der Da­

ten anschlieBt. Mit SMPL 1 27 wird die Anweisung gegeben, daB die

Elemente 1 bis 27 der na~hfolgend definierten Zeitreihen berOcksich­

tigt werden so11en. 1m Rahmen der drei Anweisungstypen GENR werden

die um eine Periode verzogerten Variablen fur das Volkseinkommen Y
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und den Konsum CO definiert. Mit DCa wird die Differenz C(t)-C(t-1)

definiert, welche zur Schatzung der Hypothese der induzierten In­

vestitionen erforderl ich ist.

SMPL 2 27 bewirkt bei der nachfolgenden $chatzung, daB die Beobach­

tung der (unverz5gerten) erklarten Variablen I. (t} und C(t) von der
I

2ten bis zur 27sten Periode zu berucksichtigen sind. WOrden die Beob-

achtungswerte der ersten Periode zut Schatzung v~rwendet, dann muB­

ten wegen C(t-l) und Y(t-l) als abhangige Variablen die Beobachtungs­

werte von C(O) und Y(O) zur Verfugung stehen. Da dies jedoch'nicht

der Fall ist, wUrde das Schatzprogramm die nicht spezifizierten Werte

fur C(O) und Y(O) Null setzen, was zu einer inkorrekten Schatzung fOh­

ren wurde.

Mit den Anweisungen, die durch OLSQ eingeleitet werden, wird eine

Kleinstquadratschatzung gewUnscht. Die diesem Aufruf folgende Variab­

le ist stets die abhangige Variable, wahrend die sich anschl ieBenden

Benennungen di~ unabhangigen Variablen bestimmen.Mit OLSti CO YLAGl

wird die Konsumquote a der Konsumfunktion C(t)=aY(t) geschatzt. In

der nachfolgenden Anweisung wird analog zu dem Gesagten der Akzele­

rator im Rahmen der Hypothese einer induzierten Investition ermittelt.

Die Anwei sungen STOP unci END schlieB-endenProgrammtei I abo 1m Daten­

teil sind die fUr Y, CO und 1I gefundenen Beobachtungswerte angefuhrt.

Der unten angefuhrte Ausdruck liefert die fUr die Schatzung der er­

sten Gleichung, d.h. C(t)=aY(t-l), relevanten Informationen.

EQUATION 1
************
ORDINARY LEAST SQUARES

SMPL VECTOR 2 27
LEFT-HAND VARIABLE: CO
MEAN or DEPENDENT VARIABLE· 9875.02
RIGHT-HAND ESTIMATED
VARIABLE COEFFICIENT

STANDARD
ERROR

T- MEAN OF
STATISTIC VARIABLE

YLAG1 0.898380 0.5e3069E-02 178.580 10981.6,
NUMBER OF OBSERVATIONS = 26
LOG OF LIKI1lHOOD FUNCTION. -183.28?
R-SQUARED = 0.954991
R-SQUARED ADJ. = 0.953190
DURBIN-WATSON STATISTIC (ADJ. FOR e GAPS) = 1.98486
DURBIN-WATSON STATISTIC 4TH ORDER (ADJ. FOP. 0 GAPS) = 1.81159
STANDARD ERROR OF TBE REGRESSION. 284.337
SUM Of RESIDUALS = 244.301
SUM OF SQUARED RESIDUALS = 0.202119E 07
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Der geschatzte Parameterwert fur a betragt 0,898. Die weiteren Anga­

ben des Ausdruckes dienen vor allem der statistischen Beurteilung

des Schatzergebnisses sowie der Dokumentation.

Eine Kommentierung der ausgegebenen statistischen Kennzahlen unter­

bleibt, weil in der vorangegangenen globalen Charakterisierung ei­

nes Parameterschatzverfahrens die entsprechende Basis fOr eine sinn­

volle Interpretation nicht geschaffen wurde. Durch zusatzl iche Pro­

grammanweisungen sind weitere Informationen zur Beurteilung des

Schatzprozesses zu gewinnen.

In einem Modell, dessen Parameter ausschlieBlich statistisch geschatzt

werden, treten nur "Beobachtungsvariablen auf. Es liegt die Frage nahe,

ob es denkbar ist, daB bei Anwendung von statistischen Schatzungen

verschiedene miteinander konkurrierende dynamische Modelle durch die

vorl iegenden Beobachtungen in gleicher Weise gestOtzt und numerisch

konkretisiert werden. Dies hatte zur Folge, daB allein mit Hilfe ei­

ner statistischen Schatzung nicht entschieden werden kann, welcher. "

der konkurrierenden Hypothesen der Vorrang zu geben ist.

Ein solcher Fall von fOnf konkurrierenden Investitionshypothesen wur­

de von BISCHOFF"beschrieben. BISCHOFF ~chatzte anhand der iOn dem

Zeitra~m der Jahre 1968bis Mltte 1916 angefallenen vierteij~hrli­

chen Beobachtungswerte fOnf Hypothesen, die die Erklarung der US­

Ausrustungsinvestitionen zum Zweck haben.[18]

Diese konkurrierendenHypothesen, in denen bestimmte theoretische Po­

sitionen zum Ausdruck kommen, sol len hier nicht naher spezifiziert

werden. Abbildung 17.3 zeigt, daB die alternativen Hypothesen H1 bis

HS im Stutzber-eich der Schatzung sowohl untereinanc:ler als auch mit

dem tatsachl ichen Verlauf so stark Obereinstimmen, daB sie im Rahmen

des gewahltenMaBstabes durch einen einzigen Kurvenverlauf reprasen­

tiert werden kannen.

1m Prognosebereich besteht zwar bis auf Hypothese H2 auch im ersten

und zweiten Quartal 1971 eine Ubereinstimmung; danach jedoch streben

die Prognosen auseinander.

Da samtl iche Hypothesen die Vergangenheit, d.h. den StUtzbereich, gut

erklaren, ist es nicht magI ich, einem Modell eine hahere empirische
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Abb. '7.3 Erk1 a rung und Prognose der US""AusrUstUngsitiVestirrbrieri an-
hand von funf konkurrierenden Hypothesen H, bis HS nach BISCHOFF

Bewahrung zuzusprechen. In einer derartigen Situation ste1lt sich die

Frage, we1che der a1ternativen Investitionshypothesen H, bis HS nun-·

mehr fur die Durchfuhrung einer anstehenden Prognose herangezogen

werden 5011.. ~ibt es kein Argument dafUr, ein bestimmtes Modell vor­

zuziehen, dann kann jemand gerade das Modell auswahlen,dessen Prog­

nose seine Wunschvorstel1ungen entgegenkommt. Hier eroffnet sich die

Mog1 ichkeit einer von externen Zie1en gelenkten Mode11verwendung.

Es ist wichtig zu erkennen, daB diese Mog1ichkeit einer Mode11manipu­

lation zwar besteht, aber sie kann durch Einfuhrung eines weiteren Hy­

pothesenauszeichnungskriteriums ausgeraumt werden. Treten FaIle auf,

daB Beobachtungsdaten verschiedene Erk1arungsversuche gleich gut be­

friedigen, was 1m Wissenschaftsbetrie·b durchaus nicht auBergewohn1ich
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ist, dann wird die Maxime praktiziert, aus den konkurrierenden Theo­

rien die syntaktisch einfachere auszuwahlen.

B. Gewinnung deterministischer Hypothesen

Wahrend stochastische Hypothesen fast ausschlieBI ich durch Parameter­

schatzungen auf der Grundlage gewisser A-priori-Annahmengewonnen wer­

den, laBt sich fUr die Aufstellung deterministischer Hypothesen kein

dominierendes Verfahren angeben.

In einigen Fallen werden deterministisc~e aus stochastischen Hypothe­

sen abgeleitet; .man kann dieses Verfahren als Hypothesendeterminisie­

rung bezeichnen. 1m vorigen Abschnitt wurde die statistische Schat­

zung der Parameter der"Endgleichung des Konsums C imRahmen eines MA­

Modells beschrieben. Es ergab sich die Beziehung

eEV(~=O, 0=0,503)

Vernachlassigt man den EinfluB der stochastischen Variablen, dann er­

halt man die deterministische Hypothese

c(t) = 0, 898Y ( t-1)

Das Aufstellen von Hypothesen wird erleichtert, wenn es sich um kon­

trollierte Verhaltensgleichungen handelt. 1m Falle der bereits erwahn~

ten kontroll ierten Verhaltensgleichung

W(t) = 0,05U(t-l) 'W
U

'Werbeausgaben
Umsatz

ist die Modell ierung immer dann unproblematisch, wenn man weiB, daB

die hier zum Ausdruck kommende Entscheidungsvorschrift exakt befolgt

wird. In einzelbetrieblichen dynamischen Model len nehmen kontroll ier­

te Verhaltensgleichungen (d.h. die Model lierung von Entscheidungsre­

geln) einen relativ groBen Anteil ein.

SchlieBlich kann eine deterministische Hypothese auch durch die aus­

schlieBlich subjektiveEinschatzung eines Fachmannes gewonnen werden.

In diesem Fall 5011 von subjektiver Hypothesenschatzung gesprochen

werden. Ein Unternehmer ist zum Beispiel gezwungen, bestimmte Vor­

stellungen Ober seine Absatzchancen, das Verhalten cler Konkurrenz
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und die Fertigungssituation zu entwickeln. Diese Vorstellungen, die

bestimmte Hypothesen beinhalten, kann man zu explizieren versuchen

und sie damit auch dem Unternehmer selbst klar vor Augen fOhren.

Als einfachster Fall sei auf die Bestimmung der sogenannten Preis-Ab­

satzfunktion verwiesen, die eine Wenn-Dann-Beziehung zwischen dem vom

Unternehmen festgesetzten Preis und dem daraufhin erzielten Absatz

zum Ausdruck bringt. Der Unternehmer wird aufgefordert, die Preis-Ab­

satzfunktion anzugeben, die seiner Ansicht nach am wahrscheinl ichsten

i st.

Schatzt ein Unternehmer beispielsweise den in Abbildung 17.4 darge­

ste11'ten Verlauf, so kann diese nichtlineare metrische Hypothese

M=F(p) als deterministische Hypothese verwendet werden. 8

PRODUKT- 8 r----oo:.----------------.,
PREIS P

7

5

4

lCXXJ lj(XXJ 9lX)

ABSATZMENGE M

Abb. 17.4 Subjektive Schatzung einer Preis-Absatzfunktion durch ei­
nen Unternehmer als Grundlage der Gewinnung einer deter­
ministischen Hypothese

8 Da sich diese nichtl ineare Funktion nicht durch einen einfachen ge­
schlossenen Formelausdruck beschreiben laBt, werden im Rahmen von
Simulationssystemen sogenannte Tabellenfunktionen zu ihrer Darstel­
lung verwendet. Siehe im einzelnen Seite 418f.
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Zu einer dynamischen Hypothese fuhrt folgendes Beispiel: Ein Vertriebs­

leiter kommt zu der Auffass'ung, daB der Umsatz im Falle einer Ausset­

zung der Werbung vierteljahrlich um funf Prozent zuruckgeht, was durch

die Hypothese

U(t) :; O,95U(t-l)

beschrieben wird.

1.7.2. Uberprufung dynamischer Hypothesen

Implikationen eines Model Is sind Tatsachenbehauptungen, die nur dann

aus logisch zwingenden Grunden als wahr zu akzeptieren sind, wenn auch

ihre Pramissen als wahr akzeptiert werden. Die pramissen sind aber der

ursprungliche Modellansatz. Liefert dieser keine adaquate Reprasenta­

tion des beschriebenen Systems, so sind differenzierte und anspruchs­

volle Modellanalysen insofern gegenstandslos, als sie keinen Anspruch

auf GUltigkeit besitzen. Diese Feststellung ist sehr wichtig, denn

die Freude an dem machtvollen Instrumentarium zur Analyse dynamischer

Model le verschiebt oft die Gewichte zwischen den Aufgaben der empiri­

schen Medel.J.Ube·rprtJfung Uf1d der mathematise-henModeHanalys'e derar·t,

daB die erste Aufgabe haufig souveran vernachlassigt wird. In vielen

LehrbOchern der Simulation dynamischer Systeme wi rd Uber die Model 1­

UberprOfung kaum ein Wort verloren .

. Die Worte SAMUELSONS aus den Anfangsjahren derBeschaftigung,mit dy­

namischen Modellen in den Wi rtschaftswissenschaften haben erst heu­

te ihrevolle Bedeutung erlangt. [172,5.374]

Dynamic process analysis is an enourmously flexible mode of thought,
both for pinning down the impl ications of various hypotheses and for
investigating new possibilities. Actually it is so flexible.a method
!.h.at th.~re are' dangers i nyo 1ved in its use: the number of conce i vab 1e
models is literally infinite and a lifetime may be spent in exploring
possibilities furthermore, by supplying the proper stage directions
at the proper time, we can specify any sort of a sequence development
desired and may find, there is almost no empirical content in the theo­
ry being expounded.

Es ist nicht zu Ubersehen, daB die ModellUberprUfung den neuralgi-
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schen Punkt jeder Anwendung dynamischer Modelle darstel It.

Drastisch formul iert gilt fur jede Implikationenwurdigung der Satz:

Unsinn rein - Unsinn raus, selbst wenn der herausgehende Unsinn durch

noch so kompl izierte Methoden logisch korrekt ermittelt wurde.

So griffig solche Formeln auch sind, im konkreten Fall ist es dennoch

schwierig, ein'e klare Abgrenzung zwischen Sinn und Unsinn oder, in

g~ngiger Fachsprache, zwischen einem akzeptablen oder nicht akzepta­

bIen Modell vorzunehmen. Mit kategorischen Klas5ifizieru~gen wie wah~

re oder falsche Systemreprasentation kommt man nicht weiter.

Die BeurteilungsmaBst1ibe zur Unterscheidung von akzeptablen und nicht

akzeptablen Modellen lassen sich unter plausiblen BegrDndungen stets

so weit verscharfen, daB kaum ein bekanntes sozialwissenschaftliches

Modell mehr zur Gruppe der akzeptablen Modelle z~hlt.

1m folgenden geht es uns daher nicht darum, Grenzlinien zu ziehen,

sondern die Probleme verschiedener Grenzziehungen zu diskutieren und

ein konstruktives ProblembewuBtsein zu erzeugen.

Bei der GGltigkeitsprufung von Hypothesen ist es irrelevant, nach ih­

rer Herkunft zu fragen. Ob jemandem eine Hypothese im Traum eingefal-.
len ist (wie angebl ich NEWTON), durch Analogien oder Verallgemeine-

rung_er1_geWQnp~fl_Wl.!rde, sa.gt ni'~h~s Ql?er ihre Qycdi't;a't; §IUS. Ents~_hei­

dend ist, ob sie der Konfrontation mit den Fakten standh1ilt, d.h.

sich bewahrt.

Dynamische Hypothesen z13hlen zur Klasse der generel len Hypothesen.'

Wijhrend in einer singularen Hypothese all~in die Folgebezlehung zwi­

schen zwei Ereignissen behauptet wird, so subsumiert eine generelle

Hypothese potentiell unendl ich viele singulare Hypothesen.

Die Investitionshypothese des MA-Modells

I. (t) =O,S[C(t)-C(t-l)]
I

behauptet die Existenz einer Wenn-Dann-Beziehung fur aIle (potentiell

unendlichen) Zeitperioden (t=O,1,2, ... ).

Daher kann die Akzeptierb~rkeit einer gene reI len Hypothese nicht durch

endl ich viele Beobachtungen nachgewiesen werden. In strenger Auslegung

des generellen Hypothesenbegriffs und mit zunehmender Zahl der die Hy-
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pothese stDtzenden Beobachtungen kann man allenfalls sagen, daB sich

eine generelle Hypothese bewahrt.

A. Voraussetzungen der empirischen Hypothesenuberprufung,

Zu ihrer GUltigkeitsbeurteilun~mGssen Hypothesen mit den tatsachli­

chen Beobachtungen konfrontiert werden. Diese Forderung setzt jedoch

drei weitere Forderungen voraus, ohne deren Votliegen eine Hypothese

von vornherein als unzulassig zurUckgewiesen werden kann. Wi r wollen

diese Forderungen der KUrze halber als Forderungen nach logischer Kon­

sistenz, nach Eindeutigkeit des Variablenverlaufes und nach definito­

rischer Konsistenz bezeichnen.

a) Forderung nach logischer Konsistenz

Diese Forderung verlangt, daB in einem dynamischen Hypothesensystem

keine logischen WidersprGche auftreten. Als triviales Beispiel sei

darauf hingewiesen, daB keine endogene Variable zweimal definiert

sein darf, oder eine endogene unverzogerte Variable sich neben weite­

ren Variablen nicht selbst definieren kann.

Weniger triviale WidersprUche konnen in groBeren dynamischen Model len

bei der Festlegung der Anfangswerte auftreten.

Angenommen in dem MA-Modell

Y(t) C(t) + I. (t) + 500
I

C(t) O,3Y(t-l)

I. (t) = 2[C(t)-C(t-1)]
I

seien die Anfangswerte Y(0)=200, C(0)=50 und Y(1)=480 gegeben, dann

ist

Y(1) = I. (1) + C(1) + 500
I

Mi t

I . (1 )
I

sowie

2[C(l)-C(O)]

C(1) = 0,3Y(0)

folgt aus der Gleichung fUr Y(1):
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v(1) = 580

was zu einem Widerspruch mit dem ursprtingl ichen Anfangswert von

V(1)=480 ftih r t.

Von den im zweiten Teil dieser Schrift behandelten Computersprachen

zur Model lierung und Simulation dynamischer Systeme werden solche 10­

gischen Inkonsistenzen durch Fehlersuchroutinen erkannt, so daB ihre

Beseitigung dann keine groBen Probleme mehr aufwirft.

b) Forderung nach Eindeutigkeit des Variablenverlaufes

Ein dynamisches Modell liefert keine Informationen tiber den numeri­

schen Verlauf seiner endogenen Variablen, wenn seine Parameter,. An­

fangswerte und Verlaufe der exogenen Variablen nicht numerisch kon­

kretisiert werden. In groBen, dynamischen Model len kommt es nicht

selten vor, daB solche Konkretisierungen vergessen werden. Bei einer

(heute fast ausschl ieBlich Ublichen) Formul ierung des Modells in ei­

ner Programmiersprache werden derartige Unzulangl ichkeiten durch die

Fehlersuchroutinen dieser Programmiersprachen vollstandig erkannt.

Auch im Fall einer vollstandigen numerischen Konkretisierungder vor­

herbestimmten Variablen kann es vorkommen, daB kein eindeutiger Zeit­

verlauf der endogenen Variablen bestimmt werden kann.

Betrachten wir beispielsweise das fulgende dynamische Modell

'O, 5Y l(td + O,2V 2(t) + 1,5Y1(t-1) = °
O,8Y 1(t) + O,32Y2(t) + 2,3Y2(t~1) = 0

dann gibt esftir jede Periode t unendlich viele Wertepaare von VI und

V2 , die das obige Gleich~ngssystem befriedigen. Die L6sung ist nicht

eindeutig. Das Modell ist ohne weitere empirische Uberprufung aus

Grunden mangelnder Eindeutigkeit abzulehnen. Bezeichnet man die Matrix

als Koeffizientenmatrix der unverz6gert endogenen Variablen, so laBt

sich zeigen, daB eine eindeutige L6sung nur dann auf tritt, wenn die-
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se Koeffizientenmatrix nicht singular ist, d.h. ihre Determinante un­

gleich Null ist. 9 1st daher wie im vorliegenden Fall a"a 22 -a 2,a'2=0,

so I iefert das Model I keinen eindeutigen endogenen Variablenverlauf.

Da in der Wirkl ichkeit jedoch stets eindeutige Werte vorliegen, ist

ein solcber Ansatz von vornherein zu verwerfen.

c) Forderung nach definitorischer Konsistenz
(

Eine weitere empirische Uberprufung erubrigt sich auch dann,wenn

zwar ein eindeutiger Verlauf der endogenen Variablen' vorl iegt, die

endogenen Variablen aber Werte annehmen, die sie aus definitorischen

Grunden gar nicht annehmen k6nnen. Betrachten wir beispielsweise ein

MA-Modell mit den Parametern

Y(t) = C(t) + I.(t) + I (t)
I a

C(t) = 0,5Y(t-l)

I . ( t) = ',5[C(t)-C(t-1)]
I

I (t) = 750a
Y(0) = 10 000

Y(1) = 12 000

so beschreibt das Volkseinkommen Y den in Abbildung 17.5 wiede~gege­

benen Zeitpfad.

Da Y jedoch nur positive Werte annehmen kann, ist diese Hypothese

empirisch nicht m6g1 ich. Denn wie man aus Abbi ldung 17.5. erkennt,

nimmt Y im Zeitverlauf negative Werte an. Eine Uberprufung des Mo­

dells an der Real it§t erObrigt sich in diesem Fall.

Ahnl iche Konsequenzen ergeben sich, wenn die Werte der endogenen Mo­

dellvariablen bestimmte Kapazit§tsgrenzen wie das maximale Aufnahme­

verm6gen eines Lagers uberschreiten. Solche Konstel lationen k6nnen

deswegen auftreten, weil die UnOberschreitbarkeit bestimmter oberer

und unterer Schwellenwerte (wie die Bedingung positiver Bestands­

gr6Ben oder die NichtUberschreitung von Kapazit§tsgrenzen) oft nicht

expl izit in einem Modellansatz berOcksichtigt wird. Stellt sich aber

heraus, daB bestimmte, implizit als eingehalten unterstellte, Defini­

9 Zum Begriff der Determinante einer Matrix siehe Seite 242.
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Abb. 17.5 Zeitverlauf der endogenen Variablen Y des MA-Systems im
Falle der Version a=O,5 und &=1,5 [Einheit T: Tausend]

tionsbereiche uberschritten werden, dann sind diese definitorischen

Grenzen in den einschlagigen Hypothesengleichungen expl izit zu berGck­

sichtigen.

B. Oberprufung stochastischer Hypothesen

Zwischen den Forderungen nach einer fundierten statistischen Schat­

zung der Parameter einer stochastischen Hypothese und der Forderung

nach einer empirischen UberprOfung der ermittelten Hypothese besteht

ein Konkurrenzverhaltnis.

Da die Qualitat einer Schatzung mit zunehmender Stichprobenzahl zu­

nimmt, ist man einerseits bemOht, alle Beobachtungswerte im Schatz-
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prozeB zu berOcksichtigen. Dies fOhrt aber dazu, daB fUr die empiri­

sche UberprOfung der gefundenen Hypothese keine Beobachtungswerte mehr

zur Verfugung stehen. Verzichtet man von vornherein darauf, einige

Beobachtungswerte zur Schatzung mit heranzuziehen, urn sie zur nach­

folgenden empirischen Uberprufung zu verwenden, dann wird diese Uber­

prOfung an einer vom Informationsstand her gesehenen inferioren Hy­

pothese vorgenommen.

Angesichts dieser Situation stellt sich die Frage, ob im Fal Ie derar­

tiger Parameterschatzverfahren, die ja ein induktives Verfahren zum

Ausdruck bringen, die klassische Dual itat zwischen Hypothesenfindung

und HypothesenUberprufung noch als fruchtbares UnterscheidungskrJte­

rium anwendbar ist. Dlese Dual itat ist der AusfJuB des auf K.R. POPPER

zuruckgehenden deduktivistischen Wissenschaftsverstandnisses, welches

davon ausgeht, daB es im Prinzip glei~hgOltig ist, auf welche Weise

man zu einer Hypothese gelangt; denn entscheidend ist allein ihre em­

pirische UberprOfung. Stimmt eine Hypothese mit den Beobachtungen

Oberein, dann bewahrt sie sieh, stimmt sie mit den Beobachtungen nieht

Uberein, dann ist sie falsifiziert und verschwindet aus der wissen­

schaftl iehen Diskussion.

-D iese- -au-fden-ers'tenB lic-kei n leu-e-htende Auf-fassungerwei st sich

aber im Hinbl iek auf stochastische Hypothesen a1s problematisch. Neh­

men wir an, es gabe eine zwingende induktive Methode, mit der man,

analog zur Sehatzfunktion (17.3), den tatsaehl iehen Parameterwert

aus den Beobaehtungswerten ermitteln k5nnte, dann ware eine -naehtdig-

- I iehe Uberprufung der gefundenen Hypothese uberflOssig. Eine derarti­

ge Induktionstheorie gibt es zwar nieht, jedoeh aueh im FaIle der

Kleinstquadratsehatzung wird eine begrUndete induktive Methode prak­

tiziert,falls die geforderten Pramissen zutreffen. Wenn daher von

einer empirisehen UberprOfung gesprochen wird, So 1iegt es nahe, daB

diese ~ieh -auf das Vorhandensein der getroffenen Pr~missen bezieht.

Denn trafen diese Pramissen samtl ieh zu, dann ware wegen des nunmehr

zwingenden induktiven Ansatzes eine deduktionslogisch motivierte Uber­

prOfung durch Aufsparen von Beobaehtungswerten OberflOssig.

Wie erw~hntl stehen in den einschl~gigen computergestOtzten Sch~tz-
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routinen derartige Pramissentests zur Verfugung. Versucht man den­

noch eine statistische Hypothese mit (aufgesparten) Beobachtungswer­

ten zu konfrontieren, so ist nicht die Frage von Interesse, ob sich

im Sinne POPPERs die stochastische Hypothese bewahrt hat oder falsi­

fiziert ist. Denn eine stochastische Hypothese ist nicht einfach fal­

sifizierbar. Oder anders ausgedrOckt, es gibt keine empirisch auf­

zeigbaren Umstande, unter denen man sagen kann, die vorliegende sto-.

chastische Hypothese sei endgultig widerlegt.

Stellt man beispielsweise die stochastische Hypothese auf: 'dieser

Wurfel ist fair', dann kann auch die Beobachtung von achtzehn Sech­

serwtirfen bei zwanzig WOrfen nicht zudem SchluB ftihren; die Hypothe­

sesei falsifi;iert. 10 Man kann nur sagen: Idie Wahrscheinl ichkeit,

daB die Beobachtungen von einem fairen Wtirfel herrUhren, ist sehr ge­

ri ng. I

Analog hierzu kann man nicht sagen, daB sich angesichts der vorliegen­

den Beobachtungen eine bestimmte stochastische Hypothese bewahrt habe

oder falsifiziert worden sei. Vielmehr kann nur der SchluB gezogen wer­

den, daB eine stochastische Hypothese unter Vorgabe einer bestimmten

S1cherheitswahrscheinlichkeit (~or~aufig) zu akzeptieren oder zu ver­

werfen sei.

Ein derartiger UberprUfungsbegriff vereinbart sich nicht immer mit ei­

nem von vielen Personen intuitiv gebrauc~ten Begriff der (d~termini­

stlschen und stochastischen) ModellOberprufun9J in welchem die Prog­

nosequalitat als Entscheidungskriterium fungiert.

Erklaren kan~ man die Verwendung eines solchen Entscheidungskriteri­

urns aus der Zielsetzung einer Modellentwicklung. Die Auftraggeber ei­

nes Model 15 fordern in cler Regel, daB anhand des Modells eine Punkt­

prognose vorgenommen werdensoll, d.h. die Angabe eines einzigen nu­

merischen Prognosewertes fur eine Periode. Ein Modell halt unter die­

ser Zielsetzung einer IUberprUfung' um so besser stand, je geringer

die Abweichungen zwischen Beobachtung und Modellprognose sind. Be­

sitzt eine StorgroBenhypothese aber tatsachl ich eine groBe Standard-

10 Ein fairer WOrfe! ist ein WUrfel, bei dem jede Zahl jeweils mit
gleicher Wahrscheinlichkeit real isiert wird.



132

abweichung ihrer Starvariablen, so kann diese Hypothese als eine das

System adaquat beschreibende stochastische Hypothese auch dann ak-

zeptiert werden, wenn ihre Prognosequal it~t (beschrieben durch die

Abweichung zwischen Beobachtungs- und Erwartungswert) schlecht ist.

Da die Modellbildung jedoch letztlich auf die Gewinnung guter Prog­

nosen zielt, orientiert man sich in praktisch ausgerichteten Modell­

entwicklungen an dem Kriterium der prognostischen Leistungsfahigkeit

eines Mode11s. Bekannterweise sind mit einem stochastischen Modell

aber keine Punktprognosen magl ich, sondernnur Prognosen der Dichte­

funktionen der endogenen Variablen. Um mit einem derartigen Model I

Punktprognosen vornehmen zu kannen, trifft man daher die Entscheidung,

den Erwartungswert der endogenen Variablen des Modells als Erklarungs­

oder Prognosevariab1e zu verwenden. Dies fOhrt aber dazu, daB ein ur­

sprtinglich stochastisch dynamisches Modell wieder in ein determini­

stisches Modell uberfOhrt wird. Zu einem derartigen 'determinisier­

ten l Modell gelangt man, wenn in den ursprunqlich stochastischen Mo­

del len die StargroBen gleich Null gesetzt werden. 11

Die Folge dieses al lseits geObten Vorgehens ist, daB in konkreten Mo­

dellentwicklungen fast nur mit deterministischen Modellen gearbeitet

wird, und damit auch die empirische UberprOfung vori Me.del1en zumeist

nur auf der Grundlage deterministischer Model Ie erfolgt.

Auch andere neben der IDeterminisierung"praktizierte Hypothesenge­

winnungsverfahren fOhren stets zu deterministischen Hypothesen. 12

Weil deterministische dynamische Modelle daher fast ausschlieBlich

zur Erklarung und Prognose konkreter Systeme verwendet werden, wer­

den wir uns im folgenden vorwiegend diesen Modellformen und ihren

Problemen zuwenden.

11 Vgl. zum Aufbau eines stochastisch dynamischen St5rgr5Benmodel1s
Sei te 74f.

12 Siehe Seite 122f.
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C. OberprUfung deterministischer Hypothesen

a) Grundprinzipien der OberprUfung deterministischer Hypothesen

Aueh fUr deterministisehe Hypothesen gilt, daB ihre Gultigkeit an der

Real it§t zu Uberprufen ist. Wie vollzieht sieh eine derartige Uberpru­

fung? Angenommen, wir hab~n die GOltigkeit der Hypothese

Y(t) = O,5Y(t-l)

zu uberprufen und finden fur die Perioden 0 und 1 das Beobachtungs­

paar Y*(O)/Y*(1)=2,O/O,8. Tragen wir die diese Hypothese beschreiben­

de Funktion und die Beobaehtungswerte in ein~Koordinatensystem ein~

so erhalten wir Abbildung 17.6.

yet)

1

yet) = O,5Y(t-H

1 2 Y<t-]

Abb. 17.6 Beispiel zur UberprOfung deterministischer Hypothesen

Legt man einen strengen UberprOfungsbegriff zugrunde (wie er beispiels­

weise von POPPER verwendet wird), so konnte man zu dem SehluB kommen,

daB der vorliegende Beobachtungswert, da er nieht auf der Geraden

1iegt, die zu prDfende Hypothese falsifiziert.

Es ist klar, daB mit einem soleh streQgen UberprOfungskriterium das

Arbei ten mit deterministisehen Hypothesen sofort einzustel len ware.

Bedenkt man, daB ein GroBteil aller dynamisehen Modelle durch de­

terministise~e Hypothesen repr§sentiert wird, dann erUbrlgt sieh die

weitere Bet§tigung auf diesem Feld, denn einem derartig seharfen Kri­

terium kann kein Modell standhalten. Daher muB das Arbeiten mit dyna-
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misch-deterministischen Hypothesen nach anderen Uberprufungskriteri­

en erfolgen. Man kann von der Forderung ausgehen, daB deterministi­

sche Hypothesen den Verlauf bestimmter endogener Variablen annahernd

wiedergeben sol len. Was allerdings unter annahernd genau zu verste­

hen ist, bleibt in vielen Fallen offen, d.h. der Begriff wird im Va­

gen gel assen. 1m Rahmen der heute verwendeten Uberprufungskri teri en

kann man zwischen gualitativen undguantitativen Kriterien unterschei­

den.

Zu den qualitativen Kriterien zahlt als die unpraziseste Beurteilu~g

der sogenannte Turing-Test. Eine Person, die mit dem beschriebenen

System in direkter Beruhrung steht, wollen wir als Systemkenner be­

zeichnen. Einem solchen Systemkenner werden sowohl die simulierten

Zeitreihen des Systemmodells als auch die tatsachl ich beobachteten

Ze it re i hen des Sys terns vo rge 1eg t. Der Sys temkenne r wi rd aufgefordert,

ein Urteil abzugeben, ob beide Zeitreihen,demselben System entstam-

Arbeitskraftebestand (%)
Abnehmerbestellrate (%)
Lagerbestand (%)
Kundenauftragsbestand (%)

.~
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j
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Abb. 17.7 Verlauf der wichtigsten endogenen Variablen eines dynami­
schen Betriebsmodells
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men. Sein Urteil gilt als Kriterium fur die Adaquanz des Modells.

Als Beispiel sei auf die in Abbildung 17.7 wiedergegebenen Zeitver­

laufe der endogenen Variablen eines Modells hingewiesen, welches ei­

nen Industriebetrieb reprasentiert.

Angesichts d~eser Zeitverlaufe der endogenen Modellvariablenglaubt

FORRESTER, der Entwickler des Modells, daB es Idasselbe qual itative

Verhalten wie das tatsachl iche System' aufweist [52,S.58]. In ahnl i­

cher Weise kommen I. und L. ADELMAN zu dem SchluB, daB das von ih-'

nen simulierte 'Klein-Goldberger-Model 1 dieselben zykl ischen Bewegun­

gen erzeugt, die historisch in der amerikanischen Wirtschaft zu beob­

achten waren. [3J

Eine etwas prazisere Beurteilung knupft an den visuel len Vergleich der

tatsachlichen Beobachtungswerte mit den endogenen Modellvariablen an.

Abbildung 17.8 zeigt beispielsweise den Zeitverlauf der endogenen Mo­

dellvariablen und den Verlauf der Beobachtungswerte an freien Arbeits­

stellen in den USA wahrend der Jahre 1953 bis 1971. [81 ,S.1003J
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Abb. 17.8 Vom Modell erzeugter sowie beobachteter Verlauf der freien
Stel len in der amerikanischen Wirtschaft von 1953 bis 1971
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Viele dleser Hypothesen,Uber deren GUltigkeit durch visuel1 be­

stimmte ~hnl ichkeitsurteile entschieden wird, sind durch die Deter­

minisierung stochastischer Hypothesen entstanden.

Die auf Seite 117f. anhand des Schatzsystems TSP ermittelte parame­

trisch-singulare Hypothese der Konsumfunktion eines MA-Modells fUhrt

nach ihrer Determinisierung zu einem Verlauf (*), der in Abbildung

17.9 dem beobachteten Verlauf des Konsums (C) gegenUbergestel It ist.
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Einige Merkmale zur Beurtei14ng der Frage, ob zwei Zeitreihen demsel­

ben Sys tern ents tammen, wu rden von eYERT au fgezah 1t. [34, S. 17f]

a) Anzahl der Wendepunkte

b) Zeitliche Abfolge der.Wendepunkte

c) Richtung der Wendepunkte

d) Ampl itude der Fluktuation entsprechender Zeitabschnitte

e) Durchschnittl iche Ampl itude der gesamten Zeitreihen

f) Gleichzeitigkeit der Wendepunkte fOr verschiedene Variablen

g) Durchschnittswerte der Variablen

Wenden wir uns nunmehr den quantitativen Beurteilungskriterien zu.

Vielen dieser MaBgr5Ben eines Zeitreihenvergleichs ist es zu eigen,

daB sie von bestimmten Annahmen Ober die Struktur des zugrunde 1ie­

genden stochastischen Prozesses ausgehen.

Vergleicht man die von einer deterministischen Hypothese erzeugten Va­

riablen Y(t) mit den entsprechenden Beobachtungswerten Y*(t) auf der

Basis dieser Annahmen, dann liefert ein solches UberprUfungsverfahren

eine Aussage, mit welcher Wahrscheinl ichkeit Y(t) und Y*(t) demselben

stochastischen ProzeB entstammen. Offen bleibtjedoch in diesem Fa! I,

wie sich erklaren laBt, daB der Zeitverlauf Y(t), der voraussetzungs­

gemaB einem stochastischen ProzeB entstammen 5011, von einer determi­

n i st i schen Hypothese I erzeugt' l wurde.

Beurteilungskriterien, welche ohne eine Voraussetzung arbeiten, sind

al lein die geschilderten visuel len Vergleiche und der bereits erwahn­

te Theilsche Ungleichheitskoeffizient. THEILs Koeffizient 1. ist eine

MaBzah 1, we l'che den Ubere inst immungsgrad zwischen den beobachteten

Werten einer Zeitreihe Y*(t) und der Modellprognose Y(t) zum Ausdruck

bringt. Er berechnet sich nach der Formel [202,5.32]

T
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T variiert zwischen 0 und 1. 1m Falle T=O stimmen die zu beurteilen­

den Zeitreihen miteinander Uberein, wahrend·im Falle T=l eine extrem

schlechte Ubereinstimmung vorl iegt.

In Abbildung 17.10 sind verschiedene Prognosen des Konsums dem reali­

sierten Zeitverlauf von C gegenubergestellt und mit dem Thei lschen

Ungleichheitskoeffizienten gekennzeichnet.
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Der in Abbildung 17.9 dargestel Ite und in Abbildung 17.10 noch ein-

mal angefuhrte Verlauf der modellendogenen Variablen der geschatzten

Hypothese besitzt, wie aus der Abbildung ersichtl ich, einen Ungleich­

heitskoeffiZ'ienten vbn i=(},l42 urrd stimmt mit der Zeitreihe der Beob­

achtungsdaten somit besser Uberein als Prognose '1' (T=0,249) und

Prognose '2 1 (T=0,538).

b) Einzelfragen der Uberprufung deterministischer Hypothesen

ba) Hypothesenuberprufung anhand von Retrodiktionen

Bisher wurde das Verfahren einer Retrodiktion oder Ruckwartsprognose

bezOgllch seiner technischen Real isierbarkeit er6rtert, ohne jedoch

auf die Zielsetzungen einzugehen, die man mit der DurchfiJhrung einer

Retrodiktion verbindet. 13 Als ubergeordnetes Ziel einer Retrodi'ktion

kann man die Uberprufung der vorl iegenden Hypothesen eines Modells

ansehen. Das verwendete UberprUfungsverfahren laBt sich etwa folgen­

dermaBen umreiBen: Wird ein Modell vom Zeitpunkt t=O bis zum Zeit­

punkt t=-n retrodiziert, und stimmen die berechneten endogenen Va­

riablen in diesem Zeitraum mit den tatsachl ichen Beobachtungswerten

(wei-tg-ehend }iJbere in;-dann ha-t-sich dasMode 11 bewahrt;im anderen

Fa] I wird sein" Wahrheitsanspruch er~chOttert.

Di.e Anwendung d ieses Bewahrungsverfahrens geht von dem i nduk t iyen

SchluBschema

P + Q

Q ist 'annahernd' beobachtbar

also bewahrt sich P

aus, wobei P den Modellansatz und Q die Implikation in Form retrodi­

zierter Zeitverlaufe von Variablen darstellt. 1m gegenteiligen Fall

gilt das Sch1uBschema

P + Q

Q ist nicht 'annahernd ' beobachtbar

also wird P erschUttert

13 Vgl. Seite 83f.
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Zeigt sich, daB bestimmte Verlaufe der endogenen Variablen im Retro­

diktionszeitraum nicht mit den Beobachtungswerten ubereinstimmen, so

1 iegt dJe Frage nahe, ob es mogl ich ist, aufgrund von Variationen der

Parameter in den Hypothesen eine bessere Annaherung zwischen den be­

rechneten und beobachteten GroBen zu erreichen. Die Retrodiktion er­

weist sich damit auch als ein Verfahren zur Gewinnung realitatsnaherer

Hypothesen.

Als Beispiel sei eine Retrodiktion des Weltmodel 15 von FORRESTER an­

gefuhrt. 14 Die endogenen Variablen dieses Model 15 wurden von FORRESTER

ursprunglich vom Jahre 1900 in die Zukunft berechnet. Der Verlauf der

wichtigsten endogenen Variablen, namlich der Weltbevolkerung, ent­

spricht annahernd dem beobachteten Verlauf. Retrodiziert man nunmehr

jedoch das Modell bis zum Jahre 1880 und fOhrt von diesem Zeitpunkt

eine Prognose durch, dann zeigt das in Abbildung 17.11 dargestellte

Histogramm des Prognoseverlaufes, daB zwischen 1880 und 1900 ein star­

ker Bevolkerungsruckgang um mehr als 2,6 Milliarden stattgefunden ha­

ben muB. Der GUltigkeitsanspruch des Modells wird durch diese Feststel­

lung erschUttert. Denn beansprucht FORRESTER, daB die von, i hm verwen­

deten zeitinvarianten Hypothesen fur den Zeitraum 1970 bis 2100 GUI­

tigkei t habe.D. sullen,_ somllBer sich entgegenhalten IassenfdaBsie·

dann auch fUr den Zeitraum 1880 bis 1900 gultig sein sollten. Unter

dieser Voraussetzung stel len die Ergebnisse der Retrodiktion. jedoch

eine zwingende Folge dar. Angesichts dieses Ergebnisses liegt es na­

he~ der Frage nachzugehen, ob die unbefriedigende Erklarung des Ver­

laufes der Bevolkerungsentwicklung auf eine bestimmte Hypothese des

Modells zuruckzufUhren ist.

Man erkennt anhand von Abbildung 17.11, daB zum einen die Todesraten

wahrend des Retrodiktionszeitraumes als auch der Bevolkerungsbestand

im Jahre 1880 nicht der Real it~t entsprechen. Zur Verbesserung des

Modells ware es daher angebracht zu untersuchen, ob die die Todesra­

te erklarende Hypothese durch eine entsprechende Veranderung der auf­

tretenden Parameter besser mit dem tatsachl ichen Verlauf der Todes­

fal Ie in Ubereinstimmung gebracht werden kann, und als Folge davon

14 Zur Technik dieses Verfahrens siehe Seite 469f.
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auch die Entwicklung des Bevolkerungsbestandes vom Jahre 1880 einen

real istischeren Wert annehmen wird. Eine n~here Analyse zelgt, daB

die OberhBhten Todesraten vorwiegend durch eine zu starke Abh~ngig­

keit zwischen dem lmateriellen Lebensstandard l (MSL) und dem ILebens­

standard-Todesratenmultipiikator ' (DRMM) bedingt ist. 15
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Abb. 17.11 Zeitdiagramm der Sevolkerung (8) sowie der Geburtenzahl (G)
und der Todesfal le (T) im Weltmodel 1 von FORRESTER zwischen
1880 und 2100 bel einer Retrodiktion auf das Jahr 1880
[Einheit M: Millionen]

Abbi ldung 17.12 zei~t den Verlauf der Weltbev6lkerung im FaIle des

ursprOngl Ichen Ansatzes unter Veranderung der Abh~ngigkeiten zwischen

15 Vgl. zur Beschreibung des Modells [32,S.181f]
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materiellem Lebensstandard und Todesratenmultiplikator. Es zeigt sich.

daB die bisher ermittelte Bevolkerungskatastrophe im Retrodiktions­

zeitraum au~bleibto16
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Abb. 17.12 Zeitdiagramm der Bevolkerung (B) sowie der Geburtenzahl (G)
und der Todesfalle (T) im Weltmodell von Forrester zwischen
1880 und 2100 bei einerRetrodiktion auf das Jahr 1880 so­
wie eirier Modifizierung des Zusammenhanges zwischen Lebens­
standard und Todesratenmultipl ikator. [Einheit M: Mill ionenJ

Man erkennt, daB das Modell mit Hilfe der Modifizierung einer Hypothe­

se anhand einer Retrodiktion den tatsachl ichen Beobachtungswerien star­

ker angepaBt wurde.
16 Zur technischen DurchfOhrung siehe Seite 479f.



bb) Hypothesenuberprufung durch Konfrontation mit generellen Hypothesen

1m vorl iegenden Fa1 I waren wir davon ausgegangen, daB der Veriauf

der endogenen Vari,3b1enanhand bestimmter empirischer Beobachtungen

beurtei It wird. Der Begriff der Beurteilung geht dabei von der Bewer­

tung einer AbweichungsmaBzahl bis hin zu einem Urtei I aufgrund eines

IBeobachtungseindrucks· (Face Val idity) Ober das Systemverha1ten im

Fal Ie des Turing Tests. Kennzeichnend fOr die damit vorgenommene

Uberprufung ist es, daB der Verlauf der endogenen Variablen des Mo­

dells anhand von Beobachtungen beurteilt wird.

In manchen F~l len orientiert sich die B~urteilung eJner zu UberprUfen­

den Hypothese nicht an Beobachtungswerten, sondern zielt allein auf

das Vorhandensein bestimmter Strukturmerkmale. Sind diese Struktur­

merkmale vorhanden, so gilt das Model I als bis auf weiteres akzepta­

bel, im andern Fall als unakzeptierbar.

Dieses Verfahren beruht auf der Hypothese, daB jedes soziale System

bestimmte Strukturmerkmale besitzt, die somit auch in jedem empi­

risch akzeptablen Modell vorhanden sein mOssen. Es handelt sich um

die Merkmale Stabil it~t und Insensitivitat.

Hat man .be ispielswe i. se im- EaJ-l eel nes MA~Mode11 s die. Hypothese

Y(t) = C(t) + I.(t) + I (t)
I a

C(t) = O,75Y~t-1)

I.(t) = 4[C(t)-C(t-1)]
I

I (t) = 2500, Y(O) = Y(l) = 10 000a

zu untersuchen, und gehen wir von einem G1eichgewicht des Systems aus,

dann zeigt slch in Abbi1dung 17.13, daB eine Erh6h~ng der autonomen

Investitionen um nur eine Einheit in Periode 5 zu einer Instabil itat

des Systems fUhrt.

In einem solchen Fall wUrden viele Personen das Hypothesensystem als

empirisch unzulassig ablehnen. Man sollte sich daruber klar sein, daB

dieses Vorgehen auf der Akzeptierbarkeit der generellen empirischen

Behauptung fuBt: al Ie sozialen Systeme sind stabil:

Da diese Hypothese bisher noch nicht empirisch OberprOft wurde, son-
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Abb. 17.13 Zeitverlauf eines durch einen Impuls aus dem Gleichge­
wicht gebrachten MA-Systems [Einheit T: Tausend]

dern normalerweise mit Plausibilit~tsargumentengestDtzt wird, han­

delt essich letzten Endes um eine viel1eicht heuristisch fruchtbare

A-priori-Hypothese. Die heuristische Fruchtbarkeit I iegt darin, daB

man, wie im vorl iegenden Beispiel, in dem die Erhohung cler autonomen

Inves-ti1:ionen tim e+ne Ge-lde-i-nheit das S-ys-tem z-um Expl-od-i-e-ren--eringt,

woh1 stets die Hypothesen in Frage stellt. Die Stichhaltigkeit der

Ab1ehnung eines instabilen Systems fallt jedoch mit der lnakzeptier­

barkeit der generellen Stabilitatshypothese. Als Anmerkung dDrfte es

von Interesse sein, daB NORBERT WIENER, der ·Vater der Kybernetik',

einegenerel 1e Stabil itatshypothese sozialer Systeme strikt ab1ehn­

teo

Der zweite Fall einer Insensitivitat sozialer Systeme ist ahnlich

gelagert. Der Begriff der Sensitivitat sotialer Systeme wurde bereits

di5kutiert, und wir hatten darauf hingewiesen, daB die Sensitivitat

eines Systems beztig1ich bestimmter Parameter zu Einsichten ftihrt,

die fur eine zie1gerichtete Systembeeinf1ussung, aber auch zur GUI­

tigkeitsbeurteilung sozialer Systeme von Be1ang sind. Nur der zweite

Aspekt 5011 uns hier interessieren. Ein Modell mit einer geringen

Sensitivitat wird als insensitiv bezeichnet.
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Akzeptiert man nunmehr die generelle Behauptung: alle sozialen Syste­

me sind insensitiv, so konnen sensitive Modellhypothesen von vorn­

herein als empirisch unzulassig zurUckgewiesen werden.

Betrachten wir das folgende MA-Modell

Y(O) = 10 000 und Y(l) = 11 0002500,

c(t) + I.(t} + I (t)
I a

0,99Y(t-l)

= l[C(t}-C(t-l)]

Y(t)

C(t)

I. (t)
I

I (t) =
a

so fUhrt eine Variation des Akzelerators urn 25 Prozent, d.h. S=1±0,25

zu folgenden Zeitverlaufen:
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Abb. 17.14 Sensitiver Parameterbereich eines MA-Systems
[Einheiten T: Tausend, M: Mill ionen]
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Ein so unterschiedliches Verhalten im Fal Ie einer nur geringfUgigen

Anderung eines Parameters kann zu der Auffassung fOhren, daB es 501­

che Systeme in der Real itat nicht geben kann. Als plausible Recht­

fertigung lieBe sich anfUhren, daB sich soziale Systeme bei geringen

strukturellen Anderungen (fast) nie schlagartig andern. Der Ausspruch:

IKleine Ursachen, groBe Wirkungen', hat hier einfach wegen der Tr~g­

heit des Verhaltens von Personengruppen keine Gultigkeit. Solche ru­

dimentaren Argumente zur StUtzung der generel len lnsensitivita~shypo­

these sind natUrlich nicht zwingend. Sie rechtfertigen damit auch

keine zwingende Ablehnung eines sensitiven sozialen Modells als em­

pirisch unzutreffend. Dennoch liefern Kenntnisse Ober die hohe 5en­

sitivitat einzelnerParameter eine Motivation zu genaueren Untersu­

chungen dieser Parameter und fUhren unter Umst~nden zu der Einsicht,

daB eine bestimmte Hypothese zu revidieren ist.

be) HypothesenUberprUfung dureh subjektive Konsequenzenbewertung

Hypothesen konnen, wie erwahnt, auch dadurch gewonnen werden, daB

ein Fachmann die Hypothese angibt, der er die hochste subjektive

Wahrscheinlichkeit zuzuordnen bereit ist. Als Beispiel wurden die

Aufstellungeiner Preis-Absatz-Funktion sowie die Umsatzentwicklung

eines Produktes bei. Abwesenhei t jeg 1i cher .Werbung angefUhrt.

Solche Hypothesen k5nnen zu ihrer UberprUfung den entsprechenden Be­

obachtungswerten gegenUbergestel It werden. Angesichts dieser Beob­

achtungswerte kann der betreffende Fachmann versuchen, seine ursprUng­

liche Hypothese so zu modifizieren, daB sie den Beobachtungsbefunden

starkerentspricht. Dieses Vorgehen entspricht dem in den Naturwis­

senschaften Ublicheri Wechselspiel von Hypothesenaufstellung und -ver

werfung bzw. -erhartung. Bekanntlich hat KEPLER Cber sechzig verschie­

dene Hypothesen der Planetenbewegung OberprOft und verworfen, bis er

zu seinen heute bekannten Gesetzen gelangte.

Ein solches Wechselspiel der Aufstellung, Verwerfung und Modifizie­

rung von Hypothesen wird in den Wirtschafts- und Sozialwissenschaf­

ten al1erdings nicht immer eingehalten. Vielmehr ist gerade bei der

Anwendung dynamischer Model Ie ein wesentlich 'liberaleres' UberprU-
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fungsverfahren zu beobachten, welches kurz geschildert werden sol I:

Ein Fachmann formul iert ein deterministisches Hypothesensystem, wel­

ches er subjektiv fur am wahrscheinl ichsten halt. Der Zeitverlauf

der endogenen Variablen des Model 15 wird ermittelt und dem Fachmann

vorgelegt. Der Fachmann an~ly~iert die Modellimplikationen, und wenn

er sie fur 'wenig wahrscheinl ich' halt, modifiziert er seine ursprung­

lichen Annahmen so lange, bis Annahmen und Implikationen in ihrem sub­

jektiven Glaubwurdigkeitsgrad miteinander ubereinstimmen. Um bei ei­

nern einfachen Beispiel zu bleiben: Ein Vertriebsleiter schatzt, daB

der Umsatz bei fehlender Werbung Imit groBer Wahrscheinlichkeit' im

Monat urn drei' Prozent zuruckgeht. d.h. sich nach der Hypothese

U( t) = 0, 97 U( t-1)

r i chtet. Macht man i hn j e,doch auf die Konsequenz aufmerksam, daB dann

tatsachlich in siebenPerioden der Umsatz um 20 Prozent fallen wird,

dann kommt er zu dem Urteil, daB die.se KonseqlJenz 'nicht sehr wahr­

scheirilich ' sei. Aufgrund der differierenden GlaubwUrdigkeitsgrade

zwischen Annahme und Konsequenz wird der Vertriebsleiter veranlaBt,

seine Hypothese und die subjektiven Beimessungen der GlaubwUrdig­

keitsgrade noch einmal zu uberlegen. Es gibt mehrere Mogl ichkeiten

zur Beseitigung dieser Differenz zwischen den GlaubwUrdigkeiten von

Annahme, und Konsequenz:

a) der Vertriebsleiter halt die Konsequenz Idoch l fUr genauso wahr­

scheinlich wie die Annahme

b) er kommt zu der Auffassung, daB die Annahme 'doch (wie die Konse-

quenz) relativ unwahrscheinlich ist'.

1m zweiten Fall wird er versuchen, eine andere Hypothese zu entwik­

keln. Beispielsweise, daB ein bestimmtes Umsatzniveau auch fUr lan­

gere Zeit ohrie Werbung zu halten ist, und daB sich die Abnahmerate

des Umsatzes mit der Annaherung an dieses Umsatzniveau verringert.

Die umformulierte Hypothese kann, sobald sie quantitativ gefaBt ist,

dann in gleicher Weise 'UberprUft' werden. Das hier zum Ausdruck kom­

mende Verfahren erscheint in dem angefuhrten Beispiel als trivial.

Handelt es sich jedoch urn ein Geflecht dynamischer Hypothesen, so
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sind Unterschiede zwischen Glaubwurdigkeitsgrad der Annahmen (Hypo­

thesen) und ihrer Konsequenzen (Imp1ikationen) nicht nur der, in un­

serem Fall offensichtl ichen, Unfahigkeit des Fachmannes zuzuschreiben.

Daher ist es auch nicht verwunderlich, daB solche Lernprozeduren tat­

sachl ich zur Entwicklung und Modifizierung von Modellen angewendet

werden. So hat LITTLE ein dynamisches Modell der Werbetragerplanung

formu 1iert, des sen numer i sch verscharfte Hypothesen aus einemall ge­

meinen Ansatz mit Hilfe der skizzierten Abstimmungsmethode entwickelt

werden [125]. Das beschriebene Wechselspiel von Annahmensetzung und

Konsequenzenaufdeckung ist bei dynamischen Model len aus praktischen

Grunden nur mit einem Rechner unter Verwendung von Schreibterminals

oder Bildschirmen im Dialogverkehr m6g1ich.

Der Grundgedanke dieses Verfahrens besteht darin, das 'subjektive 5i­

tuationsbild' eines Fachmannes stimmig zu machen und zwar stimmig in

der Zuordnung der Glaubwurdigkeitsgrade zwischen Annahme und zwingen­

der Konsequenz.

Ordnet eine Person einer Hypothese Heine Glaubwurdigkeit von 3/5 zu,

der zwi ngend fo Igenden und in de:r Zukunft 1i egenden Konsequenz j e­

doch nur eine GlaubwDrdigkeit von 1/5, dann ist dieseine Unstimmig­

keit. Denn was zwingend folgt, mOBte aus evidenten Grunden den glei­

chen Glaubwurdigkeitsgrad besitzen. lndem letztlich ein Modell aus­

gewahlt wird, bei welchem Annahmen und Konsequenzen diese1be Glaub­

wUrdigkeitszuordnung erfahren, wird damit impl izit unterstellt, daB

dieses Modell das real itatsnahere ist.

Zur Beurteilung der Zulassigkeit dieses UberprUfungsverfahrens muB

man sich die Frage stellen, inwieweit Beobachtungsdaten noch einen

EinfluB auf die Annahme oder Akzeptierung einer Hypothese haben. Als

Beurteilungskriterium zur Auswahl alternativer Hypothesen dienen die

GlaubwOrdigkeitsgrade, denn es wird letztl ich die Hypothese mit den

h6chsten stimmigen GlaubwOrdigkeitsgraden ausgewahlt. Die Beobach­

tungsdaten oder generel1 die gesamte Erfahrung des Fachmannes fl ies­

sen Uber einen nicht mehr rekonstruierbaren BewertungsprozeB in die­

se Glaubwurdigkeitsgrade ein.

Da diese VerknUpfung ein rein subjektiver ProzeB ist, handelt es sich



hier urn die Aufgabe des kleinsten Restes der intersubjektiven Nach­

prUfbarkeit einer Hypothesenrechtfertigung. Bei der Ablehnung eines

solchen Verfahrens sollte man aber nicht verkennen, daB auch im FaI­

le der statistischen Hypothesengewinnung kein intersubjektiv zwingen­

des PrUfverfahren vorl iegt. Denn die Akzeptierung der unOberprOften

statistischen A-priori-Hypothesen kann nicht erzwungen werden. Aber

nur 1m Rahmen dieser A-priori-Hypothesen ist eine statistische Uber­

prDfungsprozedur intersubjektiv zwingend. Das skizzierte Verfahren

reduziert diesen intersubjektiv zwingenden UberprDfungsbereich nun­

mehr auf Null. Denn wenn zwei Fachleute zu unterschiedlichen Bewer­

tungen kommen, bleibt es unentscheidbar, wessen Hypothese dann zu

verwerfen oder zu akzeptieren ist.

Es liegt der Einwand nahe, daB mit einem derartigen Verfahren der Rah­

men einer wissenschaftlichen HypothesenUberprOfung endgGltig Dber­

schritten wird. Wenn die Fachleute einander widersprechende Hypothe­

sen vorziehen, dann liegt mangels eines Entscheidungskriteriums die

Gefahr einer Art ILyssenko-Wissenschaft l nahe, bei der die Hypothese

desjenigen als wahr deklariert wird, der die Macht hat. ihre Anerken­

nung durchzusetzen.

oi ese.Argumente schei nen dafU r zu sprechen! das bes ch r i ebene Verfah­

ren abzulehnen. Einer solchen Forderung mUBte man immer dann bei-

pfl ichten, wenn das Ziel einer dynamischen Modellbildung all~in in

der Gewinnung von intersubjektiv nachprDfbaren generel len empirischen

Hypothesen bestande. Dies ist zwar das Ziel einer deskriptiven nicht

aber das eiher normativen Wissenschaft. 1m Rahmen einer normativen

Wissenschaftdienen dynamische Hypothesen der zielgerichteten Beein­

flussung der beschriebenen Systeme. Durch die Entscheidung, ein dy­

namisches Modell fUr normative Zwecke zu verwenden, kommen jetioch

II iberalere ' Normen der Model lbeurteilung zum Tragen, die durch die

sogenannte Entscheidungslogik reprasentiert werden.

Die Entscheidungslogik geht davon aus, daB ein bestimmtes Entschei­

dungssubjekt ein System im Sinne seiner Zielsetzung beeinflussen will.

Das Entscheidungs5ubjekt entwicke1t, in unserem Fall, ein dynami-
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sches Modell dieses Systems. 1m G~gensatz zu den generellen Hypothe­

sen einer positiven Wissenschaft, die einen potentiell unendllchen

Individuenbereich umfassen, beschreibt ein von einem Entscheider for­

mul iertes Modell nur ein konkretes System. Dieses Modell reprasen­

tiert in Uberei,nstimmung mit der Entscheidungslogik das subjektive

Situationsbild dessen, der das System zu beeinflussen wUnscht. Die

empirlsche Verankerung der In einem Entscheidungsmodell des hier ver­

wendeten Typs auftretenden Hypothesen erfolgt hier allein durch die

Zuordnung subjektiver Wahrscheinlichkeiten. Denn das, was ein Ent­

scheider fOr am glaubhaftesten halt, sol lte bei rationalem Verhalten

die Grundlage fUr seine Entscheidung bilden.

Wenn damit ein dynamisches Modell von einem Entscheidungstrager ent­

wickelt wird, um dessen Entscheidungen zur Beeinflussung eines be­

stimmten Systems durchzusplelen, dann handelt es sich bei der aus­

schl ieBl ich subjektiven Auswahl der dynamischen Hypothesen um ein ak­

zeptables Verfahren. Dies gilt unter diesen Umstanden in gleicher

Weise fOr das geschilderte Verfahren der GlaubwUrdigkeitsgradabstim­

mung. Die von den Zielsetzungen einer positiven Wissenschaft herrOh­

renden Einwande treffen fOr eine solche Situation nicht zu. Da viele

dynamische Model Ie speziel I von einem Entscheidungstrager fUr seine

Entscheidungsfindung entwickelt werden, eroffnet sich fOr die Ent­

wicklung derartlger Entscheidermodelle ein breites Anwendungsgebiet.

Man sollte sich jedoch im klaren sein, daB die Entscheiderhypothesen

derartiger Modelle keine Akzeptierung durch andere Personen zu er­

zwingen vermogen.

Welterhin muB man sich die Frage stel len, ob ein Entschelder in vie­

lenSituatione~Uberhaupt einen so hohen subjektiven Informations­

stand besitzt, daB er eine bestimmte numerisch konkretisie~te dyna­

mische Hypothese von den Obrigen als besonders wahrscheinllch auszu­

zeichnen vermag. Der Entscheider kann auch zu dem Ergebnis kommen,

daB viele Hypothesen gleich wahrscheinlich sind, er also keine Aus­

wahl treffen kann. In diesem Fall kann das geschllderte Verfahren

von vornherein erst gar nicht zur Anwendung kommen.

Dieser Einwand betrifft jedoch nur die unbedingte Anwendbarkeit des

geschilderten Verfahrens, berOhrt jedoch nicht seine grundsatzl iche
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Akzeptierbarkeit. 1m Rahmen derartiger Entscheidermadel1e erweist es

sich als eine durchaus akzeptable UberprUfungsmethade.

bd) HypothesenUberprUfung bei Nichtbeobachtungsvariablen

a) Zwischenhypathesen in intersubjektiv nachprUfbaren Madellen

Beabathtungsvariablen sind GroBen, die mtt Hilfe einfacher MeBverfah­

ren ermittelt werden konnen. Als, Beispiel seien die Preise eines Pro­

duktes, Absatzmengen, der Konsum in einer Volkswirtschaft oder der

Bevolkerungsbestand genannt.

In dynamischen Madel len ist nicht jede Variable oder jeder Parameter

eine BeobachtungsgroBe, und dennach handeltes sich um ein zulassi-
.\

ges Madel1. Es genUgt, daB diese NichtbeobachtungsgroBen durch die

numerischen Werte der mit ihnen verknUpften BeobachtungsgroBen ein­

deutig definiert werden.

Betrachten wir als einfachstes Beispiel die Konsumfunktion eines MA­

Modell s

c(t) aY(t-1)

dann ist in diesem deterministischen Fal I die Nichtbeobachtungsgros­

se a -b-estimmbar,'wenn dielahl-enwerte-von Y(-O}undC(.l} vo.rlIegen.

1m FaIle einer entsprechenden stochastischen Hypothese

C(t) ; aY(t-l) + E

kann a aus den vorl iegenden Werten van C und Y geschatzt werden.

GegenUber der Gewinnung derartig numerisch aus Beobachtungswerten be­

stimmbarer Parameter ist nichts einzuwenden.

Es liegt jedoch die Frage nahe, ob es zulassig ist, in Systemmadel­

len auch ~it Nichtbeabachtungsvariablen zu arbeiten, deren numeri­

sche Auspdigungen ni cht au 5 den Beabachtungsva r i ab l.en bes t immt wer­

den konnen.

Die EinfOhrung von Nichtbeobachtungsvariablen falgt aft aus einer

harizantalen Differenzierung van Hypothesengleichungen, die dem Ziel

dient, eine hohere empirische Adaquanz herbeizufOhren. Jede Hypothe­

sengleichung kann im Sinne eines schwarzen Kastens interpretiert wer-



den. Die unverzogerte endogene Variable bildet die AusgangsgroBe die­

ses schwarzen Kastens, wahrend die vorherbestimmten Variablen als Ein­

gangsgr5Ben fungieren.

Die Konsumfunktion eines MA-Model1s kann in diesem Sinne durch das

Schema der Abbi1dung 17.15 dargestellt werden.

Abb. 17.15 Interpretation der Variablen einer Verha1tensgleichung
als Ein- und AusgangsgroBen eines schwarzen Kastens

Erweist sich die C(t) mit Y(t-l) verbindende Hypothese als empirisch

unzutreffend, so liegt die Frage nahe, ob man, bildl ich gesprochen,

den schwarzen Kasten nicht in eine Kette schwarzer Kasten auf10sen

kann. Dies wurde bedeuten, daB man die ursprUng1 iche Hypothese durch

ei ne Hypothesenkette zu ersetzen versucht. In d i esem Fa 11 so 11 von

einerhorizonta1en Hypothesendifferenzierunggesprochen werden. Die

Forderung nach einer horizonta1en Hypothesendifferenzierung erfo1gt

in der Hoffnung, durch das Auffinden differenzierter Hypothesen zu

einer besseren Wirk1 ichkeitsbeschreibung zu gelangen.

Angenommen, j emand is t der Auffassung, daB zw i schen dem Konsum C(t)

und dem VolkseinkommenY(t-l) die folgende kausale Kette existiert.

_____Anspruchsni veau A(t) ______
C(t) Y(t-l)

............... Erwartetes Volkseinkommen E(t)/

Weiterhin glaubt der Modellentwickler, daB das Anspruchniveau A(t)

durch die Hypothese

A(t) = A(t-l) + O,5[Y(t-1)-A(t-1)]

bestimmt wird und das erwartete Volkseinkommen fUr die Periode t,
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d.h. E(t) durch

E(t) = [Y(t-1)+Y(t-2)]/2

Der Konsum C(t) 5011 sich in der Auffassung des Modellentwicklers

nach der Glelchung

bestimmen. Wie man erkennt, handelt es sich urn eine horizontale Dif­

ferenzierung. Die neuen ZwischengJieder der Kausalkette bi Iden die

Variablen A und E. Diese Variablen sind jedoch ~nidentifizierbare

Nichtbeobachtungsvariablen, denn sie sind weder direkt meBbar (das

sei hier unterstellt) noch kannen ihre numerischen Werte allein aus

den ReaJisationen der Beobachtungsvariablen C(t) und Y(t-l) gewonnen

werden.

HypothesengJeichungen, in denen die erklarte oder auch die erklaren­

den Variablen Nichtbeobachtungsvariablen sind, sollen als Zwischen­

hypothesen bezeichnet werden, weil sie die-VerknUpfung zwischen den

Beobachtungsvariablen starker spezifizieren. In vielen Fallen zeigt

es sich, daB eine verstarkte Differenzierung nur durch die EinfUh­

rung von Zwischenhypothesen magI ieh ist, deren Nichtbeobachtungsva­

riablen psychische ZustandsgroBen reprasentieren.

Es drangt sich daher die Frage auf, ob die EinfUhrung derartiger Zwi­

schenhypothes.-en l1icht ein 'sinnloses l Unterfangen ist, welches wahl

kaum dem Ziel einer Modellverbesserung dient. Die Skepsis gegenUber

diesem Vorgehen laBt sich durch die Frage prazisieren: 1st es legi­

tim, H1pothesen aufzustellen, in denen Nichtbeobachtungsvariablen

wie E und A im angefUhrten Beispiel auftreten?

Grundsatzlich gibt es keine Vorschriften, die das Aufstellen von Hy­

pothesen einschranken. Eine Hypothese kann durch Intuition, im Schlaf

oder auch durch das Betrachten einer Kristal lkugel gefunden werden.

Entscheidend ist allein ihre empirische UberprUfung. GenUgt sie dem

angewandten UberprOfungskri terium, so wird sie akzeptiert, andern­

falls wird sie verworfen. Damit I iegt der Einwand nahe, daB Zwisehen­

hypothesen, die ja Nichtbeobachtungsvariablen besitzen, nieht empi­

risch UberprUfbar und damit sinnlos sind.
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Dieser Einwand giltjedoch nur, wenn man die gewonnenen Zwischenhy­

pothesen iso1 iert betrachtet. Vergegenw~rtigt man sich j~doch, daB

das Anfangs- und Endg1 ied eine Beobachtungsvariab1e darstellt, dann

wird deutlich, daB die Zwischenhypothesen eine empirisch nachprOf­

bare Ubergangsfunktion zwischen dem Anfangs- und dem Endglied fest­

1egen.

Das Aufstellen der Zwischenhypothesen aus Nichtbeobachtungsvariablen

dient damit letztlich allein dem Zweck, eine neue (und viel leicht bes­

sere) Hypothese uber die Verknupfung der beobachtbaren Ein- und Aus­

gangsvariablen zu gewinnen. Die horizontale Differenzierung von Mo­
del len mit Nichtbeobachtungsvariablen ist damit letztlich als ein

heu r i st i sches Verfa hren der Hypothesengewi nnung aufzufassen.

Wenden wir das Gesagte auf die beschriebene horizontale Differenzie­

rung der Konsumfunktion in die Zwischenglieder A(t) und E(t) an. Kei­

ne dieser drei Hypothesen ist fur sich betrachtet empirisch uberpruf­

bar;

Durch mathematische Umformungen l~Bt sich zeigen, daB die Ubergangs­

funktion zwischen den beiden Beobachtungsvariablen durch die Hypothese

C(t) = O,5C(t-l) + O,3Y(t-l) + O,125Y(t-2) - O,125Y(t-3)
"-

bestimmt wird. Diese Hypothese, die als eine Ubergangsfunktion des in

Abbildung 17.15 dargestel lten schwarzen Kastens angesehen werden kann,

muB nunmehr auf ihre empirische Zulassigkeit uberpruft werden. Wird

sie akzeptiert, so hat sich das angewandte Hypothesensuchverfahren als

fruchtbar erwiesen. Eine Ablehnung fOhrt zu dem gegenteil igen SchluB.

Das angewandte Verfahren kqnn auch dadurch verfeinert werden, daB die

Zwischenhypothesen numerisch unspezifizierte Parameter enthalten,
. .

was zur Folge hat, daB die heuristisch gewonnene Ubergangshypothese
. .

auch keine numerisch konkretisierten Parameter enthalt. Gehen wir

von folgender Parameterbenennung aus:

A(t) = A(t-l) + a[V(t-1)-A(t-1)]

E(t) = [V(t-l)+V(t-2)]/2

C(t) = bE(t) + c[A(t)-E(t)]
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dann foJgt die Ubergangsfunktion

C(t) = aC(t-1) + SY(t-1) + yY(t-2) + oY(t-3) (17.4)

a 1 - a

(b-c+2ca)/2

y (ab-ac)/2

o = (ab+c-b-ac)/2 (17.5)

Generel I konnte man nunmehr versuchen, derartige Hypothesen auf ihre

Tragf~higkeit zu untersuchen, d.h. anhand von Beobachtung~reihen ein

KorrelationsmaB des Zusammenhangs und sonstige AkzeptanzmaBe zu er­

mitteln.

1m angefDhrten Beispiel ist es nicht moglich, die Nich~beobachtungs­

variablen zu berechnen. Denn die numerischen Werte der einer Schatzung

zuganglichen Koeffizienten a, S, y und 0 fUhren in (17.5) im allge­

meinen zu einem Gleichungssystem, welches keine Ermittlung der Koef­

fizienten a, b und c ermoglicht.

In der okonomischen Theorie werden Zwischenhypothesen beispielsweise

durch die &klarungsgleichungen von sogenannten ex-ante Variablen zum

Ausdruck gebracht, die insbesondere von der Stockholmer Schule ver­

wendet wurden. [158,S.37ff.] Es handelt sich dabei urn Hypothesen uber

Prognosewerte von Personen.

Wahrend in den Ansatzen der Stockholmer Schule hochstens zwei Zwi­

schenhypothesen auftreten, werden in dynamischen Modellen, die auf

der Modell ierungskonzeption System Dynamics beruhen, weit verzweigte

Ketten von Zwischenhypothesen in numerisch konkretisierter Form ver­

wendet.

Als Beispiel sei ein Kausaldiagramm des im WeltmodeJ 1 von MEADOWS an­

gegebenen Subsystems Umweltverschmutzung angefuhrt,. in dem samtliche

endogenen Variablen Nichtbeobachtungsvariablen darstel len. [134,5.426]

Fur dieses Geflecht von numerisch konkretisierten Zwischenhypothesen

gelten dieselben Uberlegungen wie im FaIle des Beispieles der Konsum­

funktion: Samtliche Zwischenhypothesen konnen nach getaner Arbeit aus

dem Modell el iminiert werden. Von Interesse sind al lein die verblei­

benden Ubergangsfunktionen.

legi man scharfe MaBstabe fur den Begriff einer Beobachtungsvariabl~n

zugrunde, dann ist in dem von MEADOWS entwickelten WeI tmodel 1 allein
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die Variable IGesamtbev6lkerung' als Beobaehtungsvariable anzusehen.

Das Modell wurde sieh bei dieser strikten Auslegung des Beobaehtungs­

begriffes von 150 endogenen Variablen auf eine Ubergangshypothese

in Form der Endgleiehung

p(t) = F[P(t-l),P(t-2), ... ,P(t-n)]

reduzieren. Die Ermittlung dieser Endgleiehung ist allerdings wegen

der hohen Niehtlinearitat des Mode11s naeh dem heutigen Stand der Ma­

thematik noeh nieht maglieh.Dies start jedoeh nieht den prinzipi~l­

len Charakter des vorgetragenen Gedankens.

s) Zwischenhypothesen in Entscheidermodellen

Unsere Beurteilung von Zwisehenhypothesen ging von der sti llschwei­

genden Voraussetzung aus, daB die Zielsetzungen einer deskriptiven

Wissensehaft, d.h. vor all em die Forderung naeh einer intersubjekti­

ven NaehprOfbarke.t der Hypothesen, gelten 5011. 1m Falle eines Ent­

seheidermodells bildet, wie gesagt, dieses Ziel keine zwingende Vor­

aussetzung. 17 Unterstellen wir nunmehr, daB ein Modell als Entschei­

dermodell intendiert wurde. Was laBt sich in diesem Fall gegen Zwi­

schenhypothesen ei nwenden? Hier ist-eine D-i-f-feren:z:ierung bez-Ug-l ic-h

des zeitlichen Geltungsbereiches der Zwisehenhypothesen vorzunehmen.

Sol len die Hypothesen aueh fur die Vergangenheit gelten, so k6nnen

die Ubergangshypothesen den Beobaehtungswerten gegenUbergestellt wer­

den, und der Entscheider kann auf die entstehenden Diskrepanzen auf­

merksam gemacht werden.

Wird die Geltung dagegen nur fQr die Zukunft beansprucht, so k6nnen

im Hinbl iek auf eine empirische UberprUfung keine Einwande erhoben

werden.

Die Weltmodelle von FORRESTER und MEADOWS beanspruchen, al~ Entschei­

dermodelle konzipiert zu sein. Sie sind auch in der Lage, die Welt­

bev6lkerungsentwicklung in der Vergangenheit zu reproduzieren. Man

k5nnte daher meinen, daB gegen die umfangreiche Verwendung von Zwi­

schenhypothesen keine Einwande magl ich sind. Ein wesentl icher Ein­

wand besteht jedoch in der ideologisthen Manipulierbarkeit eines vie­

17 Vgl. Seite 137 f.
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le Zwischenhypothesen enthaltenden dynamischen Modells. Zwischenhy­

pothesen werden durch Intuition bestimmt. Der intuitive Spielraum ge­

stattet es jedoch, eine FOlIe miteinander konkurrierender und den­

noch plausibler Zwischenhypothesen einzufOhren. 1m Rahmen von komple­

xen nichtl inearen Model len wird es immer magI ich sein, konkurrieren­

de plausible Systeme von Zwischenhypothesen zu finden, die zwar die

Vergangenheitsentwicklung der Beobachtungsvariablen Obereinstimmend

reproduzieren, fur die Zukunft jedoch voneinander abweichende Entwick­

lungen prognostizieren.

Die ideologische Manipulierbarkeit liegt darin begrOndet, daa ein Mo­

dellentwickler aus der Menge der plausiblen und vergangenheitsrepro­

duzierenden Modellvarianten die heraussucht, die seinen Wunschvorstel­

lungen im Hinblick auf die zukunftige Entwicklung am starksten ent­

sprechen.

GegenUber FORRESTER und MEADOWS sind Vorwurfe erhoben worden, sie hat­

ten ihr Modell so konzipiert, daB es ihre Wunschvorstellungen yom

Zeitpunkt der \~eltkatastrophe genau erfUllt. [155] \~enn diese Vorwur­

fe tatsachl ich berechtigt sein sollten, dann durfte eine derartige

Manipulation vorwiegend durch die Wahl geeigneter Zwischenhypothesen

errei-cht worden sein.

Die Moglichkeiten, ein Modell zu manipul ieren, sollen an einer kufz

erlauterten Miniversion eines Weltmbdel 15 demonstriert werden. Anhand

dieses Modells wird gezeigt, wie man durch die Variation-plausibler

Hypothesen zu einem gewunschten Prognoseergebnis gelangen kann.

Der WeI tbev51 kerungsbestand wird durch

B(t) = B(t-l) + G(t) - S(t}

B: Bestand der Weltbevolkerung

G: Anzahl der Geburten

s: Anzahl der Todesfal Ie

definiert. Die Anzahl cler Geburten G(t) bestimmt sich nach

G(t) = NG*BEVM(t)*B(t-1)
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mit

G: Anzahl der Geburten

NG: Normale Geburtenquote (0,04)

BEVM: Multipl ikator des Einflusses der Uberbevo1kerung

Der Uberbevolkerung5mu1tip1ikator wird yom Bestand der Weltbevolke­

rung beeinf1uBt. Er 5011 durch die in Abbi1dung 17.17 dargestel1ten

Beziehungen A1 oder AZ beschrieben werden konnen.

BEYM

1.3 1970

1,2 I

1,1 I
I

LO I
O,g I

0,8 I Al
0.1 I A

ZI
0.6 I

l' I
I ..

1,7 3.5 53 7,1 BEVOLKERUNG
(MILLIARDEN)

Abb. 17.17 Hypothetischer Zusammenhang zwisch~n der We1tbevolke­
rung B und dem Uberbevo1kerungsmu1tipl ikator BEVM

Die Anzahl der Todesfal le wird durch

S(t) = NSR*MTF(t)*B(t-1)

B: Bevo1kerungsbestand

S: Anzah1 der Todesfal1e



160

NSR: Normale Sterberate (NSR=O,028)

MTF: Multiplikatorwirkung des medizinisch-technischen
Fortschritts auf die Sterberate

bestimmt. Das Niveau des medizinisch-technischen Fortschritts TF

wird fOr 1900 mit Eins glelchgesetzt.

Der EinfluB zwischen dem medizinisch-technischen Fortschritt TF und

dem Multip1ikator MTF 5011 durch die in Abbildung 17.18 beschriebe­

ne Funktion dargestellt werden.

MTF

2

1,5

1

T - - - -_,-..j.....

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 TF

Abb. 17.18 Zusammenhang zwischen dem medizinisch-technischen Fort­
schritt TF und dem Sterbequotenmultiplikator des medizi­
nisch-technischen Fottschritts MTF

Der medizinisch-technische Fortschritt TF berechnet sich wiederum aus

TF(t) = AG(t)*BTF

TF: Medizinisch-technischer Fortschritt (1900=1)

AG: Anzah1 der seit dem Jahre 1900 Geborenen

BTF: Beitragsfaktor einer geborenen Person zum technischen Fort­
schri tt (BTF=l .154 E-9)
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Die Simulation dieses Modells bis zum Jahre 1970 liefert sowohl hin­

.sichtlich der Bevo1kerungszahl, als auch del Anzahl der Geburten- und

Todesfalle einen mit dem Wei tmodel 1 von FORRESTER nahezu ubereinstim­

mend en Variablenverlauf. Hierbei wird die in Abbil~ung 17.17 bei~hrie­

bene Hypothesenfunktion nur in dem Bereich in Anspruch genommen, der

links von der senkrecht gestrichelten Linie liegt.Der im rechten Be­

reich liegende Kurvenzug beeinfluBt allein den Variablenverlauf Uber
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Abb. 17.19 Zeitverlauf der We1tbev61kerung im FaIle des Forrester­
modells (B) sowie im FaIle eines 'Miniwe1tmodells ' (1) bei
Wahl der Hypothese A1 aus Abb. 17.17. Todesrate Forrester­
modell (T), Minimode.ll (3), Geburtenrat·e Forrestermodell (G),
Minimodell (2) [Einheit M: Mi1lionen]
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das Jahr 1970 hinaus. Durch die plausible Annahme des in Abbi ldung

17.17 be~chriebenen Hypothesenverlaufs A1 erhilt man in Abbildung

17.19 einen permanent wachsenden Ver1auf der Weltbevolkerung.

1m FaIle der Verwendung von Hypothese A2 aus Abbildung 17.17 strebt

die Weltbevolkerung in 'Abbildung 17.20 einem Gleichgewichtspfad von

etwa sechs Milliarden Einwohnern zu.
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Abb. 17.20 Zeitverlauf der Weltbevolkerung im Fal Ie des Forrester­
model1s(B) so wie im FaIle eines 'Miniweltmodells' (1) bei
Wah I der Hypothese A2 aus Abb. 17. 17. Todes rate: Fa r­
restermodell (T), Mi nimodell (3), Geburtenrate: Forrester­
model 1 (G), Hi nimodell (2) [Einhei t H: Mi 11 ionen]
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Die alternative Verwendung der in Abbildung 17.17 beschriebenen Hypo­

thesen fuhr~ daher unter Reproduktion der bis 1970 gegebenen Beobach­

tungswerte zu unterschiedl ichen Verlaufen. Da keine Hypothese die an­

dere wesentl ich an Plausibil itat ubertrifft, bietet sich hier die Mog­

lichkeit, daB eine an einem bestimmten Prognoseergebnis interessier­

te Person gezielt auf die Hypothese zurUckgreift, die ihren WOnschen

am starksten entspricht. Will man,beispielsweise die Prognose bekraf­

tigen, daB noch fur lange Zeit ein Bevolkerungswachstum gegeben sein

wird, so wahle man Hypothese A1 aus.




